Contoh Soal 2 Sistem Persamaan Linear Tiga Variabel

$\begin{array}{ll}\\ 6.&\textrm{Diketahui sistem persamaan berikut}\\ &\left\{\begin{matrix} x+y-z=1\: \: \qquad\\ 2x-y+2z=9\quad\: \\ x+3y-z=7\: \: \: \: \quad \end{matrix}\right.\\ &\textrm{Nilai}\: \: \displaystyle \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=....\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle \frac{1}{3}\\ \textrm{b}.&\displaystyle \frac{3}{4}\\ \color{red}\textrm{c}.&\displaystyle \frac{13}{12}\\ \textrm{d}.&\displaystyle \frac{5}{4}\\ \textrm{e}.&\displaystyle \frac{7}{4} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\left\{\begin{matrix} x+y-z=1\: \: \qquad....(1)\\ 2x-y+2z=9\quad\: ....(2)\\ x+3y-z=7\: \: \: \: \quad ....(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llll}\\ x+y-z&=1&\\ 2x-y+2z&=9&+\\\hline 3x\: \: \qquad+z&=10&...(4)\\ \end{array} \\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{llllll}\\ x+y-z&=1&\left | \times 3 \right |&3x+3y-3z&=3&\\ x+3y-z&=7&\left | \times 1 \right |&\quad x+3y-z&=7&-\\\hline &&&2x\quad \: \: \quad-2z&=-4&\\ &&&\: \: x\quad \: \: \: \: \quad-z&=2&....(5)\\ \end{array} \\ &\textrm{Dari persamaan}\: \: (4)\&(5)\: \: \textrm{maka},\\ &\color{blue}\begin{array}{lll}\\ 3x+z&=10&\\ x-z&=-2&+\\\hline 4x&=8&\\ \qquad\quad x&=2&.....(6)\\ \color{red}\textrm{didapat pula}&z&=4......(7) \end{array} \\ &\textrm{Dari persamaan}\: \: (1)\&(3)\: \: \textrm{didapatkan juga}\\ &\color{blue}\begin{array}{lll}\\ x+y-z&=1&\\ x+3y-z&=-7&-\\\hline \quad -2y&=-6&\\ \qquad\qquad y&=3&....(8) \end{array}\\ &\color{blue}\textrm{Jadi},\: \: \displaystyle \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\displaystyle \frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 7.&\textrm{Diketahui sistem persamaan berikut}\\ &\left\{\begin{matrix} x+y+z=5\: \: \: \: \quad\\ x+y-4z=10\quad \\ -2x+y+z=0 \quad \end{matrix}\right.\\ &\textrm{Nilai dari}\: \: \displaystyle \frac{xz}{y}\: \: \textrm{adalah}....\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle -\frac{6}{13}\\ \color{red}\textrm{b}.&\displaystyle -\frac{5}{13}\\ \textrm{c}.&\displaystyle -\frac{1}{13}\\ \textrm{d}.&\displaystyle \frac{1}{13}\\ \textrm{e}.&\displaystyle \frac{7}{13} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\left\{\begin{matrix} x+y+z=5\: \: \: \: \quad.....(1)\\ x+y-4z=10\quad .....(2)\\ -2x+y+z=0 \quad .....(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llll}\\ x+y+z&=5&\\ x+y-4z&=10&-\\\hline \: \: \qquad \: \: \: \: \: 5z&=-5&\\ \: \: \qquad\quad \: \: \: z&=-1&...(4)\\ \end{array} \\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{llllll}\\ x+y+z&=5&\\ -2x+y+z&=0&-\\\hline 3x\quad \: \quad&=5&\\ \: \: \quad \: \: \: \: \quad x&=\displaystyle \frac{5}{3}&....(5)\\ \end{array} \\ &\textrm{Dari persamaan}\: \: (4)\&(5)\: \: \textrm{maka},\\ &\color{blue}\begin{aligned}x+y+z&=5\\ \displaystyle \frac{5}{3}+y-1&=5\\ y&=5+1-\displaystyle \frac{5}{3}=\frac{13}{3} \end{aligned}\\ &\color{blue}\textrm{Jadi},\: \: \displaystyle \frac{xz}{y}=\displaystyle \frac{\left ( \displaystyle \frac{5}{3} \right ).(-1)}{\displaystyle \frac{13}{3}}=-\displaystyle \frac{5}{13} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 8.&\textrm{Himpunan penyelesaian dari}\\ &\begin{cases} \displaystyle \frac{1}{x}+\frac{2}{y}+\frac{3}{z} & =8 \\ \displaystyle \frac{2}{x}+\frac{2}{y}+\frac{4}{z} & =10 \\ \displaystyle \frac{2}{x}+\frac{4}{y}+\frac{2}{z} & =4 \end{cases}\\ &\textrm{adalah}\: \: \left \{ (x,y,z) \right \},\: \textrm{maka}\: \: x+3z=....\\ &\begin{array}{llll}\\ \textrm{a}.&0\\ \textrm{b}.&\displaystyle \frac{1}{3}\\ \textrm{c}.&1\\ \color{red}\textrm{d}.&3\\ \textrm{e}.&5 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\begin{aligned}&\textrm{Diketahui sistem persamaan}\\ &\begin{cases} \displaystyle \frac{1}{x}+\frac{2}{y}+\frac{3}{z} & =8\: ....(1)\\ \displaystyle \frac{2}{x}+\frac{2}{y}+\frac{4}{z} & =10\: .....(2)\\ \displaystyle \frac{2}{x}+\frac{4}{y}+\frac{2}{z} & =4\: ...........(3) \end{cases}\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llll}\\ \displaystyle \frac{1}{x}+\frac{2}{y}+\frac{3}{z}&=8\\ \displaystyle \frac{2}{x}+\frac{2}{y}+\frac{4}{z}&=10&-\\\hline -\displaystyle \frac{1}{x}\: \: \: \: \: -\frac{1}{z}&=-2\\ \displaystyle \frac{1}{x}\: \: \: \: \: \: \: \: +\frac{1}{z}&=2&...(4)\\ \end{array} \\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{lllllll}\\ \displaystyle \frac{2}{x}+\frac{2}{y}+\frac{4}{z}&=8&\left | \times 2 \right |&\displaystyle \frac{4}{x}+\frac{4}{y}+\frac{8}{z}&=16\\ \displaystyle \frac{2}{x}+\frac{4}{y}+\frac{2}{z}&=4&\left | \times 1 \right |&\displaystyle \frac{2}{x}+\frac{4}{y}+\frac{2}{z}&=4&-\\\hline &&&\displaystyle \frac{2}{x}\: \: \: \: \: +\frac{6}{z}&=12\\ &&\Leftrightarrow &\displaystyle \frac{1}{x}\: \: \: \: \: +\frac{3}{z}&=6&...(5)\\ \end{array}\\ &\textrm{Dari persamaan}\: \: (4)\&(5)\: \: \textrm{maka},\\ &\color{blue}\begin{array}{llll}\\ \displaystyle \frac{1}{x}+\frac{3}{z}&=6\\ \displaystyle \frac{1}{x}+\frac{1}{z}&=2\: \: \: -\\\hline \qquad\displaystyle \frac{2}{z}&=4&\\ \qquad z&=\displaystyle \frac{1}{2}\: \: ......(6)\\ \qquad x&=2-\displaystyle \frac{1}{2}=\displaystyle \frac{3}{2} \end{array}\\ &\color{blue}\textrm{Jadi},\: \: x+3z=\displaystyle \frac{3}{2}+3.\frac{1}{2}=3 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 9.&\textrm{Diketahui tiga buah bilangan berturut-turut}\\ &a,\: b,\: \textrm{dan}\: c.\: \textrm{Rata-rata dari ke tiga bilangan}\\ &\textrm{itu adalah 12. Bilangan kedua sama dengan}\\ &\textrm{jumlah bilangan yang lain dikurangi 12}.\\ &\textrm{Jika bilangan ke tiga sama dengan jumlah}\\ &\textrm{bilangan yang lain, maka nilai}\: \: 2a+b-c=....\\ &\begin{array}{llll}\\ \textrm{a}.&-\displaystyle 42\\ \textrm{b}.&-\displaystyle 36\\ \textrm{c}.&-\displaystyle 18\\ \textrm{d}.&-\displaystyle 12\\ \color{red}\textrm{e}.&-\displaystyle 6 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{e}\\ &\begin{aligned}&\textrm{Model matematika dari persamaan di atas}\\ &\left\{\begin{matrix} a+b+c=36\: \: \qquad....(1)\\ -a+b-x=12\quad\: ....(2)\\ a+b-c=0\: \: \: \: \: \: \: \quad ....(3)\end{matrix}\right.\\ &\textrm{Saat}\: \: (1)+(2),\: \textrm{maka}\\ &\color{blue}\begin{array}{llll}\\ a+b+c&=36&\\ -a+b-c&=12&+\\\hline \: \: \: \: \: \: \: \: \: \: \: 2b&=48&\\ \: \: \qquad\quad \: \: \: b&=24&...(4)\\ \end{array}\\ &\textrm{Saat}\: \: (1)+(3),\: \textrm{maka}\\ &\color{blue}\begin{array}{llllll}\\ a+b+c&=36&\\ a+b-c&=0&-\\\hline \quad\qquad2c &=36&\\ \: \: \quad \: \: \: \: \quad c&=18&....(5)\\ \end{array} \\ &\textrm{Dari persamaan}\: \: (4)\&(5)\: \: \textrm{maka},\\ &\color{blue}\begin{aligned}a+b+c&=36\\ a+24+18&=36\\ a&=36-42\\ &=-6 \end{aligned} \\ &\color{blue}\textrm{Jadi},\: \: 2a+b-c=2(-6)+24-18=-6 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 10.&\textrm{Jumlah uang terdiri atas koin pecahan}\: \: Rp500,00\\ &Rp200,00\: \: dan\: \: Rp100,00\: \: \textrm{dengan nilai total}\\ &Rp100.000,00.\: \textrm{Jika nilai uang pecahan 500-an}\\ &\textrm{setengah dari nilai uang pecahan 200-an, tetapi}\\ &\textrm{tiga kali uang pecahan 100-an, maka banyak koin}\\ &\textrm{adalah}....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&460\\ \textrm{b}.&440\\ \textrm{c}.&420\\ \textrm{d}.&380\\ \textrm{e}.&350 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}&\textrm{Model matematika dari kasus di atas}\\ &\left\{\begin{matrix} A(500)+B(200)+C(100)=100.000\: ....(1)\\ A(500)=\displaystyle \frac{1}{2}B(200)\qquad\qquad\qquad\qquad\: ....(2)\\ A(500)=3C(100)\qquad\qquad\qquad\: \: \, \: \: \: \: \quad ....(3)\end{matrix}\right.\\ &\textrm{Dari persamaan}\: \: (2)\: \textrm{didapatkan}\\ &2A(500)=B(200)\\ &\textrm{Dari persamaan}\: \: (3)\: \textrm{akan didapatkan}\\ &\displaystyle \frac{1}{3}A(500)=C(100)\\ &\textrm{Dari persamaan}\: \: (1)\: \: \textrm{maka},\\ &A(500)+B(200)+C(100)=100.000\\ &A(500)+2A(500)+\displaystyle \frac{1}{3}A(500)=100.000\\ &\displaystyle \frac{10}{3}A(500)=100.000\Leftrightarrow A(500)=30.000\\ &\textrm{maka akan didapatkan}\\ &B(200)=2(30.000)=60.000\\ &C(100)=\displaystyle \frac{1}{3}(30.000)=10.000\\ &\color{red}\begin{cases} A(500) &=30.000\Rightarrow \color{black}A=\displaystyle \frac{30.000}{500}=60 \\ B(200) &=60.000\Rightarrow \color{black}B=\displaystyle \frac{60.000}{200}=300 \\ C(100) &=10.000\Rightarrow \color{black}C=\displaystyle \frac{10.000}{100}=100 \end{cases}\\ &\color{blue}\textrm{Jadi},\: \: A+B+C=60+300+100=460 \end{aligned} \end{array}$

Tidak ada komentar:

Posting Komentar

Informasi