$\begin{array}{ll}\\ 1.&\textrm{Suatu unit pekerjaan dapat diselesaikan oleh A}\\ &\textrm{B, dan C bersama-sama dalam 2 jam saja.}\\ &\textrm{Jika pekerjaan itu dapat diselesaikan oleh A dan}\\ &\textrm{B bersama-sama dalam 2 jam 24 menit, dan oleh}\\ &\textrm{B dan C bersama-sama dalam waktu 3 jam,}\\ &\textrm{maka sistem persamaan berikut yang memenuhi}\\ &\textrm{adalah}....\\ &\begin{array}{llll}\\ \textrm{a}.&\begin{cases} A+B+C&=2 \\ A+B & =\displaystyle \frac{12}{5} \\ B+C &=3 \end{cases}\\ \textrm{b}.&\begin{cases} A+B+C&=\displaystyle \frac{1}{2} \\ A+B & =\displaystyle \frac{5}{12} \\ B+C &=\displaystyle \frac{1}{3} \end{cases}\\ \textrm{c}.&\begin{cases} \displaystyle \frac{1}{A}+\frac{1}{B}+\frac{1}{C}&=2 \\ \displaystyle \frac{1}{A}+\frac{1}{B}& =\displaystyle \frac{12}{5} \\ \displaystyle \frac{1}{B}+\frac{1}{C}&=3 \end{cases}\\ \color{red}\textrm{d}.&\begin{cases} \displaystyle \frac{1}{A}+\frac{1}{B}+\frac{1}{C}&=\displaystyle \frac{1}{2} \\ \displaystyle \frac{1}{A}+\frac{1}{B}& =\displaystyle \frac{5}{12} \\ \displaystyle \frac{1}{B}+\frac{1}{C}&=\displaystyle \frac{1}{3} \end{cases}\\ \textrm{e}.&\begin{cases} \displaystyle \frac{1}{A}+\frac{1}{B}+\frac{1}{C}&=2 \\ \displaystyle \frac{1}{A}+\frac{1}{B}-\frac{1}{C}& =\displaystyle \frac{12}{5} \\ \displaystyle -\frac{1}{A}+\frac{1}{B}+\frac{1}{C}&=3 \end{cases} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\color{blue}\begin{aligned}\textrm{Per}&\textrm{hatikan bahwa}:\color{red}\textrm{Waktu penyelesaian}\\ \color{red}\textrm{sua}&\color{red}\textrm{tu pekerjaan adalah termasuk}\\ \color{red}\textrm{per}&\color{red}\textrm{bandingan berbalik nilai},\: \color{blue}\textrm{maka}\\ \bullet \: \: \: &A,B,\: \textrm{dan}\: C \: \textrm{dalam 2 jam, artinya}:\\ &\color{black}\displaystyle \frac{1}{A}+\frac{1}{B}+\frac{1}{C}=\frac{1}{2},\: \color{blue}\textrm{demikian juga}\\ \bullet \: \: \: &A\: \textrm{dan}\: B\: \textrm{bersama-sama selesai dalam}\\ &\textrm{2 jam 24 menit atau}\: \displaystyle \frac{12}{5}\: \textrm{jam}:\\ &\color{black}\displaystyle \frac{1}{A}+\frac{1}{B}=\frac{5}{12}\\ \bullet \: \: \: &B\: \textrm{dan}\: C\: \textrm{selesai dalam 3 jam}:\\ &\color{black}\displaystyle \frac{1}{B}+\frac{1}{C}=\frac{1}{3} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 2.&\textrm{Himpunan penyelesaian dari}\\ &\left\{\begin{matrix} x+y+4z=15\quad\\ x-y+z=2\qquad\\ x+2y-3z=-4 \end{matrix}\right.\\ &\textrm{adalah}....\\ &\begin{array}{llll}\\ \textrm{a}.&\left \{ (-1,1,3) \right \}\\ \color{red}\textrm{b}.&\left \{ (1,2,3) \right \}\\ \textrm{c}.&\left \{ (-2,1,1) \right \}\\ \textrm{d}.&\left \{ (3,2,-1) \right \}\\ \textrm{e}.&\left \{ (1,-2,3) \right \} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\color{blue}\textrm{Semunya dikerjakan dengan metode}\\ &\color{blue}\textrm{matriks}\: (\color{black}\textbf{Cara Cramer})\\ &\begin{aligned} \color{blue}x&=\displaystyle \frac{\begin{vmatrix} 15 & 1 & 4\\ 2& -1 & 1\\ -4& 2 & -3 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 4\\ 1 & -1 & 1\\ 1 & 2 & -3 \end{vmatrix}}\\ &=\displaystyle \frac{15\begin{vmatrix} -1 & 1\\ 2 & -3 \end{vmatrix}-1\begin{vmatrix} 2 & 1\\ -4 & -3 \end{vmatrix}+4\begin{vmatrix} 2 & -1\\ -4 & 2 \end{vmatrix}}{1\begin{vmatrix} -1 & 1\\ 2 & -3 \end{vmatrix}-1\begin{vmatrix} 1 & 1\\ 1 & -3 \end{vmatrix}+4\begin{vmatrix} 1 & -1\\ 1 & 2 \end{vmatrix}}\\ &=\displaystyle \frac{15(3-2)-1(-6+4)+4(4-4)}{1(3-2)-1(-3-1)+4(2+1)}\\ &=\displaystyle \frac{15(1)-1(-2)+4(0)}{1(1)-1(-4)+4(3)}=\frac{17}{17}=1 \\ \color{blue}y&=\displaystyle \frac{\begin{vmatrix} 1 & 15 & 4\\ 1& 2 & 1\\ 1& -4 & -3 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 4\\ 1 & -1 & 1\\ 1 & 2 & -3 \end{vmatrix}}\\ &=\displaystyle \frac{1\begin{vmatrix} 2 & 1\\ -4 & -3 \end{vmatrix}-15\begin{vmatrix} 1 & 1\\ 1 & -3 \end{vmatrix}+4\begin{vmatrix} 1 & 2\\ 1 & -4 \end{vmatrix}}{1\begin{vmatrix} -1 & 1\\ 2 & -3 \end{vmatrix}-1\begin{vmatrix} 1 & 1\\ 1 & -3 \end{vmatrix}+4\begin{vmatrix} 1 & -1\\ 1 & 2 \end{vmatrix}}\\ &=\displaystyle \frac{1(-6+4)-15(-3-1)+4(-4-2)}{1(3-2)-1(-3-1)+4(2+1)}\\ &=\displaystyle \frac{1(-2)-15(-4)+4(-6)}{1(1)-1(-4)+4(3)}=\frac{34}{17}=2\\ \color{blue}z&=\displaystyle \frac{\begin{vmatrix} 1 & 1 & 15\\ 1& -1 & 2\\ 1& 2 & -4 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 4\\ 1 & -1 & 1\\ 1 & 2 & -3 \end{vmatrix}}\\ &=\displaystyle \frac{1\begin{vmatrix} -1 & 2\\ 2 & -4 \end{vmatrix}-1\begin{vmatrix} 1 & 2\\ 1 & -4 \end{vmatrix}+15\begin{vmatrix} 1 & -1\\ 1 & 2 \end{vmatrix}}{1\begin{vmatrix} -1 & 1\\ 2 & -3 \end{vmatrix}-1\begin{vmatrix} 1 & 1\\ 1 & -3 \end{vmatrix}+4\begin{vmatrix} 1 & -1\\ 1 & 2 \end{vmatrix}}\\ &=\displaystyle \frac{1(4-4)-1(-4-2)+15(2+1)}{1(3-2)-1(-3-1)+4(2+1)}\\ &=\displaystyle \frac{1(0)-1(-6)+15(3)}{1(1)-1(-4)+4(3)}=\frac{51}{17}=3 \end{aligned} \end{array}$
$.\quad\quad \color{blue}\textrm{Cara di atas}$ full matriks-Cramer
$\begin{array}{ll}\\ 3.&\textrm{Hasil dari}\: \: xyz\: \: \textrm{yang memenuhi}\\ &\left\{\begin{matrix} x+y+z=2\quad\\ x-y+z=-2\: \\ x-y-z=2\quad \end{matrix}\right.\\ &\textrm{adalah}....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&-8\\ \textrm{b}.&-4\\ \textrm{c}.&2\\ \textrm{d}.&4\\ \textrm{e}.&8 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\left\{\begin{matrix} x+y+z=2\quad.....(1)\\ x-y+z=-2\: .....(2)\\ x-y-z=2\quad .....(3) \end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llc}\\ x+y+z&=2&\\ x-y+z&=-2&-\\\hline \: \, \quad2y&=4&\\ \qquad\quad y&=2&....(4) \end{array}\\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{lcc}\\ x+y+z&=2&\\ x-y-z&=2&+\\\hline 2x&=4&\\ \qquad\quad x&=2&....(5) \end{array} \\ &\textrm{Persamaan}\: \: (4)\&(5)\: \: \textrm{ke}\: \: (1)\\ &\color{red}\begin{aligned}x+y+z&=2\\ (2)+(2)+z&=2\\ z&=-2 \end{aligned}\\ &\color{blue}\textrm{Jadi},\: \: xyz=(2).(2).(-2)=-8 \end{aligned} \end{array}$
$.\quad\: \: \color{black}\textrm{Cara di atas}$ full eliminasi-substitusi
$\begin{array}{ll}\\ 4.&\textrm{Diketahui sistem persamaan berikut}\\ &\left\{\begin{matrix} x+y+z=-6\quad\\ x-2y+z=3\quad\: \\ -2x+y+z=9\quad \end{matrix}\right.\\ &\textrm{Nilai}\: \: xyz=....\\ &\begin{array}{llll}\\ \textrm{a}.&-30\\ \textrm{b}.&-15\\ \textrm{c}.&5\\ \color{red}\textrm{d}.&30\\ \textrm{e}.&35 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\left\{\begin{matrix} x+y+z=-6\quad ....(1)\\ x-2y+z=3\quad\: ....(2)\\ -2x+y+z=9\quad ....(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llc}\\ x+y+z&=-6&\\ x-2y+z&=3&-\\\hline \: \: \: \quad 3y&=-9&\\ \qquad\quad y&=-3&....(4) \end{array}\\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{llc}\\ x+y+z&=-6&\\ -2x+y+z&=9&-\\\hline 3x&=-15&\\ \qquad\quad x&=-5&....(5) \end{array} \\ &\textrm{Persamaan}\: \: (4)\&(5)\: \: \textrm{ke}\: \: (1)\\ &\color{red}\begin{aligned}x+y+z&=2\\ (-5)+(-3)+z&=-6\\ z&=2 \end{aligned}\\ &\color{blue}\textrm{Jadi},\: \: xyz=(-5).(-3).(2)=30 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 5.&\textrm{Diketahui sistem persamaan berikut}\\ &\left\{\begin{matrix} x+2y+z=4\: \: \qquad\\ 3x+y+2z=-5\quad\: \\ x-2y+2z=-6\quad \end{matrix}\right.\\ &\textrm{Nilai}\: \: xyz=....\\ &\begin{array}{llll}\\ \textrm{a}.&-96\\ \color{red}\textrm{b}.&-24\\ \textrm{c}.&24\\ \textrm{d}.&32\\ \textrm{e}.&96 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\left\{\begin{matrix} x+2y+z=4\: \qquad.......(1)\\ 3x+y+2z=-5\quad\: ......(2)\\ x-2y+2z=-6\quad .......(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llclll}\\ x+2y+z&=4&\left | \times 1 \right |&\: \: x+2y+z&=4\\ 3x+y+2z&=-5&\left | \times 2 \right |&6x+2y+4z&=-10&-\\\hline &&&-5x\: \: \quad-3z&=14&...(4)\\ \end{array}\\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{lll}\\ x+2y+z&=4&\\ x-2y+2z&=-6&+\\\hline 2x\: \: \: \, \quad +3z&=-2&...(5)\\ \end{array} \\ &\textrm{Dari persamaan}\: \: (4)\&(5)\: \: \textrm{maka},\\ &\color{blue}\begin{array}{lll}\\ -5x-3z&=14&\\ 2x+3z&=-2&+\\\hline -3x&=12&\\ \qquad\quad x&=-4&.....(6)\\ \color{red}\textrm{didapat pula}&z&=2......(7) \end{array}\\ &\textrm{Dari persamaan}\: \: (6)\&(7)\: \: \textrm{didapatkan}\\ &\color{red}\begin{aligned}x+2y+z&=4\\ (-4)+2y+2&=4\\ y&=3 \end{aligned}\\ &\color{blue}\textrm{Jadi},\: \: xyz=(-4).(3).(2)=-24 \end{aligned} \end{array}$
Tidak ada komentar:
Posting Komentar
Informasi