Tampilkan postingan dengan label problem solving. Tampilkan semua postingan
Tampilkan postingan dengan label problem solving. Tampilkan semua postingan

Problem Solving Bentuk Bilangan Riil

Seri Pemecahan Masalah

Jika pada bahasan sebelumnya kita bahas bilangan tidak nyata atau bilangan imajiner pada akar persamaan kuadrat, sekarang kita ketengahkan bahasan sebaliknya, yaitu akar nyta atau riil dari suatu persamaan kuadrat. 

Berikut permasalahannya

(sumber soal dari blog saya sendiri di wordpress)

$\color{blue}\begin{aligned}&\textrm{Akar riil terbesar untuk persamaan}\\ &\color{black}\displaystyle \frac{3}{x-3}+\frac{5}{x-5}+\frac{17}{x-17}+\frac{19}{x-19}=x^{2}-11x-4\\ &\textrm{adalah}\: \: p+\sqrt{q+\sqrt{r}}\: \:  \textrm{dengan}\: p,\: q,\: \textrm{dan}\: r\: \textrm{adalah}\\ &\textrm{bilangan asli}.\: \: \textrm{Tentukanlah nilai}\: \: p+q+r\\\\ &\color{black}\textbf{Solusi}:\\  \end{aligned}$.

$\begin{aligned}&\displaystyle \frac{3}{x-3}+\frac{5}{x-5}+\frac{17}{x-17}+\frac{19}{x-19}=x^{2}-11x-4\\ &\frac{3}{x-3}+1+\frac{5}{x-5}+1+\frac{17}{x-17}+1+\frac{19}{x-19}+1=x^{2}-11x\\ &\frac{3+(x-3)}{x-3}+\frac{5+(x-5)}{x-5}+\frac{17+(x-17)}{x-17}+\frac{19+(x-19)}{x-19}=x^{2}-11x\\ &\frac{x}{x-3}+\frac{x}{x-5}+\frac{x}{x-17}+\frac{x}{x-19}=x^{2}-11x\\ &\frac{x(x-19)+x(x-3)}{(x-3)(x-19)}+\frac{x(x-17)+x(x-5)}{(x-5)(x-17)}=x^{2}-11x\\ &\frac{2x^{2}-22x}{x^{2}-22x+57}+\frac{2x^{2}-22}{x^{2}-22x+85}=x^{2}-11x\\ &\left ( x^{2}-11x \right )\left ( \frac{2}{x^{2}-22x+57}+\frac{2}{x^{2}-22x+85} \right )\\ &\qquad\qquad\qquad\qquad =x^{2}-11x,\quad \color{red}\textrm{misal}\: \: t=x^{2}-22x\\ &\left ( \frac{2}{t+57}+\frac{2}{t+85} \right )=\frac{x^{2}-11x}{x^{2}-11x}=1\\ &2\left ( t+85 \right )+2\left ( t+57 \right )=(t+57)(t+85)\\ &2t+170+2t+114=t^{2}+142t+4845\\ &0=t^{2}+138t+4731\\ &\color{red}t^{2}+138t+4731=0\: \: \left\{\begin{matrix} a=1\\ b=138\\ c=4731 \end{matrix}\right.\\ &t_{1,2}=\displaystyle \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\\ &t_{1,2}=\displaystyle \frac{-138\pm \sqrt{138^{2}-4.1.4731}}{2}\\ &=\displaystyle \frac{-138\pm \sqrt{19044-18924}}{2}\\ &=\displaystyle \frac{-138\pm \sqrt{120}}{2}\\ &=\displaystyle \frac{-138\pm 2\sqrt{30}}{2}\\ &=-69\pm \sqrt{30} \end{aligned}$.

$\color{red}\begin{aligned}&\color{black}\textrm{Selanjutnya}\\ &t_{1,2}=-69\pm \sqrt{30}\\ &x^{2}-22x=-69\pm \sqrt{30}\\ &x^{2}-22x+69\pm \sqrt{30}=0\\ &x^{2}-22x+69+\sqrt{30}=0\\ &\textrm{atau}\quad x^{2}-22x+69-\sqrt{30}\\ &\\ &\color{black}\textrm{dengan cara yang} \: \: \color{black}\textrm{semisal diatas}\\  &\\ &x_{1,2}=\displaystyle \frac{22\pm \sqrt{22^{2}-4\left ( 69+\sqrt{30} \right )}}{2}\\ &\textrm{atau}\qquad x_{3,4}=\displaystyle \frac{22\pm \sqrt{22^{2}-4\left ( 69-\sqrt{30} \right )}}{2}\\ &x_{1,2}=\displaystyle \frac{22\pm \sqrt{484-276-4\sqrt{30}}}{2}\\ &\textrm{atau}\qquad x_{3,4}=\displaystyle \frac{22\pm \sqrt{484-276+4\sqrt{30}}}{2}\\ &x_{1,2}=\displaystyle \frac{22\pm \sqrt{208-4\sqrt{30}}}{2}\\ &\textrm{atau}\qquad x_{3,4}=\displaystyle \frac{22\pm \sqrt{208+4\sqrt{30}}}{2}\\ &x_{1,2}=\displaystyle \frac{22\pm 2\sqrt{52-\sqrt{30}}}{2}\\ &\textrm{atau}\qquad x_{3,4}=\displaystyle \frac{22\pm 2\sqrt{52+\sqrt{30}}}{2}\\ &x_{1,2}=11\pm \sqrt{52-\sqrt{30}}\\ &\textrm{atau}\qquad x_{3,4}=11\pm \sqrt{52+\sqrt{30}}\\ &\\  &\color{black}\textrm{Maka}, \\ &\left\{\begin{matrix} x_{1}=11+\sqrt{52-\sqrt{30}}\\ \\ x_{2}=11-\sqrt{52-\sqrt{30}} \end{matrix}\right.\\ &\textrm{atau}\qquad \left\{\begin{matrix} x_{3}=11+\sqrt{52+\sqrt{30}}\\ \\ x_{4}=11-\sqrt{52+\sqrt{30}} \end{matrix}\right. \end{aligned}$.

$\begin{aligned}\textrm{Selanjutnya nilai}&\: \textrm{yang paling pas sesuai soal adalah}:\\ &\color{red}x_{3}=11+\sqrt{52+\sqrt{30}}=p+\sqrt{q+\sqrt{r}}\\ \textrm{Sehingga nilai}\: \: \: \: \, \, &p+q+r=11+52+30=93 \end{aligned}$.


Problem Solving Bentuk Bilangan Imajiner (Bilangan Tidak Nyata)

Seri Pemecahan Masalah

Suatu ketika saya sharing-sharing mengenai soal bentuk perpangkatan dari salah seorang teman yang kebetulan memang soalnya membuat penasayaran untuk ditemukan jawabannya.

Berikut soalnya

Saat saya melihat soalnya dengan pangkat berupa angka yang seolah berpola tapi agak susah dicari hungan antara keduanya. Yang satu bilangan utuh yang satu lagi bentuk pecahan (bilangan pada soal, bukan pada yang diketahui). Tapi ada sedikit petunjuk yang mensiratkan soal di atas akan segera dapat dipecahkankan, yaitu posisi yang diketahui  $x+\displaystyle \frac{1}{x}=-1$ adalah salah satu bentuk persamaan kuadrat dengan akar kemungkinan rasional atau imajiner/khayal/tidak nyata dan pangkat pada soal yang semuanya menunjukkan kelipatan 3, yaitu 1234567891011 dan yang satunya posisi penyebut dengan pangkat 1110987654321 dengan basis/bilangan pokok perpangkatannya sama dengan yang diketahui dari soal yaitu  $a$.
Sebelumnya saya pernah menyinggung mengenai istilah definit positif dan definit negatif (silahkan klik di sini) yang kurang lebih istilah tersebut sangat berkaitan dengan akar persamaan kuadrat yang berbentuk imajiner.
Ok, kita kembali ke arah penyelesaian soal di atas, yaitu:

$\begin{aligned}&a+\displaystyle \frac{1}{a}=-1\: \Leftrightarrow\: a^{2}+1=-a\\ &\Leftrightarrow a^{2}+a+1=0\\ &\Leftrightarrow a_{1,2}=\color{red}\displaystyle \frac{-1\pm \sqrt{-3}}{2}=\displaystyle \frac{-1\pm \sqrt{3.(-1)}}{2}\\ &\: \quad\qquad =\displaystyle \frac{-1\pm \sqrt{3}\sqrt{-1}}{2}=\frac{-1\pm \sqrt{3}i}{2}\\ &\: \quad\qquad \: \textrm{dengan}\: \: i=\sqrt{-1}  \end{aligned}$.
$\begin{aligned}&\textrm{Misalkan kita pilih}\: \: a=\color{red}\displaystyle \frac{-1+ \sqrt{3}i}{2}\\ &\textrm{maka nilai dari}\\ &\displaystyle \frac{1}{a}=\displaystyle \frac{1}{\displaystyle \frac{-1+ \sqrt{3}i}{2}}=\displaystyle \frac{2}{-1+ \sqrt{3}i}=\displaystyle \frac{2}{ \sqrt{3}i-1}\\ &\: \quad =\displaystyle \frac{2}{ \sqrt{3}i-1}\times \displaystyle \frac{\sqrt{3}i+1}{\sqrt{3}i+1}=\displaystyle \frac{2(\sqrt{3}i+1)}{-3-1}\\ &\: \quad= -\displaystyle \frac{2(\sqrt{3}i+1)}{-4}=\displaystyle \frac{\sqrt{3}i+1}{-2}\quad \textrm{atau}\\ &\displaystyle \frac{1}{a}=\color{blue}\displaystyle \frac{-1-\sqrt{3}i}{2} \end{aligned}$.

Penjabaran bentuk pangkat dari salah satu akar ternyata membentuk pola yang unik sebagaimana bentuk berikut:

$\begin{aligned}&\begin{cases} a &=\displaystyle \frac{-1+ \sqrt{3}i}{2} \\ \displaystyle \frac{1}{a} & =\displaystyle \frac{-1-\sqrt{3}i}{2} \end{cases},\quad \begin{cases} a^{2} &=\displaystyle \frac{-1- \sqrt{3}i}{2} \\ \displaystyle \frac{1}{a^{2}} & =\displaystyle \frac{-1+\sqrt{3}i}{2} \end{cases}\\ &\qquad\qquad\begin{cases} a^{3} &=1 \\ \displaystyle \frac{1}{a^{3}} & =1 \end{cases}\\ &\begin{cases} a^{4} &=\displaystyle \frac{-1+ \sqrt{3}i}{2} \\ \displaystyle \frac{1}{a^{4}} & =\displaystyle \frac{-1-\sqrt{3}i}{2} \end{cases}\quad \begin{cases} a^{5} &=\displaystyle \frac{-1- \sqrt{3}i}{2} \\ \displaystyle \frac{1}{a^{5}} & =\displaystyle \frac{-1+\sqrt{3}i}{2} \end{cases}\\ &\qquad\qquad\begin{cases} a^{6} &=1 \\ \displaystyle \frac{1}{a^{6}} & =1 \end{cases}\\ &\: \quad\vdots \\ &\cdots \quad \cdots \quad \begin{cases} a^{9} &=1 \\ \displaystyle \frac{1}{a^{9}} & =1 \end{cases}\\ &\cdots \quad \cdots \quad \begin{cases} a^{12} &=1 \\ \displaystyle \frac{1}{a^{12}} & =1 \end{cases}\\ &\cdots \quad \cdots \quad \begin{cases} a^{15} &=1 \\ \displaystyle \frac{1}{a^{15}} & =1 \end{cases}\\ &\textrm{dan seterusnya}\\ & \end{aligned}$.

Jadi, setiap pangkat kelipatan 3 ternyata sama dengan 1, sehingga ini mengakibatkan soal di atas dapat dituliskan lagi dengan

$\begin{aligned}&\color{red}\textrm{Perhatikan lagi bentuk soal}\\ &a^{1234567891011}+\displaystyle \frac{1}{a^{11100987654321}}\\ &=a^{3m}+\displaystyle \frac{1}{a^{3n}}=1+\displaystyle \frac{1}{1}=1+1=\color{red}2 \end{aligned}$.


Lanjutan Materi (9) Turunan Pertama Fungsi Trigonometri (Matematika Peminatan Kelas XII)

MENYELESAIKAN MASALAH YANG MELIBATKAN TURUNAN PERTAMA FUNGSI TRIGONOMETRI

(APLIKASI TITIK STASIONER)

$\color{blue}\begin{array}{ll}\\ 1.&\textrm{Masalah Maksimum minimum}\\ 2.&\textrm{Kecepatan dan percepatan} \end{array}$

Aplikasi dari titik stasioner ini yang sering muncul dalam kasus maksimum-manimum khususnya berkaitan dengan fungsi trigonometri di samping juga masalah kecepatan dan percepatan. Berikut ilustrasi contoh-contohnya

$\LARGE\fbox{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Perhatikanlah gambar berikut}\\ &\textrm{Gambar di bawah menunjukkan}\\ &\textrm{trapesium PQRS dengan}\\ &PS=RS=QR=4\: cm\: \: \textrm{dan}\\ &\angle SPQ=\angle RQB=2\theta \: \: \textrm{radian}\\ &\textrm{dengan}\: \: \theta \: \: \textrm{sudut lancip} \end{array}$

$\color{blue}\begin{array}{ll}\\ .\qquad&\textrm{a}.\quad \color{black}\textrm{Nyatakanlah luas trapesium}\\ &\qquad \color{black}\textrm{dalam fungsi}\: \: \theta \\ &\textrm{b}.\quad \color{black}\textrm{Tentukanlah besar}\: \: \theta \: \: \textrm{agar}\\ &\qquad \color{black}\textrm{luas trapesium maksimum}\\\\ &\color{black}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}\quad& \textrm{Luas Trapesium}\\ &=\displaystyle \frac{1}{2}\times \textrm{jmlh sisi sjjr}\times \textrm{tinggi}\\ &\textrm{L}_{Trapesium}=\left ( \displaystyle \frac{PQ+SR}{2} \right )\times SA\\ &\textrm{L}_{T}=\left ( \displaystyle \frac{PA+4+BQ+4}{2} \right )\times 4\sin 2\theta \\ &=\left (4\cos 2\theta +4+4\cos 2\theta +4 \right )\times 2\sin 2\theta \\ &=\left (8+8\cos 2\theta \right )\times 4\sin \theta \cos \theta \\ &=\left ( 8\left ( 1+\cos 2\theta \right ) \right )\times 4\sin \theta \cos \theta \\ &=\left ( 8\left (2\cos ^{2}\theta \right ) \right )\times 4\sin \theta \cos \theta \\ &=64\sin \theta \cos ^{3}\theta \\ \textrm{b}\quad&\textrm{Supaya luas maksimum adalah}\\ &\textrm{nilai stasioner fungsi luas} =0\: \: \textrm{yaitu}:\\ &\textrm{L}^{'}_{T}=0\\ &\begin{aligned}&\textrm{L}_{T}=U.V\begin{cases} U & =64\sin \theta \\ V & =\cos ^{3}\theta \end{cases}\\ &\textrm{L}^{'}_{T}=U'V+UV'\\ &\: \quad=64\cos \theta .\cos ^{3}\theta +64\sin \theta \left ( -3\cos ^{2}\theta \sin \theta \right )\\ &\: \quad =64\cos ^{2}\theta \left ( \cos ^{2}\theta -3\sin ^{2}\theta \right ) \end{aligned}\\ &\textrm{Karena syarat luas maksimum}\\ &\textrm{L}^{'}_{T}=0,\: \: \textrm{maka}\\ &64\cos ^{2}\theta \left ( \cos ^{2}\theta -3\sin ^{2}\theta \right )=0\\ &\color{red}\begin{array}{rcl}\\ \color{black}64\cos ^{2}\theta =0&\color{blue}\textrm{V}&\left ( \cos ^{2}\theta -3\sin ^{2}\theta \right )=0\\ \color{black}\cos \theta =0&&\cos ^{2}\theta =3\sin ^{2}\theta \\ \color{black}\theta =\displaystyle \frac{\pi }{2}&&\displaystyle \frac{\sin ^{2}\theta }{\cos ^{2}\theta }=\displaystyle \frac{1}{3}\\ &&\tan ^{2}\theta =\displaystyle \frac{1}{3}\\ &&\tan \theta =\sqrt{\displaystyle \frac{1}{3}}\\ &&\tan \theta =\displaystyle \frac{1}{3}\sqrt{3}\\ &&\qquad\theta =\displaystyle \frac{\pi }{6}=30^{\circ} \end{array}\\ &\textrm{Jadi},\: \: \theta =\displaystyle \frac{\pi }{6} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2&\textrm{Sebuah partikel bergerak mengikuti}\\ &\textrm{sebuah lintasan yang dinyatakan dalam}\\ &s=6\cos 3t+\sin ^{2}t+t^{2}+5\: \: \textrm{dalam meter}\\ &\textrm{Jika waktu yang ditempuh dalam}\: \: t\: \: \textrm{detik}\\ &\textrm{tentukanlah kecepatan saat}\: \: t=\displaystyle \frac{\pi}{2}\: \: \textrm{detik}\\\\ &\textrm{Jawab}:\\ &\color{blue}\begin{aligned}&\textrm{Diketahui}\: \: v=\displaystyle \frac{ds}{dt}\\ &\color{black}\textrm{maka},\\ &v=-18\sin 3t+2\sin t\cos t+2t\\ &\color{black}\textrm{Kecepatan saat}\: \: \color{red}t=\displaystyle \frac{\pi }{2}\: \: \color{black}\textrm{detik}\\ &v=-18\sin 3t+\sin 2t+2t\\ &v=-18\sin 3\left ( \frac{\pi }{2} \right )+\sin 2\left ( \frac{\pi }{2} \right )+2\left ( \frac{\pi }{2} \right )\\ &\: \: =-18(-1)+0+\pi \\ &=18+\pi \end{aligned} \end{array}$

DAFTAR PUSTAKA
  1. Kanginan, M., Nurdiansyah, H., & Akhmad G. 2016. Matematika untuk Siswa SMA/MA Kelas XII Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: YRAMA WIDYA.
  2. Noormandiri. 2017. Matematika Jilid 3 untuk SMA/MA Kelas XII Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.