Tampilkan postingan dengan label Linear Equations in Three Variables. Tampilkan semua postingan
Tampilkan postingan dengan label Linear Equations in Three Variables. Tampilkan semua postingan

Contoh Soal 4 Sistem Persamaan Linear Tiga Variabel

$\begin{array}{ll}\\ 16.&\textrm{Diketahui suatu fungsi kuadrat}\\ &f(x)=ax^{2}+bx+c.\: \: \textrm{Jika fungsi}\\ &(-1,0),(1,4),\: \textrm{dan}\: \: (2,9),\: \: \textrm{maka}\\ &\textrm{fungsi yang dimaksud adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle f(x)=x^{2}-2x+3\\ \textrm{b}.&f(x)=x^{2}+2x+3\\ \textrm{c}.&f(x)=x^{2}+2x-3\\ \textrm{d}.&f(x)=x^{2}-2x-3\\ \color{red}\textrm{e}.&f(x)=x^{2}+2x+1 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{e}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\left\{\begin{matrix} (-1,0)\Rightarrow f(-1)=a-b+c=0\: ....\color{red}(1)\\ (1,4)\Rightarrow f(1)=a+b+c=4\: ....\color{red}(2)\\ (2,9)\Rightarrow f(2)=4a+2b+c=9\: ....\color{red}(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (1)\&(2),\: \textrm{didapatkan}\\ &b=2\: \: ...............\color{blue}(4)\\ &\textrm{Saat}\: \: (1)\&(3),\: \textrm{didapatkan}\\ &\color{blue}\begin{array}{llll}\\ 4a+2b+c&=9&\\ \: \: \: \: a-b+c&=0&-\\\hline \quad\qquad \qquad 3a+3b&=9&\\ \: \: \: \quad\qquad \qquad a+b&=3&...(5) \end{array}\\ &\textrm{Dari persamaan}\: \: (4)\&(5)\: \: \textrm{maka},\\ &\color{blue}\begin{cases} a &=1 \\ c & =1 \end{cases}\\ &\color{blue}\textrm{Jadi},\: \: f(x)=ax^{2}+bx+c=x^{2}+2x+1 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 17.&\textrm{Diketahui persamaan}\begin{cases} x-y & =2 \\ kx+y & =3 \end{cases}\\ &\textrm{memiliki solusi}\: \: (x,y)\: \: \textrm{di kuadran I}\\ &\textrm{Jika dan hanya jika nilai}\: \: k\: \: \textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle k=-1\\ \textrm{b}.&k>-1\\ \textrm{c}.&k<\displaystyle \frac{3}{2}\\ \textrm{d}.&0<k<\displaystyle \frac{3}{2}\\ \color{red}\textrm{e}.&-1<k<\displaystyle \frac{3}{2} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{e}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\left\{\begin{matrix} x-y=2\: \: \: \quad....(1)\\ kx+y=3\quad\: ....(2)\end{matrix}\right.\\ &\textrm{Dengan metode matriks didapatkan}\\ &\color{blue}x=\displaystyle \frac{\begin{vmatrix} 2 & -1\\ 3& 1 \end{vmatrix}}{\begin{vmatrix} 1 & -1\\ k & 1 \end{vmatrix}}=\displaystyle \frac{2-(-3)}{1+k}=\frac{5}{k+1}\\ &\textrm{Dengan cara yang sama pula}\\ &\color{blue}y=\displaystyle \frac{\begin{vmatrix} 1 & 2\\ k & 3 \end{vmatrix}}{\begin{vmatrix} 1 & -1\\ k & 1 \end{vmatrix}}=\displaystyle \frac{3-2k}{k+1}\\ &\textrm{Supaya memiliki solusi di kwadran I},\\ &\textrm{maka baik}\: \: x\: \: \textrm{maupun}\: \: y\\ &\textrm{haruslah positif, akibatnya}:\\ &\color{red} k+1>0\Rightarrow k>-1\\ &\textrm{Sebagai akibat yang lain adalah}:\\ &3-2k>0\Rightarrow k<\displaystyle \frac{3}{2}\\ &\color{blue}\textrm{Jadi},\: \: -1<k<\displaystyle \frac{3}{2} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 18.&\textrm{Diketahui sistem persamaan}\\ &y+\displaystyle \frac{2}{x+z}=4\\ &5y+\displaystyle \frac{18}{2x+y+z}=18\\ &\displaystyle \frac{8}{x+z}-\frac{6}{2x+y+z}=3\\ &\textrm{Nilai}\: \: y+\sqrt{x^{2}-2xz+y^{2}}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&\displaystyle 3\\ \textrm{b}.&5\\ \textrm{c}.&7\\ \textrm{d}.&9\\ \textrm{e}.&11 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\left\{\begin{matrix} y+\displaystyle \frac{2}{x+z}=4\qquad\quad\\ 5y+\displaystyle \frac{18}{2x+y+z}=18\\ \displaystyle \frac{8}{x+z}-\frac{6}{2x+y+z}=3\end{matrix}\right.\\ &\textrm{Jika disederhanakan beberapa bagian}\\ &\begin{cases} y+2A & =4\: ....(1) \\ 5y+18B & =18\: ....(2) \\ 8A-6B & =3\: ....(3) \end{cases}\\ &\textrm{Saat}\: \: (1)+(2)\&(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{llllll}\\ y+2A&=4&\left | \times 5 \right |&5y+10A=20\\ 5y+3(8A-3)&=18&\left | \times 1 \right |&5y+24A=27&-\\\hline &&&\: \: \quad-14A=-7\\ &&&\: \: \: \: \: \: \: \qquad A=\displaystyle \frac{1}{2}...(4)\\ \textrm{maka}\: B=\displaystyle \frac{1}{6}\: \& &y=3&&\\ \textrm{akibatnya}\\ \begin{cases} x &=1 \\ z &=1 \end{cases} \end{array} \\ &\color{blue}\textrm{Jadi},\: \: y+\sqrt{x^{2}-2xz+z^{2}}=3+0=3 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 19.&\textrm{Diberikan}\: \: a,b,\: \textrm{dan}\: \: c \: \: \textrm{adalah angka-angka}\\ &\textrm{dari bilangan 3 digit yang memenuhi}\\ &49a+7b+c=286.\: \: \textrm{Nilai dari}\: \: a+b+c\\ &\textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&16\\ \textrm{b}.&17\\ \textrm{c}.&18\\ \textrm{d}.&19\\ \textrm{e}.&20 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\color{blue}49a+7b+c=286\\ &\textrm{Nilai maksimum}\: \: a\: \textrm{adalah}\: \: \color{blue}5\\ &\color{red}49\times 5=245,\: \: \color{black}\textrm{akibatnya}:\\ &\color{blue}245+7b+c=286\Rightarrow 7b+c=286-245=41\\ &\textrm{Nilai maksimum}\: \: b\: \textrm{adalah}\: \: \color{blue}5\\ &\color{red}7\times 5=35,\: \: \color{black}\textrm{akibatnya}:\\ &\color{blue}35+c=41\Rightarrow c=41-35=6\\ &\color{black}\textrm{Sehingga}\: \: \color{blue}a,b,\: \: \color{black}\textrm{dan}\: \: \color{blue}c\: \: \color{black}\textrm{adalah}\: \: \color{blue}5,5,\: \: \color{black}\textrm{dan}\: \: \color{blue}6\\ &\textrm{Jadi},\: \textrm{nilai}\: \: \color{red}a+b+c=5+5+6=16 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 20.&\textrm{Diketahui sistem persamaan}\\ &(2x+3y)^{.^{\log (x-y+2z)}}=1\\ &3^{2x+y+z}\times 27^{3z+2y+x}=81\\ &5x+3y+8z=2\\ &\textrm{Himpunan penyelesaian yang}\\ &\textrm{memenuhi adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&\left \{ \displaystyle \frac{17}{12},-\frac{1}{12},\frac{7}{6} \right \}\\ \textrm{b}.&\left \{ -\displaystyle \frac{17}{12},\frac{1}{2},\frac{7}{6} \right \}\\ \textrm{c}.&\left \{ -\displaystyle \frac{17}{12},-\frac{1}{2},-\frac{7}{6} \right \}\\ \textrm{d}.&\left \{ \displaystyle \frac{17}{12},\frac{1}{12},\frac{7}{6} \right \}\\ \color{red}\textrm{e}.&\left \{ -\displaystyle \frac{17}{12},-\frac{1}{12},\frac{7}{6} \right \} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{e}\\ &\begin{aligned}&\color{blue}\textrm{Untuk persamaan}\: \: (1)\\ &(2x+3y)^{.^{\log (x-y+2z)}}=(2x+3y)^{0}\\ &\Leftrightarrow (x-y+2z)=10^{0}=1\\ &\color{blue}\textrm{Untuk persamaan}\: \: (2)\\ &3^{2x+y+z}\times 27^{3z+2y+x}=81\\ &\Leftrightarrow 3^{2x+y+z+3(3z+2y+x)}=3^{4}\\ &\Leftrightarrow 5x+7y+10z=4\\ &\color{blue}\textrm{Sehingga sistem persamaan akan terlihat}\\ &\left\{\begin{matrix} x-y+2z=1\: \: \qquad....(1)\\ 5x+7y+10z=4\quad\: ....(2)\\ 5x+3y+8z=2\: \: \: \: \quad ....(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (2)\&(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{llll}\\ 5x+7y+10z&=4&\\ 5x+3y+8z&=2&-\\\hline \qquad 4y\quad+2z&=2\\ \qquad 2y\quad+z&=1\: ...(4)\\ \end{array} \\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{llll}\\ 5x-5y+10z&=5&\\ 5x+7y+10z&=4&-\\\hline \quad -12y\quad&=1\\ \: \: \: \: \qquad y\quad&=-\displaystyle \frac{1}{12}\: ...(5)\\ \end{array}\\ &\textrm{Dari persamaan}\: \: (5)\: \: \textrm{disubstistusikan ke}\: \: (4)\\ &\color{blue}\begin{aligned}2y+z&=1\\ 2\left ( -\displaystyle \frac{1}{12} \right )+z&=1\\ z&=1+\displaystyle \frac{1}{6}\\ z&=\displaystyle \frac{7}{6} \end{aligned}\\ &\textrm{Cukup jelas juga}\: \: x=....\\ &\color{blue}\textrm{Jadi},\: \textrm{pilihannya adalah}\: \: e \end{aligned} \end{array}$


DAFTAR PUSTAKA

  1. Bintari, N., Gunarto, D. 2007. Panduan Menguasai Soal-Soal Olimpiade MAtematika Nasional dan Internasional. Yogyakarta: INDONESIA CERDAS.
  2. Kanginan, M. 2016. Matematika untuk SMA-MA/SMK-MAK Kelas X. Bandung: SRIKANDI EMPAT WIDYA UTAMA
  3. Kurnianingsih, S. 2008. SPM Matematika SMA dan MA Program IPS Siap Tuntas Menghadapi Ujian. Jakarta: ESIS
  4. Susianto, B. 2011. Soal dan Pembahasan Olimpiade Matematika dengan Proses Berpikir Aljabar dan Bilangan. Jakarta: GRASINDO
  5. Yuana, R. A., Indriyastuti. 2017. Perspektif Matematika untuk Kelas X SMA dan MA Kelompok Mata Pelajaran Wajib. Solo: TIGA SERANGKAI PUSTAKA MANDIRI

Contoh Soal 3 Sistem Persamaan Linear Tiga Variabel

$\begin{array}{ll}\\ 11.&\textrm{Suatu bilangan terdiri atas 3 angka. Jumlah}\\ &\textrm{ketiga angka tersebut adalah 9. Angka kedua}\\ &\textrm{dikurangi angka pertama dan angka ketiga }\\ &\textrm{sama dengan 1. Dua kali angka pertama sama}\\ &\textrm{dengan jumlah angka kedua dan angka ketiga.}\\ &\textrm{Angka puluhan pada bilangan tersebut adalah}\\ &....\\ &\begin{array}{llll}\\ \textrm{a}.&3\\ \textrm{b}.&4\\ \color{red}\textrm{c}.&5\\ \textrm{d}.&6\\ \textrm{e}.&7 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}&\textrm{Model matematikanya}\\ &\left\{\begin{matrix} A+B+C=9\: \: \qquad....(1)\\ 2B-A-C=1\qquad\: ....(2)\\ 2A=B+C\: \: \: \: \qquad\quad ....(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llll}\\ \displaystyle A+B+C&=9\\ \displaystyle -A+B-C&=1&+\\\hline \qquad2B&=10\\ \: \: \: \: \qquad\qquad B&=5&...(4)\\ \end{array}\\ &\color{blue}\textrm{Jadi},\: \textrm{bilangan kedua adalah}\: =\: B=5 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 12.&(\textbf{SIMAK UI 2010})\\ &\textrm{Jika}\: \: x+y+2z=K,\: x+2y+z=K,\\ &2x+y+z=K\: \: \textrm{dengan}\: \: K\neq 0,\: \textrm{maka}\\ &x^{2}+y^{2}+z^{2}\: \: \textrm{bila dinyatakan dalam}\: \: K\\ &\textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle \frac{1}{16}K^{2}\\ \color{red}\textrm{b}.&\displaystyle \frac{3}{16}K^{2}\\ \textrm{c}.&\displaystyle \frac{4}{17}K^{2}\\ \textrm{d}.&\displaystyle \frac{3}{8}K^{2}\\ \textrm{e}.&\displaystyle \frac{2}{3}K^{2} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\left\{\begin{matrix} x+y+2z=K\: \: \qquad....(1)\\ x+2y+z=K\qquad\: ....(2)\\ 2x+y+z=K\: \: \qquad ....(3)\end{matrix}\right.\\ &\color{black}\textrm{maka}\\ &\color{red}\left\{\begin{matrix} z+(x+y+z)=K\: \: \qquad....(1)\\ y+(x+y+z)=K\qquad\: ....(2)\\ x+(x+y+z)=K\: \: \qquad ....(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{llll}\\ \displaystyle x+y+2z&=K\\ \displaystyle x+2y+z&=K&\\ \displaystyle 2x+y+z&=K&+\\\hline 4x+4y+4z&=3K\\ x+y+z&=\displaystyle \frac{3}{4}K&...(4)\\ \end{array}\\ &\textrm{Saat}\: \: (4)\: \: \textrm{disubstitusikan ke}\: \: (1),(2),\: \textrm{dan}\: (3)\\ &\textrm{Jelas bahwa akan didapatkan}\\ &x=y=z=\displaystyle \frac{1}{4}K\\ &\color{blue}\textrm{Jadi},\: \: x^{2}+y^{2}+y^{2}=3\left ( \displaystyle \frac{1}{4}K \right )^{2}=\displaystyle \frac{3}{16}K^{2} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 13.&\textrm{Diketahui}\: \: 0,15252525252...=\displaystyle \frac{p}{2q+r}\\ &\textrm{Jika jumlah}\: \: p\: \: \textrm{dan}\: \: q=\textrm{3 kali}\: \: r,\: \textrm{maka}\\ &\textrm{masing-masing harga}\: \: p,q, \: \textrm{dan}\: \: r=....\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle 152,2819,2584\\ \textrm{b}.&\displaystyle 252,\displaystyle \frac{5638}{7},\frac{8102}{21}\\ \color{red}\textrm{c}.&\displaystyle 151,\frac{2819}{7},\frac{1292}{7}\\ \textrm{d}.&\displaystyle 151,\displaystyle \frac{2819}{7},\frac{2584}{7}\\ \textrm{e}.&\displaystyle 152,\frac{2819}{14},\frac{1292}{7} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}&\textrm{Dari soal diketahui}\\ &\color{red}\begin{cases} 0,1\overline{5252}& =\displaystyle \frac{p}{2q+r}\: .....(1)\\ \quad p+q & =3r\: ............(2) \end{cases}\\ &\color{black}\textrm{dan}\\ &\color{blue}\begin{array}{llll}\\ \displaystyle \qquad \color{red}x&=0,15252525252...\\ \displaystyle 1000\color{red}x&=152,5252525252...\\ \displaystyle \quad10\color{red}x&=\: \: \: \: \: 1,5252525252...&-\\\hline \: \: 990\color{red}x&=151\\ \qquad \color{red}x&=\displaystyle \frac{151}{990},\: \: \color{black}\textrm{maka}\\ \displaystyle \frac{p}{2q+r}&=\displaystyle \frac{151}{990}\\ &\begin{cases} p &=151 \: \: .......(3)\\ 2p+r &=990 \: \: .......(4) \end{cases} \end{array}\\ &\textrm{Dari}\: \: (3)\: \textrm{diperoleh}:q=3r-p=3r-151\: ....\color{blue}(5)\\ &\textrm{Dari}\: \: (5)\: \: \textrm{disubstitusikan ke}\: \: (4)\\ &\begin{aligned}2q+r&=990\\ 2(3r-151)+r&=990\\ 6r-302+r&=990\\ 7r&=990+302=1292\\ r&=\displaystyle \frac{1292}{7}\: .....\color{blue}(6) \end{aligned}\\ &\textrm{Dari}\: \: (3)\&(6)\: \: \textrm{disubstitusikan ke}\: \: (2)\\ &\color{purple}\begin{aligned}p+q&=3r\\ 151+q&=3\left ( \displaystyle \frac{1292}{7} \right )\\ q&=\displaystyle \frac{3876}{7}-151\\ &=\displaystyle \frac{3876-1057}{7}\\ &=\displaystyle \frac{2819}{7}\: .....\color{blue}(7) \end{aligned}\\ &\color{blue}\textrm{Jadi},\: \: p,q,r\: \: \textrm{adalah}\: :\: \displaystyle 151,\frac{2819}{7},\frac{1292}{7} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 14.&\textrm{Perhatikanlah sistem persamaan berikut}\\ &\begin{cases} 3x+2y-5z & =3 \\ 2x-6y+kz & =9 \\ 5x-4y-z & =5 \end{cases}\\ &\textrm{agar sistem persamaan ini tidak}\\ &\textrm{memiliki penyelesaian, maka nilai}\: \: k=....\\ &\begin{array}{llll}\\ \textrm{a}.&-4\\ \textrm{b}.&2\\ \textrm{c}.&3\\ \color{red}\textrm{d}.&4\\ \textrm{e}.&6 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\begin{aligned}&\textrm{Agar sistem persamaan}\\ &\color{red}\begin{cases} 3x+2y-5z & =3 \\ 2x-6y+kz & =9 \\ 5x-4y-z & =5 \end{cases}\\ &\color{black}\textrm{tidak berpenyelesaian, maka}\\ &\color{black}\textrm{ingat penyelesaian metode matrik}\\ &\color{black}\textrm{buatlah penyebutnya}=0,\: \: \textrm{yaitu}:\\ &\color{blue}\begin{vmatrix} 3 & 2 & -5\\ 2 & -6 & k\\ 5 & -4 & -1 \end{vmatrix}=0\\ &\textrm{Selanjutnya}\\ &3\begin{vmatrix} -6 & k\\ -4 & -1 \end{vmatrix}-2\begin{vmatrix} 2 & k\\ 5 & -1 \end{vmatrix}-5\begin{vmatrix} 2 & -6\\ 5 & -4 \end{vmatrix}=0\\ &3(6+4k)-2(-2-5k)-5(-8+30)=0\\ &18+12k+4+10k+40-150=0\\ &22x=88\\ &\quad \color{blue}x=4 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 15.&\textrm{Diketahui}\\ &\begin{pmatrix} \displaystyle \frac{1}{5} & \displaystyle \frac{1}{5} & \displaystyle \frac{1}{5}\\ \displaystyle \frac{1}{5} & \displaystyle \frac{1}{5} & -\displaystyle \frac{4}{5}\\ -\displaystyle \frac{2}{5} & \displaystyle \frac{1}{10} & \displaystyle \frac{1}{10} \end{pmatrix}\begin{pmatrix} x\\ y\\ z \end{pmatrix}=\begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}\\ &\textrm{Nilai}\: \: x,y,\: \: \textrm{dan}\: \: z\: \: \textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle \frac{1}{5},\frac{4}{5},-\frac{1}{10}\\ \textrm{b}.&-1,5,1\\ \color{red}\textrm{c}.&1,5,-1\\ \textrm{d}.&-1,1,5\\ \textrm{e}.&5,1,-1 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\color{red}\left\{\begin{matrix} \displaystyle \frac{1}{5}x+\frac{1}{5}y+\frac{1}{5}z=1\quad \quad....(1)\\ \displaystyle \frac{1}{5}x+\frac{1}{5}y-\frac{4}{5}z=2\qquad\: ....(2)\\ -\displaystyle \frac{2}{5}x+\frac{1}{10}y+\frac{1}{10}z=0\: \quad ....(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llll}\\ \displaystyle \frac{1}{5}x+\frac{1}{5}y+\frac{1}{5}z&=1&\\ \displaystyle \frac{1}{5}x+\frac{1}{5}y-\frac{4}{5}z&=2&-\\\hline \quad\qquad \qquad \displaystyle \frac{5}{5}z&=-1&\\ \: \: \: \quad\qquad \qquad \displaystyle z&=-1&...(4) \end{array}\\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{lllllll}\\ \displaystyle \frac{1}{5}x+\frac{1}{5}y+\frac{1}{5}z&=1&\left | \times 1 \right |&\displaystyle \frac{1}{5}x+\frac{1}{5}y+\frac{1}{5}z=1\\ -\displaystyle \frac{2}{5}x+\frac{1}{10}y+\frac{1}{10}z&=0&\left | \times 2 \right |&-\displaystyle \frac{4}{5}+\frac{1}{5}y+\frac{1}{5}z=0&-\\\hline &&&\: \: \: \: \displaystyle \frac{5}{5}x\qquad\qquad\: =1&\\ &&&\: \: \: \quad x=-1\: ........(5) \end{array} \\ &\textrm{Dari persamaan}\: \: (4)\&(5)\: \: \textrm{akan didapatkan}\\ &y=5\\ &\color{blue}\textrm{Jadi},\: \: (x,y,z)=(1,5,-1) \end{aligned} \end{array}$

Contoh Soal 2 Sistem Persamaan Linear Tiga Variabel

$\begin{array}{ll}\\ 6.&\textrm{Diketahui sistem persamaan berikut}\\ &\left\{\begin{matrix} x+y-z=1\: \: \qquad\\ 2x-y+2z=9\quad\: \\ x+3y-z=7\: \: \: \: \quad \end{matrix}\right.\\ &\textrm{Nilai}\: \: \displaystyle \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=....\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle \frac{1}{3}\\ \textrm{b}.&\displaystyle \frac{3}{4}\\ \color{red}\textrm{c}.&\displaystyle \frac{13}{12}\\ \textrm{d}.&\displaystyle \frac{5}{4}\\ \textrm{e}.&\displaystyle \frac{7}{4} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\left\{\begin{matrix} x+y-z=1\: \: \qquad....(1)\\ 2x-y+2z=9\quad\: ....(2)\\ x+3y-z=7\: \: \: \: \quad ....(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llll}\\ x+y-z&=1&\\ 2x-y+2z&=9&+\\\hline 3x\: \: \qquad+z&=10&...(4)\\ \end{array} \\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{llllll}\\ x+y-z&=1&\left | \times 3 \right |&3x+3y-3z&=3&\\ x+3y-z&=7&\left | \times 1 \right |&\quad x+3y-z&=7&-\\\hline &&&2x\quad \: \: \quad-2z&=-4&\\ &&&\: \: x\quad \: \: \: \: \quad-z&=2&....(5)\\ \end{array} \\ &\textrm{Dari persamaan}\: \: (4)\&(5)\: \: \textrm{maka},\\ &\color{blue}\begin{array}{lll}\\ 3x+z&=10&\\ x-z&=-2&+\\\hline 4x&=8&\\ \qquad\quad x&=2&.....(6)\\ \color{red}\textrm{didapat pula}&z&=4......(7) \end{array} \\ &\textrm{Dari persamaan}\: \: (1)\&(3)\: \: \textrm{didapatkan juga}\\ &\color{blue}\begin{array}{lll}\\ x+y-z&=1&\\ x+3y-z&=-7&-\\\hline \quad -2y&=-6&\\ \qquad\qquad y&=3&....(8) \end{array}\\ &\color{blue}\textrm{Jadi},\: \: \displaystyle \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\displaystyle \frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 7.&\textrm{Diketahui sistem persamaan berikut}\\ &\left\{\begin{matrix} x+y+z=5\: \: \: \: \quad\\ x+y-4z=10\quad \\ -2x+y+z=0 \quad \end{matrix}\right.\\ &\textrm{Nilai dari}\: \: \displaystyle \frac{xz}{y}\: \: \textrm{adalah}....\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle -\frac{6}{13}\\ \color{red}\textrm{b}.&\displaystyle -\frac{5}{13}\\ \textrm{c}.&\displaystyle -\frac{1}{13}\\ \textrm{d}.&\displaystyle \frac{1}{13}\\ \textrm{e}.&\displaystyle \frac{7}{13} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\left\{\begin{matrix} x+y+z=5\: \: \: \: \quad.....(1)\\ x+y-4z=10\quad .....(2)\\ -2x+y+z=0 \quad .....(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llll}\\ x+y+z&=5&\\ x+y-4z&=10&-\\\hline \: \: \qquad \: \: \: \: \: 5z&=-5&\\ \: \: \qquad\quad \: \: \: z&=-1&...(4)\\ \end{array} \\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{llllll}\\ x+y+z&=5&\\ -2x+y+z&=0&-\\\hline 3x\quad \: \quad&=5&\\ \: \: \quad \: \: \: \: \quad x&=\displaystyle \frac{5}{3}&....(5)\\ \end{array} \\ &\textrm{Dari persamaan}\: \: (4)\&(5)\: \: \textrm{maka},\\ &\color{blue}\begin{aligned}x+y+z&=5\\ \displaystyle \frac{5}{3}+y-1&=5\\ y&=5+1-\displaystyle \frac{5}{3}=\frac{13}{3} \end{aligned}\\ &\color{blue}\textrm{Jadi},\: \: \displaystyle \frac{xz}{y}=\displaystyle \frac{\left ( \displaystyle \frac{5}{3} \right ).(-1)}{\displaystyle \frac{13}{3}}=-\displaystyle \frac{5}{13} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 8.&\textrm{Himpunan penyelesaian dari}\\ &\begin{cases} \displaystyle \frac{1}{x}+\frac{2}{y}+\frac{3}{z} & =8 \\ \displaystyle \frac{2}{x}+\frac{2}{y}+\frac{4}{z} & =10 \\ \displaystyle \frac{2}{x}+\frac{4}{y}+\frac{2}{z} & =4 \end{cases}\\ &\textrm{adalah}\: \: \left \{ (x,y,z) \right \},\: \textrm{maka}\: \: x+3z=....\\ &\begin{array}{llll}\\ \textrm{a}.&0\\ \textrm{b}.&\displaystyle \frac{1}{3}\\ \textrm{c}.&1\\ \color{red}\textrm{d}.&3\\ \textrm{e}.&5 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\begin{cases} \displaystyle \frac{1}{x}+\frac{2}{y}+\frac{3}{z} & =8\: ....(1)\\ \displaystyle \frac{2}{x}+\frac{2}{y}+\frac{4}{z} & =10\: .....(2)\\ \displaystyle \frac{2}{x}+\frac{4}{y}+\frac{2}{z} & =4\: ...........(3) \end{cases}\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llll}\\ \displaystyle \frac{1}{x}+\frac{2}{y}+\frac{3}{z}&=8\\ \displaystyle \frac{2}{x}+\frac{2}{y}+\frac{4}{z}&=10&-\\\hline -\displaystyle \frac{1}{x}\: \: \: \: \: -\frac{1}{z}&=-2\\ \displaystyle \frac{1}{x}\: \: \: \: \: \: \: \: +\frac{1}{z}&=2&...(4)\\ \end{array} \\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{lllllll}\\ \displaystyle \frac{2}{x}+\frac{2}{y}+\frac{4}{z}&=8&\left | \times 2 \right |&\displaystyle \frac{4}{x}+\frac{4}{y}+\frac{8}{z}&=16\\ \displaystyle \frac{2}{x}+\frac{4}{y}+\frac{2}{z}&=4&\left | \times 1 \right |&\displaystyle \frac{2}{x}+\frac{4}{y}+\frac{2}{z}&=4&-\\\hline &&&\displaystyle \frac{2}{x}\: \: \: \: \: +\frac{6}{z}&=12\\ &&\Leftrightarrow &\displaystyle \frac{1}{x}\: \: \: \: \: +\frac{3}{z}&=6&...(5)\\ \end{array}\\ &\textrm{Dari persamaan}\: \: (4)\&(5)\: \: \textrm{maka},\\ &\color{blue}\begin{array}{llll}\\ \displaystyle \frac{1}{x}+\frac{3}{z}&=6\\ \displaystyle \frac{1}{x}+\frac{1}{z}&=2\: \: \: -\\\hline \qquad\displaystyle \frac{2}{z}&=4&\\ \qquad z&=\displaystyle \frac{1}{2}\: \: ......(6)\\ \qquad x&=2-\displaystyle \frac{1}{2}=\displaystyle \frac{3}{2} \end{array}\\ &\color{blue}\textrm{Jadi},\: \: x+3z=\displaystyle \frac{3}{2}+3.\frac{1}{2}=3 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 9.&\textrm{Diketahui tiga buah bilangan berturut-turut}\\ &a,\: b,\: \textrm{dan}\: c.\: \textrm{Rata-rata dari ke tiga bilangan}\\ &\textrm{itu adalah 12. Bilangan kedua sama dengan}\\ &\textrm{jumlah bilangan yang lain dikurangi 12}.\\ &\textrm{Jika bilangan ke tiga sama dengan jumlah}\\ &\textrm{bilangan yang lain, maka nilai}\: \: 2a+b-c=....\\ &\begin{array}{llll}\\ \textrm{a}.&-\displaystyle 42\\ \textrm{b}.&-\displaystyle 36\\ \textrm{c}.&-\displaystyle 18\\ \textrm{d}.&-\displaystyle 12\\ \color{red}\textrm{e}.&-\displaystyle 6 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{e}\\ &\begin{aligned}&\textrm{Model matematika dari persamaan di atas}\\ &\left\{\begin{matrix} a+b+c=36\: \: \qquad....(1)\\ -a+b-x=12\quad\: ....(2)\\ a+b-c=0\: \: \: \: \: \: \: \quad ....(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llll}\\ a+b+c&=36&\\ -a+b-c&=12&+\\\hline \: \: \: \: \: \: \: \: \: \: \: 2b&=48&\\ \: \: \qquad\quad \: \: \: b&=24&...(4)\\ \end{array}\\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{llllll}\\ a+b+c&=36&\\ a+b-c&=0&-\\\hline \quad\qquad2c &=36&\\ \: \: \quad \: \: \: \: \quad c&=18&....(5)\\ \end{array} \\ &\textrm{Dari persamaan}\: \: (4)\&(5)\: \: \textrm{maka},\\ &\color{blue}\begin{aligned}a+b+c&=36\\ a+24+18&=36\\ a&=36-42\\ &=-6 \end{aligned} \\ &\color{blue}\textrm{Jadi},\: \: 2a+b-c=2(-6)+24-18=-6 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 10.&\textrm{Jumlah uang terdiri atas koin pecahan}\: \: Rp500,00\\ &Rp200,00\: \: dan\: \: Rp100,00\: \: \textrm{dengan nilai total}\\ &Rp100.000,00.\: \textrm{Jika nilai uang pecahan 500-an}\\ &\textrm{setengah dari nilai uang pecahan 200-an, tetapi}\\ &\textrm{tiga kali uang pecahan 100-an, maka banyak koin}\\ &\textrm{adalah}....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&460\\ \textrm{b}.&440\\ \textrm{c}.&420\\ \textrm{d}.&380\\ \textrm{e}.&350 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}&\textrm{Model matematika dari kasus di atas}\\ &\left\{\begin{matrix} A(500)+B(200)+C(100)=100.000\: ....(1)\\ A(500)=\displaystyle \frac{1}{2}B(200)\qquad\qquad\qquad\qquad\: ....(2)\\ A(500)=3C(100)\qquad\qquad\qquad\: \: \, \: \: \: \: \quad ....(3)\end{matrix}\right.\\ &\textrm{Dari persamaan}\: \: (2)\: \textrm{didapatkan}\\ &2A(500)=B(200)\\ &\textrm{Dari persamaan}\: \: (3)\: \textrm{akan didapatkan}\\ &\displaystyle \frac{1}{3}A(500)=C(100)\\ &\textrm{Dari persamaan}\: \: (1)\: \: \textrm{maka},\\ &A(500)+B(200)+C(100)=100.000\\ &A(500)+2A(500)+\displaystyle \frac{1}{3}A(500)=100.000\\ &\displaystyle \frac{10}{3}A(500)=100.000\Leftrightarrow A(500)=30.000\\ &\textrm{maka akan didapatkan}\\ &B(200)=2(30.000)=60.000\\ &C(100)=\displaystyle \frac{1}{3}(30.000)=10.000\\ &\color{red}\begin{cases} A(500) &=30.000\Rightarrow \color{black}A=\displaystyle \frac{30.000}{500}=60 \\ B(200) &=60.000\Rightarrow \color{black}B=\displaystyle \frac{60.000}{200}=300 \\ C(100) &=10.000\Rightarrow \color{black}C=\displaystyle \frac{10.000}{100}=100 \end{cases}\\ &\color{blue}\textrm{Jadi},\: \: A+B+C=60+300+100=460 \end{aligned} \end{array}$

Contoh Soal 1 Sistem Persamaan Linear Tiga Variabel

$\begin{array}{ll}\\ 1.&\textrm{Suatu unit pekerjaan dapat diselesaikan oleh A}\\ &\textrm{B, dan C bersama-sama dalam 2 jam saja.}\\ &\textrm{Jika pekerjaan itu dapat diselesaikan oleh A dan}\\ &\textrm{B bersama-sama dalam 2 jam 24 menit, dan oleh}\\ &\textrm{B dan C bersama-sama dalam waktu 3 jam,}\\ &\textrm{maka sistem persamaan berikut yang memenuhi}\\ &\textrm{adalah}....\\ &\begin{array}{llll}\\ \textrm{a}.&\begin{cases} A+B+C&=2 \\ A+B & =\displaystyle \frac{12}{5} \\ B+C &=3 \end{cases}\\ \textrm{b}.&\begin{cases} A+B+C&=\displaystyle \frac{1}{2} \\ A+B & =\displaystyle \frac{5}{12} \\ B+C &=\displaystyle \frac{1}{3} \end{cases}\\ \textrm{c}.&\begin{cases} \displaystyle \frac{1}{A}+\frac{1}{B}+\frac{1}{C}&=2 \\ \displaystyle \frac{1}{A}+\frac{1}{B}& =\displaystyle \frac{12}{5} \\ \displaystyle \frac{1}{B}+\frac{1}{C}&=3 \end{cases}\\ \color{red}\textrm{d}.&\begin{cases} \displaystyle \frac{1}{A}+\frac{1}{B}+\frac{1}{C}&=\displaystyle \frac{1}{2} \\ \displaystyle \frac{1}{A}+\frac{1}{B}& =\displaystyle \frac{5}{12} \\ \displaystyle \frac{1}{B}+\frac{1}{C}&=\displaystyle \frac{1}{3} \end{cases}\\ \textrm{e}.&\begin{cases} \displaystyle \frac{1}{A}+\frac{1}{B}+\frac{1}{C}&=2 \\ \displaystyle \frac{1}{A}+\frac{1}{B}-\frac{1}{C}& =\displaystyle \frac{12}{5} \\ \displaystyle -\frac{1}{A}+\frac{1}{B}+\frac{1}{C}&=3 \end{cases} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\color{blue}\begin{aligned}\textrm{Per}&\textrm{hatikan bahwa}:\color{red}\textrm{Waktu penyelesaian}\\ \color{red}\textrm{sua}&\color{red}\textrm{tu pekerjaan adalah termasuk}\\ \color{red}\textrm{per}&\color{red}\textrm{bandingan berbalik nilai},\: \color{blue}\textrm{maka}\\ \bullet \: \: \: &A,B,\: \textrm{dan}\: C \: \textrm{dalam 2 jam, artinya}:\\ &\color{black}\displaystyle \frac{1}{A}+\frac{1}{B}+\frac{1}{C}=\frac{1}{2},\: \color{blue}\textrm{demikian juga}\\ \bullet \: \: \: &A\: \textrm{dan}\: B\: \textrm{bersama-sama selesai dalam}\\ &\textrm{2 jam 24 menit atau}\: \displaystyle \frac{12}{5}\: \textrm{jam}:\\ &\color{black}\displaystyle \frac{1}{A}+\frac{1}{B}=\frac{5}{12}\\ \bullet \: \: \: &B\: \textrm{dan}\: C\: \textrm{selesai dalam 3 jam}:\\ &\color{black}\displaystyle \frac{1}{B}+\frac{1}{C}=\frac{1}{3} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Himpunan penyelesaian dari}\\ &\left\{\begin{matrix} x+y+4z=15\quad\\ x-y+z=2\qquad\\ x+2y-3z=-4 \end{matrix}\right.\\ &\textrm{adalah}....\\ &\begin{array}{llll}\\ \textrm{a}.&\left \{ (-1,1,3) \right \}\\ \color{red}\textrm{b}.&\left \{ (1,2,3) \right \}\\ \textrm{c}.&\left \{ (-2,1,1) \right \}\\ \textrm{d}.&\left \{ (3,2,-1) \right \}\\ \textrm{e}.&\left \{ (1,-2,3) \right \} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\color{blue}\textrm{Semunya dikerjakan dengan metode}\\ &\color{blue}\textrm{matriks}\: (\color{black}\textbf{Cara Cramer})\\ &\begin{aligned} \color{blue}x&=\displaystyle \frac{\begin{vmatrix} 15 & 1 & 4\\ 2& -1 & 1\\ -4& 2 & -3 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 4\\ 1 & -1 & 1\\ 1 & 2 & -3 \end{vmatrix}}\\ &=\displaystyle \frac{15\begin{vmatrix} -1 & 1\\ 2 & -3 \end{vmatrix}-1\begin{vmatrix} 2 & 1\\ -4 & -3 \end{vmatrix}+4\begin{vmatrix} 2 & -1\\ -4 & 2 \end{vmatrix}}{1\begin{vmatrix} -1 & 1\\ 2 & -3 \end{vmatrix}-1\begin{vmatrix} 1 & 1\\ 1 & -3 \end{vmatrix}+4\begin{vmatrix} 1 & -1\\ 1 & 2 \end{vmatrix}}\\ &=\displaystyle \frac{15(3-2)-1(-6+4)+4(4-4)}{1(3-2)-1(-3-1)+4(2+1)}\\ &=\displaystyle \frac{15(1)-1(-2)+4(0)}{1(1)-1(-4)+4(3)}=\frac{17}{17}=1 \\ \color{blue}y&=\displaystyle \frac{\begin{vmatrix} 1 & 15 & 4\\ 1& 2 & 1\\ 1& -4 & -3 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 4\\ 1 & -1 & 1\\ 1 & 2 & -3 \end{vmatrix}}\\ &=\displaystyle \frac{1\begin{vmatrix} 2 & 1\\ -4 & -3 \end{vmatrix}-15\begin{vmatrix} 1 & 1\\ 1 & -3 \end{vmatrix}+4\begin{vmatrix} 1 & 2\\ 1 & -4 \end{vmatrix}}{1\begin{vmatrix} -1 & 1\\ 2 & -3 \end{vmatrix}-1\begin{vmatrix} 1 & 1\\ 1 & -3 \end{vmatrix}+4\begin{vmatrix} 1 & -1\\ 1 & 2 \end{vmatrix}}\\ &=\displaystyle \frac{1(-6+4)-15(-3-1)+4(-4-2)}{1(3-2)-1(-3-1)+4(2+1)}\\ &=\displaystyle \frac{1(-2)-15(-4)+4(-6)}{1(1)-1(-4)+4(3)}=\frac{34}{17}=2\\ \color{blue}z&=\displaystyle \frac{\begin{vmatrix} 1 & 1 & 15\\ 1& -1 & 2\\ 1& 2 & -4 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 4\\ 1 & -1 & 1\\ 1 & 2 & -3 \end{vmatrix}}\\ &=\displaystyle \frac{1\begin{vmatrix} -1 & 2\\ 2 & -4 \end{vmatrix}-1\begin{vmatrix} 1 & 2\\ 1 & -4 \end{vmatrix}+15\begin{vmatrix} 1 & -1\\ 1 & 2 \end{vmatrix}}{1\begin{vmatrix} -1 & 1\\ 2 & -3 \end{vmatrix}-1\begin{vmatrix} 1 & 1\\ 1 & -3 \end{vmatrix}+4\begin{vmatrix} 1 & -1\\ 1 & 2 \end{vmatrix}}\\ &=\displaystyle \frac{1(4-4)-1(-4-2)+15(2+1)}{1(3-2)-1(-3-1)+4(2+1)}\\ &=\displaystyle \frac{1(0)-1(-6)+15(3)}{1(1)-1(-4)+4(3)}=\frac{51}{17}=3 \end{aligned} \end{array}$

$.\quad\quad \color{blue}\textrm{Cara di atas}$  full matriks-Cramer

$\begin{array}{ll}\\ 3.&\textrm{Hasil dari}\: \: xyz\: \: \textrm{yang memenuhi}\\ &\left\{\begin{matrix} x+y+z=2\quad\\ x-y+z=-2\: \\ x-y-z=2\quad \end{matrix}\right.\\ &\textrm{adalah}....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&-8\\ \textrm{b}.&-4\\ \textrm{c}.&2\\ \textrm{d}.&4\\ \textrm{e}.&8 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\left\{\begin{matrix} x+y+z=2\quad.....(1)\\ x-y+z=-2\: .....(2)\\ x-y-z=2\quad .....(3) \end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llc}\\ x+y+z&=2&\\ x-y+z&=-2&-\\\hline \: \, \quad2y&=4&\\ \qquad\quad y&=2&....(4) \end{array}\\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{lcc}\\ x+y+z&=2&\\ x-y-z&=2&+\\\hline 2x&=4&\\ \qquad\quad x&=2&....(5) \end{array} \\ &\textrm{Persamaan}\: \: (4)\&(5)\: \: \textrm{ke}\: \: (1)\\ &\color{red}\begin{aligned}x+y+z&=2\\ (2)+(2)+z&=2\\ z&=-2 \end{aligned}\\ &\color{blue}\textrm{Jadi},\: \: xyz=(2).(2).(-2)=-8 \end{aligned} \end{array}$

$.\quad\: \:  \color{black}\textrm{Cara di atas}$  full eliminasi-substitusi

$\begin{array}{ll}\\ 4.&\textrm{Diketahui sistem persamaan berikut}\\ &\left\{\begin{matrix} x+y+z=-6\quad\\ x-2y+z=3\quad\: \\ -2x+y+z=9\quad \end{matrix}\right.\\ &\textrm{Nilai}\: \: xyz=....\\ &\begin{array}{llll}\\ \textrm{a}.&-30\\ \textrm{b}.&-15\\ \textrm{c}.&5\\ \color{red}\textrm{d}.&30\\ \textrm{e}.&35 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\left\{\begin{matrix} x+y+z=-6\quad ....(1)\\ x-2y+z=3\quad\: ....(2)\\ -2x+y+z=9\quad ....(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llc}\\ x+y+z&=-6&\\ x-2y+z&=3&-\\\hline \: \: \: \quad 3y&=-9&\\ \qquad\quad y&=-3&....(4) \end{array}\\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{llc}\\ x+y+z&=-6&\\ -2x+y+z&=9&-\\\hline 3x&=-15&\\ \qquad\quad x&=-5&....(5) \end{array} \\ &\textrm{Persamaan}\: \: (4)\&(5)\: \: \textrm{ke}\: \: (1)\\ &\color{red}\begin{aligned}x+y+z&=2\\ (-5)+(-3)+z&=-6\\ z&=2 \end{aligned}\\ &\color{blue}\textrm{Jadi},\: \: xyz=(-5).(-3).(2)=30 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 5.&\textrm{Diketahui sistem persamaan berikut}\\ &\left\{\begin{matrix} x+2y+z=4\: \: \qquad\\ 3x+y+2z=-5\quad\: \\ x-2y+2z=-6\quad \end{matrix}\right.\\ &\textrm{Nilai}\: \: xyz=....\\ &\begin{array}{llll}\\ \textrm{a}.&-96\\ \color{red}\textrm{b}.&-24\\ \textrm{c}.&24\\ \textrm{d}.&32\\ \textrm{e}.&96 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\left\{\begin{matrix} x+2y+z=4\: \qquad.......(1)\\ 3x+y+2z=-5\quad\: ......(2)\\ x-2y+2z=-6\quad .......(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llclll}\\ x+2y+z&=4&\left | \times 1 \right |&\: \: x+2y+z&=4\\ 3x+y+2z&=-5&\left | \times 2 \right |&6x+2y+4z&=-10&-\\\hline &&&-5x\: \: \quad-3z&=14&...(4)\\ \end{array}\\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{lll}\\ x+2y+z&=4&\\ x-2y+2z&=-6&+\\\hline 2x\: \: \: \, \quad +3z&=-2&...(5)\\ \end{array} \\ &\textrm{Dari persamaan}\: \: (4)\&(5)\: \: \textrm{maka},\\ &\color{blue}\begin{array}{lll}\\ -5x-3z&=14&\\ 2x+3z&=-2&+\\\hline -3x&=12&\\ \qquad\quad x&=-4&.....(6)\\ \color{red}\textrm{didapat pula}&z&=2......(7) \end{array}\\ &\textrm{Dari persamaan}\: \: (6)\&(7)\: \: \textrm{didapatkan}\\ &\color{red}\begin{aligned}x+2y+z&=4\\ (-4)+2y+2&=4\\ y&=3 \end{aligned}\\ &\color{blue}\textrm{Jadi},\: \: xyz=(-4).(3).(2)=-24 \end{aligned} \end{array}$

Lanjutan Sistem Persamaan Linear Tiga Variabel (Matematika Wajib Kelas X)

 $\color{blue}\textrm{2. Metode determinan Matriks}$

Perhatikan kemabil bentuk SPLDV dan SPLTV berikut:

$\color{blue}\begin{cases} a_{1}x+b_{1}y=c_{1} \\ a_{2}x+b_{2}y=c_{2} \end{cases}$ 

dan

$\color{blue}\begin{cases} a_{1}x+b_{1}y+c_{1}z=d_{1}\\ a_{1}x+b_{1}y+c_{1}z=d_{1} \\ a_{1}x+b_{1}y+c_{1}z=d_{1} \end{cases}$

Metode determinat matriks adalah penyelesaian nilai tidap variabel dengan menggunakan determinan berikut:

Misalkan saja diberikan:

$\color{purple}\begin{aligned}&\color{blue}\begin{aligned}ax+by&=p\\ cx+dy&=q \end{aligned}\\\\ &\textrm{dan}\\\\ &\color{blue}\begin{aligned}ax+by+cz&=r\\ dx+ey+fz&=s\\ gx+hy+iz&=t \end{aligned}\\ \end{aligned}$

maka penyelesaian dengan model matriks adalah:

$\color{purple}\begin{array}{|c|c|c|}\hline \textrm{Metode}&\textbf{SPLDV}&\textbf{SPLTV}\\\hline \textrm{Determinan}&\begin{aligned}x&=\displaystyle \frac{\begin{vmatrix} p & b\\ q & d \end{vmatrix}}{\begin{vmatrix} a & b\\ c & d \end{vmatrix}}\\ &\textrm{dan}\\ y&=\displaystyle \frac{\begin{vmatrix} a & p\\ c & q \end{vmatrix}}{\begin{vmatrix} a & b\\ c & d \end{vmatrix}}\\ &\\ &\\ &\\ &\\ &\\ &\\ &\\ &\\ & \end{aligned}&\begin{aligned}x&=\displaystyle \frac{\begin{vmatrix} r & b & c\\ s & e & f\\ t & h & i \end{vmatrix}}{\begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}}\\ &\textrm{dan}\\ y&=\displaystyle \frac{\begin{vmatrix} a & r & c\\ d & s & f\\ g & t & i \end{vmatrix}}{\begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}}\\ &\textrm{serta}\\ z&=\displaystyle \frac{\begin{vmatrix} a & b & r\\ d & e & s\\ g & h & t \end{vmatrix}}{\begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}} \end{aligned}\\\hline \end{array}$

Sebagai catatan:

$\color{purple}\begin{aligned}&\color{blue}\begin{vmatrix} a & b\\ c & d \end{vmatrix}=\color{black}ad-bc\\ &\textrm{dan}\\ &\color{blue}\begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}=\color{red}a\color{black}\begin{vmatrix} e & f\\ h & i \end{vmatrix}-\color{red}b\color{black}\begin{vmatrix} d & f\\ g & i \end{vmatrix}+\color{red}c\color{black}\begin{vmatrix} d & e\\ g & h \end{vmatrix} \end{aligned}$

$\LARGE\color{magenta}\fbox{CONTOH SOAL}$

Mari kita buka lagi contoh sebelumnya dengan soal yang sama di SINI

dan kearang penyelesaian dari soal tersebut akan diselesaikan dengan cara determinan matriks (cara Cramer sesuai nama penemunya) berikut:

$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah dengan metode matriks}\\ &\textrm{(cara Cramer) SPLDV berikut}:\\ &\begin{cases} 2x-y & =7 \\ x-y & =-1 \end{cases}\\\\ &\color{blue}\textrm{Jawab}:\\ &\color{black}\begin{aligned}\color{red}x&=\displaystyle \frac{\begin{vmatrix} 7 & -1\\ -1 & -1 \end{vmatrix}}{\begin{vmatrix} 2 & -1\\ 1 & -1 \end{vmatrix}}=\frac{7(-1)-(-1).(-1)}{2.(-1)-(-1).1}\\ &=\displaystyle \frac{-7-1}{-2+1}=\frac{-8}{-1}=8\\ \color{red}y&=\displaystyle \frac{\begin{vmatrix} 2 & 7\\ 1 & -1 \end{vmatrix}}{\begin{vmatrix} 2 & -1\\ 1 & -1 \end{vmatrix}}=\frac{2(-1)-(7).1}{2.(-1)-(-1).1}\\ &=\displaystyle \frac{-2-7}{-2+1}=\frac{-9}{-1}=9\\ \textrm{J}&\textrm{adi}\: \: \color{red}(x,y)=(8,9) \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah dengan metode matriks}\\ &\textrm{(cara Cramer) SPLTV berikut}:\\ &\begin{cases} 2x-y+z & =-4 \\ 2x-y-2z & =-3\\ x+3y-z&=0 \end{cases}\\\\ &\color{blue}\textrm{Jawab}:\\ &\color{black}\begin{aligned}\color{red}x&=\displaystyle \frac{\begin{vmatrix} -4 & -1&1\\ -3 & -1&-2\\ 0&3&-1 \end{vmatrix}}{\begin{vmatrix} 2 & -1&1\\ 2 & -1&-2\\ 1&3&-1 \end{vmatrix}}\\ \color{red}x&=\displaystyle \frac{-4\begin{vmatrix} -1&-2\\ 3&-1 \end{vmatrix}+1\begin{vmatrix} -3 & -2\\ 0 & -1 \end{vmatrix}+1\begin{vmatrix} -3 & -1\\ 0 & 3 \end{vmatrix}}{2\begin{vmatrix} -1 & -2\\ 3 & -1 \end{vmatrix}+1\begin{vmatrix} 2 & -2\\ 1 & -1 \end{vmatrix}+1\begin{vmatrix} 2 & -1\\ 1 & 3 \end{vmatrix}} \\ &=\displaystyle \frac{-4(1+6)+1(3-0)+1(-9-0)}{2(1+6)+1(-2+2)+1(6+1)}\\ &=\displaystyle \frac{-28+3-9}{14+0+7}\\ &=\frac{-34}{21}\\ \color{red}y&=.... \\ \color{red}z&=....\\ \textrm{J}&\textrm{adi}\: \: \color{red}(x,y,y)=\left ( -\displaystyle \frac{34}{21},\frac{3}{7},-\frac{1}{3} \right ) \end{aligned} \end{array}$

DAFTAR PUSTAKA

  1. Johanes, Kastola & Sulasim. 2006. Kompetensi Matematika 3A SMA Kelas XII Semester Pertama. Jakarta: YUDHISTIRA


Sistem Persamaan Linear Tiga Variabel (Matematika Wajib Kelas X)

$\color{blue}\textrm{A. Sistem Persamaan Linear}$

Sistem persamaan linear adalah adalah kumpulan dari beberapa persamaan linear di mana koefisien-koefisien persamaannya berupa bilangan real dan anatar variabel saling ada keterkaitan

$\color{black}\textrm{1. Sistem Persamaan Linear Dua Variabel}$

Sistem Persamaan Linear Dua Variabel yang selanjutnya disingkat dengan SPLDV memiliki bentuk umum sebagai berikut:

$\color{blue}\begin{aligned}&\left\{\begin{matrix} a_{1}x+b_{1}y=c_{1}\\ a_{2}x+b_{2}y=c_{2} \end{matrix}\right. \end{aligned}$

Keterangan:

  • $\color{red}x,y\: \: \color{blue}\textrm{adalah variabel}$.
  • $\color{red}a_{1},a_{2}\: \: \color{blue}\textrm{koefisien}\: \: x$
  • $\color{red}b_{1},b_{2}\: \: \color{blue}\textrm{koefisien}\: \: y$.
  • $\color{red}c_{1},c_{2}\: \: \color{blue}\textrm{adalah konstanta}$.
  • $\color{red}a_{1},a_{2},b_{1},b_{2},c_{1},\: \: \color{blue}\textrm{dan}\: \: \color{red}c_{2}\: \: \color{blue}\textrm{adalah bilangan riil}$.
$\color{black}\textrm{2. Sistem Persamaan Linear Tiga Variabel}$

$\begin{array}{l}\\ \underline{\color{blue}\textbf{Bentuk Umum}}&:\\ &\begin{cases} a_{1}x+b_{1}y+c_{1}z=d_{1} \\ a_{2}x+b_{2}y+c_{2}z=d_{2} \\ a_{3}x+b_{3}y+c_{3}z=d_{3} \end{cases}\\\\ \qquad \quad \textbf{Keterangan}&\bullet \quad \color{red}a_{1},\: a_{2},\: a_{3},\\ &\, \: \: \quad \color{red}b_{1},\: b_{2},\: b_{3},\\ &\, \: \: \quad \color{red}c_{1},\: c_{2},\: c_{3},\\ &\, \: \: \quad \color{red}d_{1},\: d_{2},\: d_{3}\\ &\: \: \quad \color{blue}\textrm{semuanya adalah bilangan real} \end{array}$

$\color{blue}\textrm{B. Penyelesaian Sistem persamaan Linear}$

Menentukan penyelesaian atau himpunan penyelesaian (HP) dari sistem persamaan linear baik yang terdiri dari dua variabel ataupun tiga variabel adalah menentukan pasangan koordinat yang memenuhi sistem persamaan tersebut di bilangan riil. Adapun cara menyelesaikan sistem persamaan linear ini
  • Metode Substitusi
  • Metode Eliminasi
  • Metode Eliminasi-Substitusi 
  • Metode Determinan Matrik
  • Metode Invers Matrik (Matrik Persegi minimal ordo 2x2)
$\color{blue}\textrm{1. Metode Eliminasi-Substitusi}$

Adapun langkah-langkah dalam penyelesaian model tipe ini (Metode Substitusi dan Metode Eliminasi mengikuti karena prosesnya terangkum di langkah gabungan ini) adalah:
  • buatlah dua buah kelompok persamaan yang memungkinkan dapat disederhanakan (kalau bisa ambil yang termudah dan sederhana menurut Anda)
  • Salah satu variabel dihilangkan dengan cara menyamakan koefisien variabel yang bersangkutan kemudian mengeliminasikan dengan persamaan linear yang dipilih pada langkat pertama tadi.
  • Nilai variabel yang didapatkan disubstitusikan ke dalam salah satu persamaan pada langkah pertama tadi juga.
  • Jika diperlukan lagi, prinsipnya kembali pada poin pertama tadi

$\LARGE\color{magenta}\fbox{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah penyelesaian SPLDV dari}\\ &\begin{cases} 2x-y=7 \\ x-y=-1 \end{cases}\\\\ &\textrm{Jawab}:\\ &\color{blue}\begin{aligned}\textrm{Mis}&\textrm{alkan}\\ &\begin{cases} 2x-y=7&.....(1) \\ x-y=-1&.....(2) \end{cases}\\ &\color{red}\begin{aligned}&\textrm{dari persamaan}\: (2)\: \textrm{didapatkan}\\ &\color{blue}x=y-1.\: \color{red}\textrm{Bentuk ini kemudian}\\ &\textrm{kita substitusikan ke}\\ &\textrm{persamaan}\: \: (1). \end{aligned}\\ &\color{blue}\begin{aligned}2x-y&=7\\ 2\left ( y-1 \right )-y&=7\\ 2y-2-y&=7\\ y&=9\quad .....(3)\\ \color{red}\textrm{Selanjutnya}&\: \color{red}\textrm{nilainya kita}\\ \color{red}\textrm{substitusikan ke}&\: \color{red}\textrm{persamaan}\: \: (2)\\ x&=y-1\\ x&=9-1\\ x&=8 \end{aligned} \\ &\begin{aligned}&\color{red}\textrm{Sehingga},\\ &\begin{cases} x =8 \\ y =9 \end{cases}\\ &\color{blue}\textrm{Jadi, HP}=\left \{ (8,9) \right \} \end{aligned}\\ \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah penyelesaian SPLDV dari}\\ &\begin{cases} 2x-y+z=-4 \\ 2x-y-2z=-3\\ x+3y-z=0 \end{cases}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{Per}&\textrm{hatikan misal}\\ &\color{blue}\begin{cases} 2x-y+z=-4..........(1) \\ 2x-y-2z=-3........(2)\\ x+3y-z=0.............(3) \end{cases}\\ &\color{red}\begin{aligned}&\textrm{dari persamaan}\: (2)\: \textrm{didapatkan}\\ &\color{blue}2x-y=2z-3.\: \color{red}\textrm{Bentuk ini}\\ &\textrm{kita substitusikan ke}\\ &\textrm{persamaan}\: \: (1). \end{aligned} \\ &\color{blue}\begin{aligned}2x-y+z&=-4\\ (2z-3)+z&=-4\\ 3z&=-1\\ z&=-\frac{1}{3}\quad .....(4)\\ \color{red}\textrm{Selanjutnya}&\: \color{red}\textrm{nilai tersebut kita}\\ \color{red}\textrm{substitusikan ke}&\: \color{red}\textrm{pers.}\: \: (2)\: \textrm{dan}\: (3)\\ \end{aligned}\\ &\color{blue}\begin{aligned}&\color{red}\textrm{Selanjutnya}\\ &\begin{cases} 6x-3y=-11.....(2) \\ x+3y=-\frac{1}{3}.....(3) \end{cases} \end{aligned}\\ &\color{red}\begin{aligned}&\textrm{dengan cara seperti}\\ &\textrm{poin 1.a kita akan}\\ &\textrm{mendapatkan nilai}\\ \color{blue}x&\color{blue}=-\frac{34}{21}\: \color{red}\textrm{dan}\\ \color{blue}y&\color{blue}=\frac{3}{7} \end{aligned} \\ &\color{blue}\begin{aligned}&\color{red}\textrm{Sehingga},\\ &\begin{cases} x =-\frac{34}{21} \\ y =\frac{3}{7}\\ z=-\frac{1}{3} \end{cases}\\ &\textrm{HP}=\left \{ \left ( -\frac{34}{21},\frac{3}{7},-\frac{1}{3} \right ) \right \} \end{aligned} \end{aligned} \end{array}$