Statistika
A. Pendahuluan
Metode statistika banyak dijumpai dalam kehidupan kita sehari-hari. Pernyataan-pernyataan berikut terkait dengan statistika:rRata-rata nilai ulangan matematika siswa kelas XI SMA Ceria adalah 7,8; Jenis mobil yang banyak dibeli masyarakat triwulan tahun 2024 ini adalah jenis MPV, dan lain-lain.
B. Statitik dan Statistika
B. 1 Pengertian Statistika dan Statistik
Statistika adalah ilmu yang mempelajari metode-metode ilmiah terkait pengumpulan data, pengorganisasian dat, penyajian data, pengolahan data, serta interpretasi dan penarikan kesimpulan. Metode yang berkaitan dengan pengumpulan, pengorganisasian, penyajian serta pengolahan data disebut statistika deskriptif, sedangkan metode yang berkaitan dengan pengujian hipotesis, penarikan kesimpulan, pendugaan dan lain-lainnya yang semisal disebut statistika inferensia.
Dalam kehidupan sehari-hari kita sering melihat atau membaca berbagai macam laporan baik dalam bentuk angka maupun diagram. Laporan dalam bentuk diagram atau angka ini selanjutnya diamakan statistik.
B. 2 Populasi dan Sampel
Misalkan suatu hari tertentu seorang karyawan dari sebuah pabrik lampu ingin mengetahui berapa persen produksi lampu yang mengalami cacat produksi. Untuk keperluan tersebut tentunya karyawan tersebut tidak akan mengecek seluruh lampu yang telah diproduksi tersebut, tetapi cukup mengambil secara acak/random untuk diteliti. Dalam hal ini bagian dari total produksi yang diambil secara acak tadi disebut sebagai sampel dari keselurhan produksi lampu tadi yang selanjutnya disebut sebagai contoh populasi.
C. Penyajian Data
Data yang telah dikumpulkan semuanya dapat disajikan dalam bentuk daftar atau tabel. Untuk data yang besar biasanya akan disusun dalam suatu daftar atau tabel yang disebut daftar distriusi frekuensi atau daftar sebaran frekuensi. Adapun dafar distribusi dapat dibedakan menjadi dua macam, yaitu daftar distribusi frekuensi tunggal dan satunya daftar distribusi frekuensi berkelompok.
D. Ukuran Pemusatan Data
D.1 Data Tunggal
$\begin{array}{|c|l|}\hline 1.& \textrm{Mean}\quad \left ( \overline{X} \right )\\\hline &\begin{aligned}\overline{x}&=\displaystyle \frac{x_{1}+x_{2}+x_{3}+\cdots +x_{n}}{n} \end{aligned}\\\hline 2.&\textrm{Median}\quad \left ( M_{e} \right )\\\hline &\begin{aligned}&\textrm{Nilai datum tengah}\\ &\begin{aligned}M_{e}&=x_{\textrm{ganjil}}=x_{\frac{n+1}{2}}\\ M_{e}&=x_{\textrm{genap}}=\displaystyle \frac{1}{2}\left ( x_{\frac{1}{2}}+x_{\frac{1}{2}+1} \right ) \end{aligned} \end{aligned}\\\hline 3.&\textrm{Modus}\quad \left ( M_{o} \right )\\\hline &\textrm{Datum dengan frekuensi terbesar}\\\hline \end{array}$.
$\LARGE\colorbox{magenta}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Tentukan rata-rata dari}\: \: 75,60,62,87,83,65\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\overline{x}&=\displaystyle \frac{75+60+62+87+83+65}{6}\\ &=\frac{432}{6}=72 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Diketahui nilai rata-rata 10 siswa adalah }\: \: 7,0\\ &\textrm{Jika ditambah sejumlah siswa dengan nilai 8,}\\ &\textrm{nilai rata-ratanya menjadi}\: 7\displaystyle \frac{1}{3}.\: \textrm{Berapakah }\\ &\textrm{banyak siswa yang ditambahkan}?\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\overline{x}_{baru}&=\displaystyle \frac{\overline{x}_{lama}\times 10+8\times n}{10+n}\\ 7\displaystyle \frac{1}{3}&=\displaystyle \frac{7\times 10+8\times n}{10+n}\\ \displaystyle \frac{22}{3}&=\displaystyle \frac{70+8n}{10+n}\\ &\begin{aligned}\Leftrightarrow \quad &220+22n=210+24n\\ \Leftrightarrow \quad &22n-24n=210-220\\ \Leftrightarrow \quad &-2n=-10\\ \Leftrightarrow \quad &n=\displaystyle \frac{-10}{-2}=5 \end{aligned}\\ &\textrm{Jadi, banyak siswa yang ditambahkan sebanyak 5 orang} \end{aligned} \end{array}$
D. 2 Data Berkelompok
$\begin{array}{|c|l|}\hline 1.& \textrm{Mean}\quad \left ( \overline{X} \right )\\\hline &\begin{aligned}\overline{x}&=\displaystyle \frac{\displaystyle \sum_{i=1}^{n}f_{i}x_{i}}{\displaystyle \sum_{i=1}^{n}f_{i}}\quad \textbf{atau}\quad \overline{X}=\overline{x}_{s}+\displaystyle \frac{\displaystyle \sum_{i=1}^{n}d_{i}x_{i}}{\displaystyle \sum_{i=1}^{n}f_{i}} \end{aligned}\\\hline &\begin{aligned}\textrm{Keter}&\textrm{angan}:\\ \overline{x}&=\textrm{rataan sementara}\\ x_{i}&=\textrm{titik tengah interval kelas ke}-i\\ d_{i}&=x_{i}-\overline{x}_{s}\\ f_{i}&=\textrm{frekuensi kelas ke}-i \end{aligned}\\\hline \end{array}$.
$\begin{array}{|c|l|}\hline 2.& \textrm{Median}\quad \left ( M_{e}=Q_{2} \right )\\\hline &\begin{aligned}M_{e}&=L_{2}+c\left ( \displaystyle \frac{\displaystyle \frac{1}{2}n-F_{2}}{f_{3}} \right ) \end{aligned}\\\hline &\begin{aligned}\textrm{Keter}&\textrm{angan}:\\ L_{2}&=\textrm{tepi bawah kelas kuartil tengah}\: \left (Q_{2} \right )\\ n&=\textrm{ukuran data=total datum=total frekuensi}\\ f_{2}&=\textrm{frekuensi pada kelas kuartil tengah}\: \left (Q_{2} \right )\\ F_{2}&=\textrm{frekuensi kumulatif sebelum kelas kuartil tengah}\\ c&=\textrm{panjang kelas} \end{aligned}\\\hline \end{array}$.
$\begin{array}{|c|l|}\hline 3.& \textrm{Modus}\quad \left ( M_{o} \right )\\\hline &\begin{aligned}M_{o}&=L+c\left ( \displaystyle \frac{d_{1}}{d_{1}+d_{2}} \right ) \end{aligned}\\\hline &\begin{aligned}\textrm{Keter}&\textrm{angan}:\\ L&=\textrm{tepi bawah kelas modus}\\ d_{1}&=\textrm{frekuensi kelas modus dengan kelas sebelumnya}\\ d_{2}&=\textrm{frekuensi kelas modus dengan kelas setelahnya}\\ c&=\textrm{panjang kelas} \end{aligned}\\\hline \end{array}$
E. Ukuran Letak Data
$\begin{array}{|c|l|}\hline 1.& \textrm{Kuartil}\quad \left ( Q_{i} \right )\\\hline &\begin{aligned}Q_{i}&=L_{i}+c\left ( \displaystyle \frac{\displaystyle \frac{i}{4}n-F_{i}}{f_{i}} \right ) \end{aligned}\\\hline &\begin{aligned}\textrm{Keter}&\textrm{angan}:\\ L_{i}&=\textrm{tepi bawah kelas kuartil ke}-i\\ n&=\textrm{ukuran data=total datum=total frekuensi}\\ f_{i}&=\textrm{frekuensi pada kelas kuartil ke}-i\\ F_{i}&=\textrm{frekuensi kumulatif sebelum kelas kuartil ke}-i\\ c&=\textrm{panjang kelas} \end{aligned}\\\hline \end{array}$.
$\begin{array}{|c|l|}\hline 2.& \textrm{Desil}\quad \left ( D_{i} \right )\\\hline &\begin{aligned}D_{i}&=L_{i}+c\left ( \displaystyle \frac{\displaystyle \frac{i}{10}n-F_{i}}{f_{i}} \right ) \end{aligned}\\\hline &\begin{aligned}\textrm{Keter}&\textrm{angan}:\\ L_{i}&=\textrm{tepi bawah kelas desil ke}-i\\ n&=\textrm{ukuran data=total datum=total frekuensi}\\ f_{i}&=\textrm{frekuensi pada kelas desil ke}-i\\ F_{i}&=\textrm{frekuensi kumulatif sebelum kelas desil ke}-i\\ c&=\textrm{panjang kelas} \end{aligned}\\\hline \end{array}$.
$\begin{array}{|c|l|}\hline 3.& \textrm{Persentil}\quad \left ( P_{i} \right )\\\hline &\begin{aligned}P_{i}&=L_{i}+c\left ( \displaystyle \frac{\displaystyle \frac{i}{100}n-F_{i}}{f_{i}} \right ) \end{aligned}\\\hline &\begin{aligned}\textrm{Keter}&\textrm{angan}:\\ L_{i}&=\textrm{tepi bawah kelas persentil ke}-i\\ n&=\textrm{ukuran data=total datum=total frekuensi}\\ f_{i}&=\textrm{frekuensi pada kelas persentil ke}-i\\ F_{i}&=\textrm{frekuensi kumulatif sebelum kelas persentil ke}-i\\ c&=\textrm{panjang kelas} \end{aligned}\\\hline \end{array}$.
F. Ukuran Penyebaran Data
$\begin{array}{|c|l|c|}\hline \textrm{No}&\: \: \: \: \textrm{Data Dispersi}&\textrm{Simbol}\\\hline 1.&\textrm{Jangkauan}&R\: \: \textrm{atau}\: \: J\\\hline 2.&\textrm{Jangkauan}&H\\ &\textrm{antarkuartil}&\\\hline 3.&\textrm{Simpangan}&Q_{d}\\ &\textrm{kuartil}&\\\hline 4.&\textrm{Langkah}&L\\\hline 5.&\textrm{Pagar dalam}&Q_{1}-L\\\hline 6.&\textrm{Pagar luar}&Q_{3}-L\\\hline 7.&\textrm{Simpangan}&SR\\ &\textrm{rata-rata}&\\\hline 8.&\textrm{Ragam/variansi}&S^{2}\\\hline 9&\textrm{Simpangan baku}&S\\\hline 10.&\textrm{Koefisien variansi}&V\\\hline \end{array}$.
G. Histogram
- Diagram batang
- Diagram garis
- Line plot
- Histogram dan poligon
Daftar Pustaka
- Johanes, Kastolan, & Sulasim. 2005. Kompetensi Matematika Program Basaha SMA Kelas XI. JAkarta: YUDHISTIRA.
- Muklis. Ngapiningsih, & Astuti, A.Y. 2022. Buku Interaktif Matematika untuk SMA/MA/SMK/MAK Kelas X. Yogyakarta:PENERBIT INTAN PARIWARA.
- Noormandiri. 2022. Matematika untuk SMA/MA Kelas X Kurikulum Merdeka. Jakarta: ERLANGGA.
- Tim Penyusun. ....... Belajar Praktis Matematika Mata Pelajaran Wajib untuk SMA/MA Kelas XII. Klaten. VIVA PAKARINDO
Contoh Soal 8 Materi Hubungan Dua Lingkaran
$\begin{array}{ll}\\ 36.&\textrm{Persamaan lingkaran yang menyinggung}\\ &\textrm{sumbu X serta melalui titik potong}\\ &\textrm{lingkaran}\: \: (x+1)^{2}+(y+2)^{2}=1\: \: \textrm{dan}\\ &x^{2}+y^{2}+3x+3y+4=0\: \: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad x^{2}+y^{2}-4x+2y+4=0\\ &\textrm{b}.\quad x^{2}+y^{2}-4x+2y-4=0\\ &\textrm{c}.\quad x^{2}+y^{2}-4x-2y-4=0\\ &\textrm{d}.\quad \color{red}x^{2}+y^{2}+4x+2y+4=0\\ &\textrm{e}.\quad x^{2}+y^{2}+4x+2y-4=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}:\: \: L_{3}=L_{1}+p(L_{1}-L_{2})=0\\ &\textrm{dengan}\\ &\bullet \: L_{1}=(x+1)^{2}+(y+2)^{2}=1\\ &\qquad \Leftrightarrow x^{2}+y^{2}+2x+4y+4=0\\ &\bullet \: L_{2}=x^{2}+y^{2}+3x+3y+4=0\\ &\textrm{Untuk}\: \: L_{1}-L_{2}=-x+y=0\Leftrightarrow y=x\\ &\color{blue}\textrm{Dengan cara coba-coba, maka}\\ &\begin{aligned}L_{3}&=L_{1}+p(L_{1}-L_{2})=0\\ &=x^{2}+y^{2}+2x+4y+4+p(-x+y)=0\\ &\color{blue}\textrm{Untuk}\: \: p=1\\ &\Leftrightarrow x^{2}+y^{2}+2x+4y+4+(-x+y)=0\\ &\Leftrightarrow x^{2}+y^{2}+x+5y+4=0\\ &\color{blue}\textrm{Untuk}\: \: p=-1\\ &\Leftrightarrow x^{2}+y^{2}+2x+4y+4-(-x+y)=0\\ &\Leftrightarrow x^{2}+y^{2}+3x+3y+4=0\\ &\color{blue}\textrm{Dan untuk}\: \: p=-2\\ &\Leftrightarrow x^{2}+y^{2}+2x+4y+4-2(-x+y)=0\\ &\Leftrightarrow \color{red}x^{2}+y^{2}+4x+2y+4=0 \end{aligned} \end{aligned}\\ &\textbf{Berikut ilustrasi gambarnyanya} \end{array}$
- Kartini, Suprapto, Subandi, dan Setiadi, U. 2005. Matematika Program Studi Ilmu Alam Kelas XI untuk SMA dan MA. Klaten: INTAN PARIWARA.
- Kanginan M., Nurdiansyah, H., Akhmad, G. 2016. Matematika untuk Siswa SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: YRAMA WIDYA.
- Noormandiri. 2017. Matematika Jilid 2 untuk SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA
- Sembiring, S., Zulkifli, M., Marsito, Rusdi, I. 2017. Matematika untuk Siswa SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: SEWU
- Sukino. 2017. Matematika Jilid 2 untuk Kelas SMA/MA Kelas XI Kelompok Peminatan dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.
Contoh Soal 7 Materi Hubungan Dua Lingkaran
$\begin{array}{ll}\\ 31.&\textrm{Persamaan lingkaran yang melalui titik}\\ &(0,0)\: \: \textrm{dan titik potong kedua lingkaran}\\ &x^{2}+y^{2}-6x-8y-11=0\: \: \textrm{dan}\\ &x^{2}+y^{2}-4x-6y-22=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad x^{2}+y^{2}-12x+10y=0\\ &\textrm{b}.\quad x^{2}+y^{2}+8x-10y=0\\ &\textrm{c}.\quad x^{2}+y^{2}-8x+12y=0\\ &\textrm{d}.\quad \color{red}x^{2}+y^{2}-8x-10y=0\\ &\textrm{e}.\quad x^{2}+y^{2}+12x-8y=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}:\: \: L_{3}=L_{1}+p(L_{1}-L_{2})=0\\ &\textrm{dengan}\\ &\bullet \: L_{1}=x^{2}+y^{2}-6x-8y-11=0\\ &\bullet \: L_{2}=x^{2}+y^{2}-4x-6y-22=0\\ &\textrm{Untuk}\: \: L_{1}-L_{2}=-2x-2y+11=0\\ &\textrm{Karena}\: \: L_{3}\: \: \textrm{melalui}\: \: (0,0), \: \textrm{maka}\\ &\begin{aligned}L_{3}&=L_{1}+p(L_{1}-L_{2})=0\\ &=x^{2}+y^{2}-6x-8y-11 +p(-2x-2y+11)=0\\ &\Leftrightarrow 0^{2}+0^{2}-0-0-11+p(0+11)=0\\ &\Leftrightarrow p=\color{blue}1 \end{aligned}\\ &\textrm{Sehingga}\\ &L_{3}=x^{2}+y^{2}-6x-8y-11+(-2x-2y+11)=0\\ &\Leftrightarrow L_{3}=\color{red}x^{2}+y^{2}-8x-10y=0 \end{aligned} \end{array}$.
Berikut ilustrasi gambarnya
$\begin{array}{ll}\\ 32.&\textrm{Persamaan lingkaran yang melalui titik}\\ & (8,4)\: \: \textrm{dan titik potong lingkaran}\: x^{2}+y^{2}=16\\ &\textrm{dan}\: \: x^{2}+y^{2}-4x-4y=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad x^{2}+y^{2}-8x-8y-16=0\\ &\textrm{b}.\quad x^{2}+y^{2}-8x+8y+16=0\\ &\textrm{c}.\quad \color{red}x^{2}+y^{2}-8x-8y+16=0\\ &\textrm{d}.\quad x^{2}+y^{2}+8x+8y-16=0\\ &\textrm{e}.\quad x^{2}+y^{2}+8x+8y+16=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}:\: \: L_{3}=L_{1}+p(L_{1}-L_{2})=0\\ &\textrm{dengan}\\ &\bullet \: L_{1}=x^{2}+y^{2}-16=0\\ &\bullet \: L_{2}=x^{2}+y^{2}-4x-4y=0\\ &\textrm{Untuk}\: \: L_{1}-L_{2}=4x+4y-16=0\\ &\Leftrightarrow x+y=4\\ &\textrm{Karena}\: \: L_{3}\: \: \textrm{melalui}\: \: (8,4), \: \textrm{maka}\\ &\begin{aligned}L_{3}&=L_{1}+p(L_{1}-L_{2})=0\\ &=x^{2}+y^{2}-16+p(x+y-4)=0\\ &\Leftrightarrow 8^{2}+4^{2}-16+p(8+4-4)=0\\ &\Leftrightarrow -8p=\color{blue}64\color{black}\Leftrightarrow p=\color{blue}-8 \end{aligned}\\ &\textrm{Sehingga}\\ &L_{3}=x^{2}+y^{2}-16-8(x+y-4)=0\\ &\Leftrightarrow L_{3}=\color{red}x^{2}+y^{2}-8x-8y+16=0 \end{aligned}\\ &\textbf{Berikut ilustrasi gambarnyanya} \end{array}$.
$\begin{array}{ll}\\ 33.&\textrm{Persamaan lingkaran yang melalui titik}\\ & (7,-4)\: \: \textrm{dan titik potong kedua lingkaran}\\ &x^{2}+y^{2}-6x+8y-27=0\: \: \textrm{dan}\\ &x^{2}+y^{2}-26x+4y+121=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad x^{2}+y^{2}-36x-2y+121=0\\ &\textrm{b}.\quad x^{2}+y^{2}+24x-4y-222=0\\ &\textrm{c}.\quad 3x^{2}+3y^{2}-18x+2y-121=0\\ &\textrm{d}.\quad \color{red}x^{2}+y^{2}-36x+2y+195=0\\ &\textrm{e}.\quad x^{2}+y^{2}+24x+2y+195=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}:\: \: L_{3}=L_{1}+p(L_{1}-L_{2})=0\\ &\textrm{dengan}\\ &\bullet \: L_{1}=x^{2}+y^{2}-6x+8y-27=0\\ &\bullet \: L_{2}=x^{2}+y^{2}-26x+4y+121=0\\ &\textrm{Untuk}\: \: L_{1}-L_{2}=20x+4y-148=0\\ &\textrm{Karena}\: \: L_{3}\: \: \textrm{melalui}\: \: (7,-4), \: \textrm{maka}\\ &\begin{aligned}L_{3}&=L_{1}+p(L_{1}-L_{2})=0\\ &=x^{2}+y^{2}-6x+8y-27\\ &\qquad+p(20x+4y-148)=0\\ &\Leftrightarrow 7^{2}+(-4)^{2}-42-32-27\\ &\qquad+p(140-16-148)=0\\ &\Leftrightarrow -24p=\color{blue}36\color{black}\Leftrightarrow p=\color{blue}-\displaystyle \frac{3}{2} \end{aligned}\\ &\textrm{Sehingga}\\ &L_{3}=x^{2}+y^{2}-6x+8y-27\\ &\qquad-\displaystyle \frac{3}{2}(20x+4y-148)=0\\ &\Leftrightarrow L_{3}=\color{red}x^{2}+y^{2}-36x+2y+195=0 \end{aligned} \end{array}$.
Berikut ilustrasi gambarnya
$\begin{array}{ll}\\ 34.&\textrm{Persamaan lingkaran yang melalui perpotongan}\\&\textrm{lingkaran}\: \: x^{2}+y^{2}-12x+6y+20=0\: \: \textrm{dan}\\ &x^{2}+y^{2}-16x-14y+64=0\: \: \textrm{serta pusatnya}\\ &\textrm{terletak pada garis}\: \: 8x-3y-19=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \color{red}x^{2}+y^{2}-20x-34y+108=0\\ &\textrm{b}.\quad x^{2}+y^{2}-16x+12y+96=0\\ &\textrm{c}.\quad x^{2}+y^{2}-12x+20y+88=0\\ &\textrm{d}.\quad x^{2}+y^{2}+16x-24y+108=0\\ &\textrm{e}.\quad x^{2}+y^{2}+22x-34y+96=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa persamaan lingkaran}:\\ &\bullet \: L_{1}=x^{2}+y^{2}-12x+6y+20=0\\ &\bullet \: L_{2}=x^{2}+y^{2}-16x-14y+64=0\\ &\textrm{Persamaan tali busurnya (garis kuasa)}\\ &\textrm{adalah}:\\ &L_{1}(x,y)-L_{2}(x,y)\\ &=4x+20y-44=0\Leftrightarrow \color{blue}x=11-5y\\ &\textrm{Selanjutnya dengan substitusi }\\ &\begin{aligned}&x^{2}+y^{2}-12x+6y+20=0\\ &\Leftrightarrow (x-6)^{2}+(y+3)^{2}=25\\ &\Leftrightarrow (\color{blue}11-5y\color{black}-6)^{2}+(y+3)^{2}=25\\ &\Leftrightarrow (y-5y)^{2}+(y+3)^{2}=25\\ &\Leftrightarrow 26y^2-44y+9=0 \end{aligned}\\ &\textrm{Sehingga dengan}\: \: \color{red}\textrm{memodifikasi}\\ &\begin{aligned}&26y^2-44y+9=0\\ &\Leftrightarrow 25y^2-44y+y^2+9=0\\ &\quad\textrm{arahkan ke bentuk kuadrat sempurna}\\ &\Leftrightarrow 25y^2-10y+1+y^2-34y+8=0\\ &\Leftrightarrow 25y^2-10y+1+y^2-34y+17^{2}-17^{2}+8=0\\ &\Leftrightarrow (5y-1)^{2}+(y-17)^{2}-281=0\\ &\quad \textrm{ingat bahwa ada tali busur}\: \: \color{blue}5y=11-x\\ &\Leftrightarrow (\color{blue}11-x\color{black}-1)^{2}+(y-17)^{2}-281=0\\ &\Leftrightarrow (10-x)^{2}+(y-17)^{2}-281=0\\ &\Leftrightarrow x^{2}-20x+100+y^{2}-34y+289-281=0\\ &\Leftrightarrow \color{red}x^{2}+y^{2}-20x-34y+108=0 \end{aligned} \end{aligned}\\ &\textbf{Berikut ilustrasi gambarnya} \end{array}$
$\begin{array}{ll}\\ 35.&\textrm{Persamaan lingkaran dengan titik pusat}\\ &\textrm{pada garis}\: \: x+2y-3=0\: \: \textrm{dan melalui}\\ &\textrm{titik potong dua lingkaran}\\ &x^{2}+y^{2}-2x-4y+1=0\: \: \textrm{dan}\\ &x^{2}+y^{2}-4x-2y+4=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \color{red}x^{2}+y^{2}-6x+7=0\\ &\textrm{b}.\quad x^{2}+y^{2}-3y+4=0\\ &\textrm{c}.\quad x^{2}+y^{2}-2x-2y+1=0\\ &\textrm{d}.\quad x^{2}+y^{2}-2x-4y+4=0\\ &\textrm{e}.\quad x^{2}+y^{2}-3x-2y+7=0\\\\ &\textbf{Jawab}:\\ &\color{blue}\textbf{Alternatif 1}\\ &\textrm{Gunakan cara pembahasan sebagaimana pada}\\ &\textrm{nomor-nomor sebelumnya}\\ &\color{blue}\textbf{Alternatif 2}\\ &\begin{aligned}&\textrm{Diketahui}\\ &L_{1}\equiv x^{2}+y^{2}-2x-4y+1=0,\: \: \textrm{dan}\\ &L_{2}\equiv x^{2}+y^{2}-4x-2y+4=0\\ &\textrm{Persamaan}\: \: \color{red}\textrm{tali busur}\: \color{black}\textrm{dari kedua}\\ &\textrm{lingkaran tersebut adalah}:\\ &\color{blue}L_{1}(x,y)- L_{2}(x,y)=0\\ &\Leftrightarrow x^{2}+y^{2}-2x-4y+1\\ &-(x^{2}+y^{2}-4x-2y+4)=0\\ &\Leftrightarrow 2x-2y-3=0\\ &\textrm{Selanjutnya perlu ditentukan juga}\\&\textrm{Persamaan}\: \: \color{red}\textrm{berkas lingkaran}\: \color{black}\textrm{melalui}\\ &\textrm{titik-titik potong kedua lingkaran}\\ &\textrm{di atas adalah}:\\ &L_{1}+\lambda L_{2}=0\\ &x^{2}+y^{2}-2x-4y+1\\ &\qquad+\lambda \left ( x^{2}+y^{2}-4x-2y+4 \right )=0\\ &\Leftrightarrow (1+\lambda )x^{2}+(1+\lambda )y^{2}-(2+4\lambda )x\\ &\qquad -(4+2\lambda )y+1+4\lambda =0\\ &\textrm{Saat}\: \: \lambda =-1,\: \textrm{maka persamaan berkas}\\ &\textrm{lingkarannya adalah}:\: 2x-2y-3=0\\ &\textrm{Hal ini hasilnya sama persis saat kita}\\ &\textrm{menentukan persamaan}\: \color{red}\textrm{tali busur}\: \color{black}\textrm{di atas}\\ &\textrm{Selanjutnya kita ambil}\\ &L_{2}-(L_{1}+\lambda L_{2})=0\\ &\Leftrightarrow x^{2}+y^{2}-4x-2y+4-(2x-2y-3)=0\\ &\Leftrightarrow \color{red}x^{2}+y^{2}-6x+7=0 \end{aligned} \end{array}$.
Gambar mula-mula
Lingkaran baru yang berpusat di (3,0)
Contoh Soal 6 Materi Hubungan Dua Lingkaran
$\begin{array}{ll}\\ 26.&\textrm{Diketahui lingkaran-lingkaran}\\ & x^{2}+y^{2}-2x+3y+k=0\: \: \textrm{dan}\: \\ &x^{2}+y^{2}+8x-6y-7=0\: \: \textrm{saling}\\ &\textrm{berpotongan ortogonal saat}\: \: k=\: ....\\ &\textrm{a}.\quad \color{red}-10\\ &\textrm{b}.\quad -3\\ &\textrm{c}.\quad 1\\ &\textrm{d}.\quad 5\\ &\textrm{e}.\quad 8\\\\ &\textbf{Jawab}:\\ &\textrm{Perhatikan tabel berikut}\\ &\begin{array}{|l|l|l|}\hline \qquad\qquad\textrm{Lingakaran}&\qquad\textrm{Pusat/r}\\\hline L_{1}\equiv x^{2}+y^{2}-2x+3y+k=0&\begin{cases} P_{1} &=\left ( 1,-\displaystyle \frac{3}{2} \right ) \\ r_{1} & = \sqrt{\displaystyle \frac{13-4k}{4}} \end{cases}\\\hline \begin{aligned}L_{2}&\equiv x^{2}+y^{2}+8x-6y-7=0 \end{aligned}&\begin{cases} P_{2} &=\left ( -4,3 \right ) \\ r_{2} & = \sqrt{32} \end{cases}\\\hline \end{array} \\ &\textrm{Syarat dua lingkaran berpotongan ortogonal}\\ &\begin{aligned}&\left (P_{1}P_{2} \right )^{2}=r_{1}^{2}+r_{2}^{2}\\ &\Leftrightarrow \left ( 1+4 \right )^{2}+\left ( -\displaystyle \frac{3}{2}-3 \right )^{2}=\left ( \sqrt{\displaystyle \frac{13-4k}{4}} \right )^{2}+\sqrt{32}^{2}\\ &\Leftrightarrow \: 25+\displaystyle \frac{81}{4}=\displaystyle \frac{13-4k}{4}+32\\ &\Leftrightarrow \: 100+81=13-4k+128\\ &\Leftrightarrow \: k=-10 \end{aligned} \\ &\textbf{Sebagai ilustrasi perhatikan gambar berikut} \end{array}$.
$\begin{array}{ll}\\ 27.&\textrm{Persamaan lingkaran yang berpotongan}\\ &\textrm{lingkaran lain}\: \: x^{2}+y^{2}+2x+y-11=0\\ &\textrm{secara tegak lurus dan melalui}\: \: (4,3)\: \: \textrm{serta}\\ &\textrm{pusatnya pada}\: \: 9x+4y=37\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \color{red}x^{2}+y^{2}-10x+4y+3=0\\ &\textrm{b}.\quad x^{2}+y^{2}-8x+10y+6=0\\ &\textrm{c}.\quad x^{2}+y^{2}+4x-8y+7=0\\ &\textrm{d}.\quad x^{2}+y^{2}+6x+y+5=0\\ &\textrm{e}.\quad x^{2}+y^{2}+12x+6y+5=0\\\\ &\textbf{Jawab}:\\ &\textrm{Perhatikan tabel berikut}\\ &\begin{array}{|l|l|l|}\hline \qquad\qquad\textrm{Lingakaran}&\qquad\textrm{Pusat/r}\\\hline L_{1}\equiv x^{2}+y^{2}+2x+y-11=0&\begin{cases} P_{1} &=\left ( -1,-\displaystyle \frac{1}{2} \right ) \\ r_{1} & = \sqrt{\displaystyle \frac{49}{4}}=\displaystyle \frac{7}{2} \end{cases}\\\hline \begin{aligned}L_{2}&\equiv (x-a)^{2}+(y-b)^{2}=r^{2} \end{aligned}&\begin{cases} P_{2} &=\left ( a,b \right ) \\ r_{2} & = r \end{cases}\\\hline \end{array}\\ &\textrm{Karena berpotongan tegak lurus, maka}\\ &\begin{aligned}&\left (P_{1}P_{2} \right )^{2}=r_{1}^{2}+r_{2}^{2}\\ &\Leftrightarrow \left ( -1-a \right )^{2}+\left ( -\displaystyle \frac{1}{2}-b \right )^{2}=\displaystyle \frac{49}{4}+r^{2}\\ &\Leftrightarrow a^{2}+2a+1+b^{2}+b+\displaystyle \frac{1}{4}=\displaystyle \frac{49}{4}+r^{2}\\ &\Leftrightarrow \color{blue}a^{2}+b^{2}+2a+b+\displaystyle \frac{5}{4}=\displaystyle \frac{49}{4}+r^{2}\\ &\Leftrightarrow a^{2}+b^{2}+2a+b-11=r^{2}\: .......(1)\\ \end{aligned} \\ &\textrm{Selanjutnya}\\ &\begin{aligned}&\textrm{Lingkaran}\: \: L_{2}\: \: \textrm{melalui titik}\: \: (4,3), \textrm{artinya}\\ &\textrm{bahwa}\: :\: (4-a)^{2}+(3-b)^{2}=r^{2}\\ &\Leftrightarrow a^{2}-8a+16+b^{2}-6b+9=r^{2}\\ &\Leftrightarrow a^{2}+b^{2}-8a-6b+25=r^{2}\: .......(2)\\ &\textrm{Pusat lingkaran}\: \: L_{2}\: \: \textrm{melalui garis}\: \: 9x+4y=37\\ &\textrm{artinya}:\: 9a+4b=37\: ...............(3)\\ \end{aligned}\\ &\begin{aligned}&\textrm{Dengan eliminasi}\: 1\: \&\: 2\: \: \textrm{dapat diperoleh}:\\ &\begin{array}{rll} a^{2}+b^{2}-8a-6b+25&=r^{2}&\\ a^{2}+b^{2}+2a+b-11&=r^{2}&-\\\hline -10a-7b+36&=0&\textrm{atau}\\ 10a+7b&=36&......(4) \end{array}\\ &\textrm{Dari persamaan}\: 3\: \&\: 4\: \: \textrm{dapat diperoleh}:\\ & \end{aligned}\\ &\begin{array}{rll} 10a+7b&=36&(\times 4)\\ 9a+4b&=37&(\times 7)\\\hline 40a+28b&=144&\\ 63a+28b&=259&\\\hline -23a\: \quad\quad&=-115&\\ a&=\displaystyle \frac{-115}{-23}&=5\\ 10(5)+7b&=36&\\ 7b&=-14\\ b&=-2 \end{array}\\ &\textrm{Adapun langkah berikutnya}\\ &\begin{aligned}&L_{2}\equiv (4-a)^{2}+(3-b)^{2}=r^{2}\\ &L_{2}\equiv (4-5)^{2}+(3+2)^{2}=r^{2}\\ &L_{2}\equiv r^{2}=25+1=26\\ &\textrm{Sehingga},\: L_{2}\equiv (x-5)^{2}+(y+2)^{2}=26\\ &\Leftrightarrow x^{2}+y^{2}-10x+4y+25+4-26=0\\ &\Leftrightarrow \color{red}x^{2}+y^{2}-10x+4y+3=0 \end{aligned}\\ &\textbf{Berikut ilustrasi gambarnya} \end{array}$.
$\begin{array}{ll}\\ 28.&\textrm{Diketahui lingkaran pertama berpusat di}\: \: (1,2)\\ &\textrm{dan menyinggung garis}\: \: 3x-4y+10=0.\\ &\textrm{Jika ada lingkaran kedua dengan pusat}\: \: (4,6)\\ &\textrm{dan menyinggung lingkaran yang pertama},\\ &\textrm{maka persamaan lingkaran yang kedua}\\ &\textrm{tersebut adalah}\: ....\\ &\textrm{a}.\quad x^{2}+y^{2}-8x-12y+48=0\\ &\textrm{b}.\quad x^{2}+y^{2}-8x-12y+43=0\\ &\textrm{c}.\quad \color{red}x^{2}+y^{2}-8x-12y+36=0\\ &\textrm{d}.\quad x^{2}+y^{2}-8x-12y+27=0\\ &\textrm{e}.\quad x^{2}+y^{2}-8x-12y+16=0\\\\ &\textbf{Jawab}:\\ &\textrm{Diketahui bahwa kedua lingkaran saling}\\ &\color{blue}\textrm{bersinggungan di luar},\: \color{black}\textrm{maka}\\ &\begin{aligned}r_{1}+r_{2}&=P_{1}P_{2}\\ &=\sqrt{(y_{2}-y_{1})^{2}+(x_{2}-x_{1})^{2}}\\ &=\sqrt{(1-4)^{2}+(2-6)^{2}}\\ &=\sqrt{3^{2}+4^{2}}=\sqrt{5^{2}}=5 \end{aligned}\\ &\textrm{Selanjutnya}\\ &\begin{aligned}r_{\textrm{pertama}}&=\left |\displaystyle \frac{3(1)-4(2)+10}{\sqrt{3^{2}+4^{2}}} \right |\\ &=\left | \displaystyle \frac{3-8+10}{\sqrt{5^{2}}} \right |=\left | \displaystyle \frac{5}{5} \right |=\left | 1 \right |=1\\ \textrm{sehingga} &\\ r_{\textrm{kedua}}&=5-r_{\textrm{pertama}}=5-1=4 \end{aligned}\\ &\textrm{maka persamaan lingkaran keduanya adalah}:\\ &\begin{aligned}&(x-4)^{2}+(y-6)^{2}=4^{2}\\ &\Leftrightarrow x^{2}-8x+16+y^{2}-12y+36=16\\ &\Leftrightarrow \color{red}x^{2}+y^{2}-8x-12y+36=0 \end{aligned}\\ &\textbf{Berikut ilustrasi gambarnya} \end{array}$.
$\begin{array}{ll}\\ 29.&\textrm{Garis kuasa (tali busur sekutu)}\\ &\textrm{dari lingkaran}\\ &L_{1}\equiv x^{2}+y^{2}+6x-4y-12=0\\ &\textrm{dan}\: \: L_{2}\equiv x^{2}+y^{2}-12y=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad 3x+4y+9=0\\ &\textrm{b}.\quad 3x-4y-8=0\\ &\textrm{c}.\quad 3x-4y+7=0\\ &\textrm{d}.\quad 3x+4y-7=0\\ &\textrm{e}.\quad \color{red}3x+4y-6=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\\ &L_{1}\equiv x^{2}+y^{2}+6x-4y-12=0,\\ &\textrm{dan}\: \: L_{2}\equiv x^{2}+y^{2}-12y=0\\ &\textrm{Persamaan}\: \: \color{red}\textrm{garis kuasa}\: \color{black}\textrm{dari kedua}\\ &\textrm{lingkaran tersebut adalah}:\\ &\color{blue}L_{1}(x,y)- L_{2}(x,y)=0\\ &\Leftrightarrow x^{2}+y^{2}+6x-4y-12\\ &-(x^{2}+y^{2}-12y)=0\\ &\Leftrightarrow 6x+8y-12=0\\ &\Leftrightarrow \color{red}3x+4y-6=0 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 30.&\textrm{Jika dua lingkaran}\\ & x^{2}+y^{2}=9\: \: \textrm{dan}\\ &x^{2}+y^{2}-4y+2y+3=0\: \: \textrm{yang}\\ &\textrm{berpotongan di}\: \: (x_{1},y_{1})\: \: \textrm{dan}\: \: (x_{2},y_{2}),\\ &\textrm{maka nilai}\: \: 5(x_{1}+x_{2})\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \color{red}24\\ &\textrm{b}.\quad 26\\ &\textrm{c}.\quad 28\\ &\textrm{d}.\quad 30\\ &\textrm{e}.\quad 32\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\\ &L_{1}\equiv x^{2}+y^{2}-9=0\: \: \textrm{dan}\\ &L_{2}\equiv x^{2}+y^{2}-4x+2y+3\\ &\textrm{Persamaan}\: \: \color{red}\textrm{garis kuasa}\: \color{black}\textrm{dari kedua}\\ &\textrm{lingkaran tersebut adalah}:\\ &\color{blue}L_{1}(x,y)- L_{2}(x,y)=0\\ &\Leftrightarrow x^{2}+y^{2}-9\\ &-(x^{2}+y^{2}-4y+2y+3)=0\\ &\Leftrightarrow 4x-2y-12=0\\ &\Leftrightarrow 2x-y-6=0\\ &\Leftrightarrow y=6-2x \end{aligned}\\ &\textrm{Selanjutnya}\\ &\begin{aligned}&x^{2}+y^{2}-9=0\\ &\Leftrightarrow x^{2}+(6-2x)^{2}-9=0\\ &\Leftrightarrow x^{2}+36-24x+4x^{2}-9=0\\ &\Leftrightarrow 5x^{2}-24x+27=0\\ &\Leftrightarrow x_{1,2}=\displaystyle \frac{24\pm \sqrt{576-540}}{10}\\ &\Leftrightarrow x_{1,2}=\displaystyle \frac{24\pm \sqrt{36}}{10}=\frac{24\pm 6}{10}\\ &\Leftrightarrow x_{1,2}=\displaystyle \frac{24\pm \sqrt{36}}{10}=\frac{24\pm 6}{10}\\ &\Leftrightarrow \quad x_{1}=3\: \: \textrm{atau}\: \: x_{2}=1,8\\ &\textrm{maka}\: \: 5(x_{1}+x_{2})=5\left ( 3+1,8 \right )=\color{red}24 \end{aligned} \end{array}$.
Contoh Soal 5 Materi Hubungan Dua Lingkaran
$\begin{array}{ll}\\ 21.&\textrm{Titik Kuasa dari lingkaran-lingkaran}\\ &\textrm{berikut}\\ &L_{1}\equiv x^{2}+y^{2}+x+y-14=0\\ &L_{2}\equiv x^{2}+y^{2}=13\\ &L_{3}\equiv x^{2}+y^{2}+3x-2y-26=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \color{red}(3,-2)\\ &\textrm{b}.\quad (2,-3)\\ &\textrm{c}.\quad (-3,2)\\ &\textrm{d}.\quad (-2,3)\\ &\textrm{e}.\quad (3,2)\\\\ &\textbf{Jawab}:\\ &\textrm{Dengan eliminasi, kita mendapatkan}\\ &\begin{aligned}&\begin{array}{lrlll} (L_{1})&x^{2}+y^{2}+x+y&=&14\\ (L_{2})&x^{2}+y^{2}&=&13&-\\\hline &x+y&=&1&....(1) \end{array}\\ &\textrm{dan}\\ &\begin{array}{lrlll} (L_{3})&x^{2}+y^{2}+3x-2y&=&26\\ (L_{2})&x^{2}+y^{2}&=&13&-\\\hline &3x-2y&=&13&....(2) \end{array}\\ &\textrm{Selanjutnya kita eliminasi}\: (1)\& (2)\\ &\textrm{dan hasilnya adalah}:\\ &\begin{array}{rrlrl} \color{blue}(2)&3x-2y&=&13\\ \color{blue}(1)&3x+3y&=&3&-\qquad (\times 3)\\\hline &-5y&=&10&\\ &y&=&\color{red}-2&\Rightarrow x=\color{red}3 \end{array}\\ &\textrm{Jadi, titik kuasa ketiganya}: (3,-2) \end{aligned}\\ &\textbf{Sebagai ilustrasi perhatikan gambar berikut} \end{array}$
$\begin{array}{ll}\\ 25.&\textrm{Persamaan lingkaran dengan jari-jari}\: \: 5\\ &\textrm{dan menyinggung lingkaran lain}\\ & x^{2}+y^{2}-2x-4y-20=0\: \: \: \textrm{di titik}\\ &(5,5)\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad x^{2}+y^{2}-2x-4y-120=0\\ &\textrm{b}.\quad x^{2}+y^{2}-2x-4y-120=0\\ &\textrm{c}.\quad x^{2}+y^{2}-2x-4y-120=0\\ &\textrm{d}.\quad \color{red}x^{2}+y^{2}-2x-4y-120=0\\ &\textrm{e}.\quad x^{2}+y^{2}-2x-4y-120=0\\\\ &\textbf{Jawab}:\\ &\textrm{Diketahi bahwa}\\ &\begin{aligned}&\begin{array}{rrlll} (L_{1})&(x-a)^2+(y-b)^{2}&=&5^{2}\\ (L_{2})&x^{2}+y^{2}-2x-4y&=&20& \end{array} \\ &\textrm{Titik singgung dua lingkaran}\\ &\textrm{di titik}\: \: (5,5),\: \textrm{artinya}\\ &\begin{pmatrix} 5\\ 5 \end{pmatrix}=\displaystyle \frac{\begin{pmatrix} a\\ b \end{pmatrix}+\begin{pmatrix} 1\\ 2 \end{pmatrix}}{2}\\ &\Leftrightarrow \begin{pmatrix} 10\\ 10 \end{pmatrix}=\begin{pmatrix} a\\ b \end{pmatrix}+\begin{pmatrix} 1\\ 2 \end{pmatrix}\\ &\Leftrightarrow \begin{pmatrix} a\\ b \end{pmatrix}=\begin{pmatrix} 10-1\\ 10-2 \end{pmatrix}=\begin{pmatrix} 9\\ 8 \end{pmatrix} \end{aligned}\\ &\begin{aligned}&\textrm{maka persamaan lingkarannya adalah}:\\ &\Leftrightarrow (x-9)^{2}+(y-8)^{2}=5^{2}\\ &\Leftrightarrow x^{2}+y^{2}-18x-16y+120=0 \end{aligned}\\ &\textbf{Berikut ilustrasi gambarnya} \end{array}$.
Contoh Soal 4 Materi Lingkaran dan Hubungan Dua Lingkaran
$\begin{array}{ll}\\ 16.&\textrm{Salah satu garis singgung yang bersudut}\: \: 120^{\circ}\\ &\textrm{terhadap sumbu x positif terhadap lingkaran}\\ &\textrm{dengan ujung diameter titik}\: \: (7,6)\: \textrm{dan}\: \: (1,-2)\\ &\textrm{adalah}\: ....\\ &\textrm{a}.\quad \color{red}y=-x\sqrt{3}+4\sqrt{3}+12\\ &\textrm{b}.\quad y=-x\sqrt{3}-4\sqrt{3}+8\\ &\textrm{c}.\quad y=-x\sqrt{3}+4\sqrt{3}-4\\ &\textrm{d}.\quad y=-x\sqrt{3}-4\sqrt{3}-8\\ &\textrm{e}.\quad y=-x\sqrt{3}+4\sqrt{3}+22\\\\ &\textbf{Jawab}:\\ &\begin{array}{|c|c|}\hline \textrm{Pusat Lingkaran}&\textrm{Gradien Garis Singgung}\\\hline \begin{aligned}&(a,b)\\ &=\left ( \displaystyle \frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2} \right )\\ &=\left ( \displaystyle \frac{7+1}{2},\frac{6+(-2)}{2} \right )\\ &=(4,2) \end{aligned}&\begin{aligned}m&=\tan 120^{\circ}\\ &=-\tan \left ( 180^{\circ}-60^{\circ} \right )\\ &=-\tan 60^{\circ}\\ &=-\sqrt{3}\\ &\\ \end{aligned} \\\hline \textrm{Jari-jari}&\textrm{Garis Singgung}\\\hline \begin{aligned}r&=\textrm{jarak titik}\\ &\: \: \: \: \: \, \textrm{singgung ke pusat}\\ &=\sqrt{(7-4)^{2}+(6-2)^{2}}\\ &=\sqrt{3^{2}+4^{2}}\\ &=\sqrt{25}\\ &=5\\ &\\ &\\ & \end{aligned}&\begin{aligned} &(y-b)=m(x-a)\pm r\sqrt{1+m^{2}}\\ &\Leftrightarrow (y-2)=-\sqrt{3}(x-4)\pm 5\sqrt{1+(-\sqrt{3})^{2}}\\ &\Leftrightarrow y-2=-\sqrt{3}x+4\sqrt{3}\pm 5\sqrt{1+4}\\ &\Leftrightarrow y=-\sqrt{3}x+4\sqrt{3}+2\pm 10\\ &\Leftrightarrow y=\begin{cases} -\sqrt{3}x+4\sqrt{3}+2+ 10 \\ -\sqrt{3}x+4\sqrt{3}+2- 10 \end{cases}\\ &\Leftrightarrow y=\begin{cases} \color{red}-\sqrt{3}x+4\sqrt{3}+12 & \\ -\sqrt{3}x+4\sqrt{3}-8 & \end{cases} \end{aligned}\\\hline \end{array}\\ &\textrm{Berikut ilustrasi gambarnya} \end{array}$.
- Budi, W. S. 2010. Bahan Ajar Persiapan Menuju Olimpiade Sain Nasional/Internasional Matematika 3. Jakarta: ZAMRUD KEMALA.
- Kartini, Suprapto, Subandi, dan Setiadi, U. 2005. Matematika Program Studi Ilmu Alam Kelas XI untuk SMA dan MA. Klaten: INTAN PARIWARA.
- Kanginan M., Nurdiansyah, H., Akhmad, G. 2016. Matematika untuk Siswa SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: YRAMA WIDYA.
- Noormandiri. 2017. Matematika Jilid 2 untuk SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA
- Sembiring, S., Zulkifli, M., Marsito, Rusdi, I. 2017. Matematika untuk Siswa SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: SEWU
- Sukino. 2017. Matematika Jilid 2 untuk Kelas SMA/MA Kelas XI Kelompok Peminatan dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.
Contoh Soal 3 Materi Lingkaran
$\begin{array}{ll}\\ 11.&\textrm{Lingkaran}\: \: x^{2}+y^{2}+2ax+2by+c=0\\ &\textrm{menyinggung sumbu Y jika}\: \: c\: =....\\ &\textrm{A}.\quad ab\\ &\textrm{B}.\quad ab^{2}\\ &\textrm{C}.\quad a^{2}b\\ &\textrm{D}.\quad a^{2}\\ &\textrm{E}.\quad \color{red}b^{2}\\\\ &\textbf{Jawab}:\\ &\color{blue}\textbf{Alternatif 1}\\ &\begin{aligned}&x^{2}+y^{2}+2ax+2by+c=0\\ &x=0\Rightarrow 0^{2}+y^{2}+2a.0+2by+c=0\\ &y^{2}+2by+c=0\begin{cases} a & =1 \\ b & =2b \\ c & =c \end{cases}\\ &\textrm{Syarat menyinggung}\: \textrm{adalah}:\\ &D=b^{2}-4ac=0\\ &\Leftrightarrow (2b)^{2}-4.1.c=0\\ &\Leftrightarrow 4c=4b^{2}\\ &\Leftrightarrow c=\color{red}b^{2} \end{aligned} \\\\ &\color{blue}\textbf{Alternatif 2}\\ &\begin{aligned}&x^{2}+y^{2}+2ax+2by+c=0\\ &\Leftrightarrow x^{2}+2ax+a^{2}+y^{2}+2by+b^{2}+c-a^{2}-b^{2}=0\\ &\Leftrightarrow (x+a)^{2}+(y+b)^{2}=a^{2}+b^{2}-c\\ &\textrm{Karena menyinggung sumbu-Y, maka}\: \: R=a \\ &\textrm{Sehingga}\: \: R^{2}=a^{2}+b^{2}-c=a^{2}\\ &\Leftrightarrow b^{2}-c=0\\ &\Leftrightarrow b^{2}=c\\ &\Leftrightarrow c=\color{red}b^{2} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 12.&\textrm{Diketahui pusat lingkaran L terletak dikuadran}\\ &\textrm{I dan berada di sepanjang garis}\: \: y=2x.\: \: \textrm{Jika}\\ &\textrm{lingkaran L menyinggung sumbu Y di titik}\\ &(0,6),\: \textrm{maka persamaan lingkaran L adalah}\: ....\\ &\textrm{A}.\quad x^{2}+y^{2}-3x-6y=0\\ &\textrm{B}.\quad x^{2}+y^{2}+6x+12y-108=0\\ &\textrm{C}.\quad x^{2}+y^{2}+12x+6y-72=0\\ &\textrm{D}.\quad x^{2}+y^{2}-12x-6y=0\\ &\textrm{E}.\quad \color{red}x^{2}+y^{2}-6x-12y+36=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&(x-a)^{2}+(y-b)^{2}=r^{2},\\ &\textrm{menyinggung titik}\: \: (0,6)\\ &\textrm{berarti pusat lingkaran L juga terletak}\\ &\textrm{pada garis}\: \: y=6.\: \: \textrm{Hal ini menunjukkan bahwa }\\ &\textrm{pusat lingkaran}\: \: \, \: \textrm{L berpusat di}\: \: (x,2x)=(\frac{y}{2},y),\\ &\textrm{dengan}\: \: y=6.\, \: \textrm{Dari informasi di atas, }\\ &\textrm{didapatlah pusat lingkaran berada di titik}\: \: (3,6).\\ &\textrm{Sehingga persamaan lingkarannya adalah}:\\ &(x-3)^{2}+(y-6)^{2}=3^{2}\: \: \textrm{ingat}\: \: r=\textrm{absis}\: \: x=3\\ &\Leftrightarrow (x-3)^{2}+(y-6)^{2}=x^{2}-6x+9+y^{2}+12x+36=9\\ &\Leftrightarrow \, \color{red}x^{2}+y^{2}-6x+12y+36=0\\ &\color{purle}\textrm{Berikut ilustrasi gambarnya} \end{aligned} \end{array}$.
Contoh Soal 2 Materi Lingkaran
$\begin{array}{ll}\\ 6.&\textrm{Diketahui lingkaran}\: \: x^{2}+y^{2}+4x+ky-12=0\\ &\textrm{melalui titik}\: \: (-2,8)\: \: \textrm{maka jari-jari lingkaran}\\ &\textrm{tersebut adalah}....\\ &\textrm{A}.\quad 1\\ &\textrm{B}.\quad \color{red}5\\ &\textrm{C}.\quad 6\\ &\textrm{D}.\quad 12\\ &\textrm{E}.\quad 25\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui ingkaran berpusat di}\: \left ( -2,-\displaystyle \frac{1}{2}k \right ),\\ &\textrm{yaitu}:\\ &x^{2}+y^{2}+4x+ky-12=0\\ & \textrm{melalui}\: \: (-2,8)\: \: \textrm{berarti }\\ &(-2)^{2}+8^{2}+4(-2)+k.8-12=0\\ &4+64-8-12+8k=0\\ &48+8k=0\\ &k=\color{blue}-6\\ &\textrm{Sehingga}\: \: r=\sqrt{\displaystyle \frac{4^{2}}{4}+\frac{(-6)^{2}}{4}-(-12)}\\ &\qquad\qquad \: \: \: =\sqrt{\displaystyle 4+9+12}=\sqrt{25}=\color{red}5\\ \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 7.&\textrm{Persmaan lingkaran}\: \: x^{2}+y^{2}+px+8y+9=0\\ &\textrm{menyinggung sumbu X. Pusat lingkaran tersebut }\\ &\textrm{adalah}\: ....\\ &\textrm{A}.\quad (6,-4)\\ &\textrm{B}.\quad (6,6)\\ &\textrm{C}.\quad \color{red}(3,-4)\\ &\textrm{D}.\quad (-6,-4)\\ &\textrm{E}.\quad (3,4)\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textbf{Lingkaran}\: \: x^{2}+y^{2}+px+8y+9=0\\ &\textrm{maka,}\\ &x^{2}+px+y^{2}+8y+9=0\\ &\left ( x+\displaystyle \frac{1}{2}p \right )^{2}-\displaystyle \frac{1}{4}p^{2}+(y+4)^{2}-16+9=0\\ &\Leftrightarrow \left ( x+\displaystyle \frac{1}{2}p \right )^{2}+(y+4)^{2}=7+\displaystyle \frac{1}{4}p^{2}\\ &\textrm{karena menyinggung sumbu-X,}\: \: \: \: R=b=4,\\ & \textrm{sehingga}\\ &7+\displaystyle \frac{1}{4}p^{2}=4^{2}\\ &\Leftrightarrow \displaystyle \frac{1}{4}p^{2}=16-7=9\Leftrightarrow p^{2}=36\Leftrightarrow p=\color{blue}\pm 6\\ &p=-6\: \Rightarrow \: x^{2}+y^{2}-6x+8y+9=0\\ &\quad\Rightarrow \textrm{pusatnya adalah}\: \: \left ( -\displaystyle \frac{A}{2},-\frac{B}{2} \right )=\color{red}(3,-4)\\ &p=6\: \: \: \, \: \Rightarrow \: x^{2}+y^{2}+6x+8y+9=0\\ &\quad\Rightarrow \textrm{pusatnya adalah}\: \: \left ( -\displaystyle \frac{A}{2},-\frac{B}{2} \right )=\color{red}(-3,-4)\\ &\color{purple}\textrm{dan berikut ilustrasi gambarnya} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 8.&\textrm{Titik-titik berikut yang posisinya berada di luar }\\ &\textrm{lingkaran}\: \: x^{2}+y^{2}-2x+8y-32=0\: \: \textrm{adalah}.... \\ &\textrm{A}.\quad (0,0)\\ &\textrm{B}.\quad (-6,-4)\\ &\textrm{C}.\quad \color{red}(-3,2)\\ &\textrm{D}.\quad (3,1)\\ &\textrm{E}.\quad (4,1)\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\begin{array}{|c|c|l|c|}\hline \color{blue}\textrm{Opsi}&\color{blue}\textrm{Titik}&\qquad\qquad\quad\color{blue}\textrm{Lingkaran}&\color{blue}\textrm{Keterangan}\\\hline \textrm{A}&(0,0)&0^{2}+0^{2}-2.0+8.0-32=-32&\textrm{dalam}\\\hline \textrm{B}&(-6,-4)&(-6)^{2}+(-4)^{2}-2(-6)+8(-4)-32=0&\textrm{pada}\\\hline \color{red}\textrm{C}&(-3,2)&(-3)^{2}+(2)^{2}-2(-3)+8(2)-32=3&\textbf{di luar}\\\hline \textrm{D}&(3,1)&3^{2}+1^{2}-2.3+8.1-32=-20&\textrm{dalam}\\\hline \textrm{E}&(4,1)&4^{2}+1^{2}-2.4+8.1-32=-15&\textrm{dalam}\\\hline \end{array} \\ &\color{purple}\textrm{Berikut ilustrasi gambarnya} \end{aligned} \end{array}$.Contoh Soal 1 Materi Lingkaran
$\begin{array}{ll}\\ 1.&\textrm{Jari-jari lingkaran dengan persamaan}\: \: x^{2}+y^{2}=48\\ &\textrm{adalah}....\\ &\textrm{A}.\quad \displaystyle 3\sqrt{5}\\ &\textrm{B}.\quad \color{red}4\sqrt{3}\\ &\textrm{C}.\quad 5\sqrt{2}\\ &\textrm{D}.\quad \displaystyle 6\sqrt{3}\\ &\textrm{E}.\quad 7\\\\ &\textbf{Jawab}:\qquad \\ &\begin{aligned}r^{2}&=48\\ r&=\sqrt{48}\\ &=\sqrt{16.3}\\ &=4\sqrt{3} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Titik pusat lingkaran}\: \: (x-7)^{2}+(y+9)^{2}=48\\ &\textrm{adalah}....\\ &\textrm{A}.\quad \displaystyle (-7,-9)\\ &\textrm{B}.\quad (-7,9)\\ &\textrm{C}.\quad \color{red}(7,-9)\\ &\textrm{D}.\quad \displaystyle (7,6)\\ &\textrm{E}.\quad (15,48)\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{Jelas bahwa}\: \: \: (a,b)&=(-6,9) \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 3.&\textrm{Persamaan lingkaran yang berpusat di}\: \: P(-2,5)\\ &\textrm{dan melalui titik}\: \: T(3,4)\: \: \textrm{adalah}....\\ &\textrm{A}.\quad \color{red}(x+2)^{2}+(y-5)^{2}=26\\ &\textrm{B}.\quad (x-3)^{2}+(y+5)^{2}=36\\ &\textrm{C}.\quad (x+2)^{2}+(y-5)^{2}=82\\ &\textrm{D}.\quad (x-3)^{2}+(y+5)^{2}=82\\ &\textrm{E}.\quad (x+2)^{2}+(y+5)^{2}=82\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Persamaan Lingkaran Berpusat di}\: \: (a,b)\\ & \textrm{adalah}:\: (x-a)^{2}+(y-b)^{2}=r^{2}\\ &\begin{array}{|l|l|l|}\hline \textrm{Pusat di}\: \: P(-2,5)&\textrm{Melalui Titik}\: \: T(3,4)\\\hline \begin{aligned}(x-a)^{2}+(y-b)^{2}&=r^{2}\\ (x+2)^{2}+(y-5)^{2}&=r^{2}\\ &\\ & \end{aligned}&\begin{aligned}(x-a)^{2}+(y-b)^{2}&=r^{2}\\ (3+2)^{2}+(4-5)^{2}&=r^{2}\\ 5^{2}+(-1)^{2}&=r^{2}\\ 26&=r^{2} \end{aligned}\\\hline \begin{aligned}&\textrm{Sehinga persamaan}\\ &\textrm{lingkarannya} \end{aligned}&\begin{aligned}&\textrm{adalah}:\\ &(x+2)^{2}+(y-5)^{2}=r^{2}=26\\ &(x+2)^{2}+(y-5)^{2}=26\\ & \end{aligned}\\\hline \end{array} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 4.&\textrm{Koordinat titik pusat dan jari-jari lingkaran}\: \: x^{2}+y^{2}-4x+6y+4=0\: \: \textrm{adalah}....\\ &\textrm{A}.\quad (-3,2)\: \: \textrm{dan}\: \: 3\\ &\textrm{B}.\quad (3,-2)\: \: \textrm{dan}\: \: 3\\ &\textrm{C}.\quad (-2,-3)\: \:\textrm{ dan}\: \: 3\\ &\textrm{D}.\quad \color{red}(2,-3)\: \: \textrm{dan}\: \: 3\\ &\textrm{E}.\quad (2,3)\: \: \textrm{dan}\: \: 3\\\\ &\textbf{Jawab}: \\ &\textbf{Alterntif 1}\\ &\begin{array}{|l|l|}\hline &{\textrm{Persamaan Lingkaran Berpusat di}\: \: (a,b)\: \: \textrm{dan berjari-jari}\: \: r\: \: \textrm{adalah}}\\ &{\begin{aligned}(x-a)^{2}+(y-b)^{2}&=r^{2}\\ x^{2}+y^{2}-4x+6y+4&=0\\ x^{2}-4x+y^{2}+6y+4&=0\\ x^{2}-4x+4-4+y^{2}+6y+9-9+4&=0\\ (x-2)^{2}-4+(y+3)^{2}-9+4&=0\\ (x-2)^{2}+(y+3)^{2}&=4+9-4\\ (x-2)^{2}+(y+3)^{2}&=9\\ (x-2)^{2}+(y-(-3))^{2}&=3^{2}\begin{cases} \textrm{Pusat} & =(2,-3) \\ \textrm{dan}\\ \: r & = 3 \end{cases} \end{aligned}}\\\hline \end{array}\\ &\textbf{Alterntif 2}\\ &\begin{aligned}\textrm{Diketahui}&\: \textrm{persamaan lingkaran}:\: \: x^{2}+y^{2}-4x+6y+4=0\begin{cases} A & =-4 \\ B & =6 \\ C & =4 \end{cases}\\ &x^{2}+y^{2}+Ax+By+C=0\\ &\begin{cases} \textrm{Pusat} & =\left ( -\displaystyle \frac{1}{2}A,\: -\frac{1}{2}B \right )=\left ( -\frac{1}{2}\cdots ,\: -\frac{1}{2}\cdots \right )=(\cdots ,\cdots ) \\ \textrm{Jari-jari} & =\sqrt{\displaystyle \frac{1}{4}A^{2}+\frac{1}{4}B^{2}-C}=\sqrt{\displaystyle \frac{1}{4}\cdots ^{2}+\frac{1}{4}\cdots ^{2}-\cdots }=\sqrt{\cdots } \end{cases} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 5.&\textrm{Suatu lingkaran}\: \: x^{2}+y^{2}-4x+2y+p=0\\ &\textrm{berjari-jari 3, maka nilai}\: \: p\: \: \textrm{adalah}....\\ &\textrm{A}.\quad -1\\ &\textrm{B}.\quad -2\\ &\textrm{C}.\quad -3\\ &\textrm{D}.\quad \color{red}-4\\ &\textrm{E}.\quad -5\\\\ &\textbf{Jawab}:\\ &\begin{aligned}r=\sqrt{\displaystyle \frac{A^{2}}{4}+\frac{B^{2}}{4}-C}&=3\\ \displaystyle \sqrt{\frac{(-4)^{2}}{4}+\frac{2^{2}}{4}-p}&=3\\ \displaystyle \frac{16}{4}+\frac{4}{4}-p&=9\\ 4+1-p&=9\\ -p&=9-5\\ p&=-4 \end{aligned} \end{array}$.
Hubungan Dua Lingkaran (Lanjutan)
Hubungan Dua Buah Lingkaran
- Kanginan M., Nurdiansyah, H., Akhmad, G. 2016. Matematika untuk Siswa SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: YRAMA WIDYA.
- Noormandiri. 2017. Matematika Jilid 2 untuk SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA
- Sembiring, S., Zulkifli, M., Marsito, Rusdi, I. 2017. Matematika untuk Siswa SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: SEWU
- Sukino. 2017. Matematika Jilid 2 untuk Kelas SMA/MA Kelas XI Kelompok Peminatan dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.