Tampilkan postingan dengan label Enumeration rules. Tampilkan semua postingan
Tampilkan postingan dengan label Enumeration rules. Tampilkan semua postingan

Contoh Soal 4 Kaidah Pencacahan

 $\begin{array}{ll}\ 16.&\textrm{Diketahui himpunan yang terdiri dari 5}\\ &\textrm{huruf vokal dan 10 huruf konsonan yang}\\ &\textrm{semuanya berlainan. Dari himpunan itu}\\ &\textrm{disusun suatu kata yang terdiri dari 2}\\ &\textrm{huruf vokal dan 3 konsonan. Banyak kata}\\ &\textrm{yang dapat disusun sebanyak}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\color{red}\displaystyle 144.000&&&\textrm{d}.&\displaystyle 72.000\\\\ \textrm{b}.&\displaystyle 126.000&\textrm{c}.&\displaystyle 96.000&\textrm{e}.&\displaystyle 36.000 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa ingin menyusun}\\ & \textbf{5 huruf dengan susunan berbeda}\\ &\color{red}\textit{yang tersusun dari}\\ &\textrm{2 dari 5 vokal berbeda disusun, dan}\\ &\textrm{3 dari 10 konsonan berbeda juga disusun}\\ &\textrm{maka banyak susunan kata terbentuk}:\\ &\textrm{Seperti menyusun 5 objek (kombinasi)}\\ &\textrm{2 benda dari 5 benda, atau 3 }\\ &\textrm{benda yang terbentuk dari 5}\\ &\textrm{objek yg tidak identik(permutasi)}\\ &\textbf{Cara pertama}\\ &=C((2+3),\color{red}2)\color{blue}\times P(5,2)\times P(10,5)\\ &=\displaystyle \frac{5!}{2!\times 3!}\times \frac{5!}{(5-2)!}\times \frac{10!}{(10-3)!}\\ &=\displaystyle \frac{5!}{2!\times 3!}\times \frac{5!}{3!}\times \frac{10!}{7!}\\ &=10\times 60\times 720\\ &=\color{red}144.000\\ &\textbf{Cara kedua}\\ &=C((2+3),\color{red}3)\color{blue}\times P(5,2)\times P(10,5)\\ &=\displaystyle \frac{5!}{3!\times 2!}\times \frac{5!}{(5-2)!}\times \frac{10!}{(10-3)!}\\ &=\displaystyle \frac{5!}{3!\times 2!}\times \frac{5!}{3!}\times \frac{10!}{7!}\\ &=10\times 60\times 720\\ &=\color{red}144.000 \end{aligned} \end{array}$

Contoh Soal 3 Kaidah Pencacahan

 $\begin{array}{ll}\ 11.&\textrm{Berikut ini nilainya tidak sama dengan}\\ &C(7,5)\: \: \textrm{adalah}\: ....\\\\ &(i)\: \: \displaystyle \frac{7!}{5!(7-5)!}\\\\ &(ii)\: \: C(6,1)\\\\ &(iii)\: \: \displaystyle \frac{P(7,5)}{5!}\\\\ &(iv)\: \: \begin{pmatrix} 6\\ 1 \end{pmatrix}\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle (i),(ii),\& (iii)&&&\textrm{d}.&\displaystyle \textrm{hanya}\: (i)\\\\ \textrm{b}.&\displaystyle (i)\& (iii)&\textrm{c}.&\color{red}(ii)\&(iv)&\textrm{e}.&\displaystyle \textrm{hanya}\: (iv) \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &C(7,5)=\displaystyle \frac{P(7,5)}{5!}=\frac{7!}{5!(7-5)!} \end{array}$

$\begin{array}{ll}\ 12.&\textrm{Nilai}\: \: n\: \: \textrm{yang memenuhi persamaan}\\ &\begin{pmatrix} 100\\ 45 \end{pmatrix}=\begin{pmatrix} 100\\ 5n \end{pmatrix}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 15&&&\textrm{d}.&\displaystyle 12\\\\ \textrm{b}.&\displaystyle 14&\textrm{c}.&\displaystyle 13&\textrm{e}.&\color{red}\displaystyle 11 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}\\ &\begin{pmatrix} 100\\ 45 \end{pmatrix}=\begin{pmatrix} 100\\ 5n \end{pmatrix},\: \: \textrm{maka}\\ &45+5n=100\\ &5n=100-45=55\\ &\: \: n=\displaystyle \frac{55}{5}=\color{red}11 \end{aligned} \end{array}$

$\begin{array}{ll}\ 13.&\textrm{Koefisien suku ke-4 dari}\: \: (2x-3)^{4}\\ &\begin{array}{llllll}\\ \textrm{a}.&\color{red}\displaystyle -216&&&\textrm{d}.&\displaystyle 81\\\\ \textrm{b}.&\displaystyle -96&\textrm{c}.&\displaystyle 16&\textrm{e}.&\displaystyle 216 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}\\ &(2x-3)^{4}=\displaystyle \sum_{i=0}^{4}\begin{pmatrix} 4\\ i \end{pmatrix}(2x)^{4-i}(-3)^{i}\\ &\textrm{Suku ke-4-nya adalah}:\: \: r=4.\\ &\textrm{Suku ke-r}=\color{red}\begin{pmatrix} n\\ r-1 \end{pmatrix}a^{n-r+1}b^{r-1}\\ &\textrm{Sehingga suku ke-4 adalah}:\\ &=\begin{pmatrix} 4\\ 4-1 \end{pmatrix}(2x)^{4-4+1}(-3)^{4-1}\\ &=\begin{pmatrix} 4\\ 3 \end{pmatrix}(2x)^{1}(-3)^{3}\\ &=\displaystyle \frac{4!}{3!\times 1!}2x(-27)\\ &=-4.2.27x\\ &=\color{red}-216 \end{aligned} \end{array}$

$\begin{array}{ll}\ 14.&\textrm{Bentuk sederhana dari}\: \: \displaystyle \sum_{r=1}^{n}r\displaystyle \begin{pmatrix} n\\ r \end{pmatrix}\\ &\textrm{dengan}\: \: \begin{pmatrix} n\\ r \end{pmatrix}=\displaystyle \frac{n!}{r!(n-r)!}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 2^{n+1}&&&\textrm{d}.&\displaystyle 3^{n}\\\\ \textrm{b}.&\color{red}\displaystyle n2^{n-1}&\textrm{c}.&\displaystyle n2^{n}&\textrm{e}.&\displaystyle 3^{n+1} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\displaystyle \sum_{r=1}^{n}r\displaystyle \begin{pmatrix} n\\ r \end{pmatrix}&=\displaystyle \sum_{r=1}^{n}r\displaystyle \frac{n!}{r!(n-r)!}\\ &=\displaystyle \sum_{r=1}^{n}r\displaystyle \frac{n(n-1)!}{r(r-1)!(n-r)!}\\ &=n\displaystyle \sum_{r=1}^{n}\displaystyle \frac{(n-1)!}{(r-1)!(n-r)!}\\ &=n\displaystyle \sum_{r=1}^{n}\displaystyle \frac{(n-1)!}{(r-1)!((n-1)-(r-1))!}\\ &=\displaystyle \sum_{r=1}^{n}\begin{pmatrix} n-1\\ r-1 \end{pmatrix}\\ &=\color{red}n.2^{r-1} \end{aligned} \end{array}$

$\begin{array}{ll}\ 15.&\textrm{Banyaknya diagonal segi 6 adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 15&&&\textrm{d}.&\color{red}\displaystyle 9\\\\ \textrm{b}.&\displaystyle 14&\textrm{c}.&\displaystyle 10&\textrm{e}.&\displaystyle 6 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Banyak diagonal segi}-n \: \: \textrm{adalah}:\\ &C(n,2)-n.\: \textrm{Jika seperti soal dengan}\\ &n=6,\: \: \textrm{maka}\\ &C(6,2)=\displaystyle \frac{6!}{2!\times 4!}=\frac{6\times 5\times \not{4!}}{2\times 1\times \not{4!}}=15\\ &\textrm{Sehingga}\\ &C(6,2)-6=15-6=\color{red}9 \end{aligned} \end{array}$


Contoh Soal 2 Kaidah Pencacahan

 $\begin{array}{ll}\ 6.&\textrm{Banyaknya cara milih 4 orang dari 10 orang }\\ &\textrm{anggota jika salah seorang di antaranya}\\ &\textrm{selalu terpilih adalah}.... \\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 72&&&\textrm{d}.&\displaystyle 504\\\\ \color{red}\textrm{b}.&\color{red}\displaystyle 84&\textrm{c}.&\displaystyle 252&\textrm{e}.&\displaystyle 3024 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Cara memilih}=\textrm{Kombinasi}=C(10-1,4-1)\\ & \textrm{karena 1 orang di antaranya selalu ada/terpilih}\\ &=C(9,3)\\ &=\binom{9}{3}\\ &=\displaystyle \frac{9!}{3!\times (9-3)!}\\ &=\displaystyle \frac{9\times 8\times 7\times \not{6!}}{3\times 2\times \times \not{6!}}\\&=\displaystyle \frac{9.8.7}{3.2}\\ &=\color{red}84 \end{aligned} \end{array}$

$\begin{array}{ll}\ 7.&\textrm{Banyaknya cara menyusun huruf-huruf dari}\\ &\textrm{kata "SEMARANG" adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 1680&&&\textrm{d}.&\displaystyle 20320\\\\ \textrm{b}.&\displaystyle 6720&\textrm{c}.&\color{red}\displaystyle 20160&\textrm{e}.&\displaystyle 40320 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Penyelesaian di atas dapat diselesaikan}\\ &\textrm{baik dengan permutasi maupun kombinasi}\\ &\textrm{Susunan huruf berbeda yang diambil dari}\\ &\textrm{kata "SEMARANG" adalah}:\\ &\begin{cases} \textrm{S} &=1 \\ \textrm{E} &=1 \\ \textrm{M} &=1 \\ \textrm{A} &=2 \\ \textrm{R} &=1 \\ \textrm{N} &=1 \\ \textrm{G} &=1 \end{cases}\\ &\textrm{Jumlah huruf ada 8 buah}\\ &\color{purple}\textrm{Dengan cara permutasi}\\ &\begin{aligned}P(n;n_{1},n_{2},n_{2},...,n_{r})&=\displaystyle \frac{n!}{n_{1}!.n_{2}!.n_{3}!...n_{r}!}\\ P(8;1,1,1,2,1,1,1)&=\displaystyle \frac{8!}{1!.1!.1!.2!.1!.1!.1!}\\ &=\displaystyle \frac{40.320}{2}\\ &=\color{red}20.160 \end{aligned}\\ &\color{purple}\textrm{Dengan cara kombinasi}\\ &\begin{aligned}C(n;...)&=\displaystyle \frac{n!}{n_{1}!.n_{2}!.n_{3}!...n_{r}!}\\ C(8;...)&=\displaystyle \binom{8}{1}.\binom{7}{1}.\binom{6}{1}.\binom{5}{2}.\binom{3}{1}.\binom{2}{1}\\ &=\displaystyle 8.7.6.\displaystyle \frac{5.4}{2}.3.2\\ &=\displaystyle \frac{40.320}{2}\\ &=\color{red}20.160 \end{aligned} \end{aligned} \end{array}$

$\begin{array}{ll}\ 8.&\textrm{Jumlah susunan dari sebelas huruf}\\ &\qquad\qquad\: \textbf{MISSISSIPPI}\\ &\textrm{Banyak susunan berbeda dari semua}\\ &\textrm{huruf di atas jika keempat huruf}\: \: \textbf{I}\\ &\textrm{selalu tampil berdampingan}\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle \displaystyle \frac{9!}{2!4!}&&&\textrm{d}.&\displaystyle \frac{6!}{2!4!}\\\\ \textrm{b}.&\color{red}\displaystyle \frac{8!}{2!4!}&\textrm{c}.&\displaystyle \frac{7!}{2!4!}&\textrm{e}.&\displaystyle \frac{5!}{2!4!} \end{array}\\\\ &\textrm{National University of Singapore}\\ &\textrm{Sample Test Entrance Examination}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Pandang semua huruf}\: I\: \: \textrm{dianggap 1}\\ &\textrm{maka perhitungannnya}\\ &P(8;1,1,4,2)=\color{red}\displaystyle \frac{8!}{2!4!} \end{aligned} \end{array}$

$\begin{array}{ll}\ 9.&\textrm{Nilai dari}\: \: P(4,2)\times P(5,3)=\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 12&&&\textrm{d}.&\displaystyle 480\\\\ \textrm{b}.&\displaystyle 48&\textrm{c}.&\displaystyle 60&\textrm{e}.&\color{red}\displaystyle 720 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&P(4,2)\times P(5,3)\\ &=\displaystyle \frac{4!}{(4-2)!}\times \frac{5!}{(5-3)!}\\ &=\displaystyle \frac{4!}{2!}\times \frac{5!}{2!}\\ &=\displaystyle \frac{4.3.\not{2!}}{\not{2!}}\times \frac{5.4.3.\not{2!}}{\not{2!}}\\ &=\color{red}720 \end{aligned} \end{array}$

$\begin{array}{ll}\ 10.&\textrm{Nilai}\: \: n\: \: \textrm{jika}\: \: P(n+1,3)=P(n,4)\\ &\textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 3&&&\textrm{d}.&\displaystyle 6\\\\ \textrm{b}.&\displaystyle 4&\textrm{c}.&\color{red}\displaystyle 5&\textrm{e}.&\displaystyle 7 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}P(n+1,3)&=P(n,4)\\ \displaystyle \frac{(n+1)!}{((n+1)-3)!}&=\displaystyle \frac{n!}{(n-4)!}\\ \displaystyle \frac{(n+1)!}{(n-2)!}&=\frac{n!}{(n-4)!}\\ \displaystyle \frac{(n+1).\not{n!}}{(n-2).(n-3).\not{(n-4)!}}&=\displaystyle \frac{\not{n!}}{\not{(n-4)!}}\\ \displaystyle \frac{n+1}{n^{2}-5n+6}&=1\\ n^{2}-5n+6&=n+1\\ n^{2}-6n+5&=0\\ (n-1)(n-5)&=0\\ n=1\: \: \textrm{atau}\: \: n=\color{red}5& \end{aligned} \end{array}$


Contoh Soal 1 Kaidah Pencacahan

 $\begin{array}{ll}\ 1.&\textrm{Nilai dari}\: \: \displaystyle \frac{1}{14!}-\frac{10}{15!}+\frac{4}{16!}\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle \frac{114}{16!}&&&\textrm{d}.&\displaystyle \frac{9}{16!}\\\\ \textrm{b}.&\displaystyle \frac{108}{16!}&\textrm{c}.&\color{red}\displaystyle \frac{84}{16!}&\textrm{e}.&\displaystyle \frac{4}{16!} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\displaystyle \frac{1}{14!}&-\displaystyle \frac{10}{15!}+\frac{4}{16!}\\ &=\displaystyle \frac{15\times 16}{14!\times 15\times 16}-\frac{10\times 16}{15!\times 16}+\frac{4}{16!}\\ &=\displaystyle \frac{240}{16!}-\frac{160}{16!}+\frac{4}{16!}\\ &=\color{red}\displaystyle \frac{84}{16!} \end{aligned} \end{array}$.

$\begin{array}{ll}\ 2.&\displaystyle \frac{(n+1)!}{(n-1)!}=...\: .\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle n&&&\textrm{d}.&\displaystyle n^{2}-n\\\\ \textrm{b}.&\displaystyle n-1&\textrm{c}.&\displaystyle n+1&\textrm{e}.&\color{red}\displaystyle n^{2}+n \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\displaystyle \frac{(n+1)!}{(n-1)!}&=\displaystyle \frac{(n+1)n(n-1)!}{(n-1)!}\\ &=(n+1)n\\ &=\color{red}n^{2}+1 \end{aligned} \end{array}$.

$\begin{array}{ll}\ 3.&\textrm{Permutasi 4 unsur dari 11 unsur}\\ &\textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 7980&&&\textrm{d}.&\displaystyle 7290\\\\ \textrm{b}.&\color{red}\displaystyle 7920&\textrm{c}.&\displaystyle 7820&\textrm{e}.&\displaystyle 7280 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}P(n,r)&=\displaystyle \frac{n!}{(n-r)!}\\ P(11,4)&=\displaystyle \frac{11!}{(11-4)!}\\ &=\displaystyle \frac{11!}{7!}=\frac{11\times 10\times 9\times 8\times \not{7!}}{\not{7!}}\\ &=\color{red}7920 \end{aligned} \end{array}$

$\begin{array}{ll}\ 4.&\textrm{Empat siswa dan dua siswi akan duduk}\\ &\textrm{berdampingan. Apabila siswi selalu duduk}\\ &\textrm{paling pinggir, banyak cara mereka duduk}\\ &\textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 24&&&\textrm{d}.&\displaystyle 64\\ \textrm{b}.&\color{red}\displaystyle 48&\textrm{c}.&\displaystyle 56&\textrm{e}.&\displaystyle 72 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Total ada 6 anak; 4 siswa, 2 siswi}\\ &\textrm{Karena ini posisi orang, maka dan semuanya}\\ &\textrm{tidak identik, maka dapat diurutkan}\\ &\textrm{Sehingga rumus yang dipergunakan adalah}\\ &\textrm{permutasi, yaitu}:\\ &\textrm{Perhatikan posisi mereka}\\ &\textbf{Posisi pertama}\\ &\begin{array}{|c|cccc|c|}\hline (1)&(2)&(3)&(4)&(5)&(6)\\ \textrm{A}&\square &\square &\square &\square &\textrm{B}\\\hline \end{array}\\ &=P(1,1)\times P(4,4)\times P(1,1)=\color{purple}24\\ &\textbf{Posisi kedua}\\ &\begin{array}{|c|cccc|c|}\hline (1)&(2)&(3)&(4)&(5)&(6)\\ \textrm{B}&\square &\square &\square &\square &\textrm{A}\\\hline \end{array}\\ &=P(1,1)\times P(4,4)\times P(1,1)=\color{purple}24\\ &\textrm{Total}=24+24=\color{red}48 \end{aligned} \end{array}$

$\begin{array}{ll}\ 5.&\textrm{Jika}\: \: P(7,r)=210,\: \: \textrm{maka nilai}\: \: r\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 2&&&\textrm{d}.&\displaystyle 5\\\\ \textrm{b}.&\color{red}\displaystyle 3&\textrm{c}.&\displaystyle 4&\textrm{e}.&\displaystyle 6 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}P(7,r)&=\displaystyle \frac{7!}{(7-r)!}\\ 210&=\displaystyle \frac{7!}{(7-r!)}\\ (7-r)!&=\displaystyle \frac{7!}{210}=\frac{7\times 6\times 5\times 4\times 3\times 2\times 1}{7\times 5\times 3\times 2\times 1}\\ (7-r)!&=6.4=24\\ (7-r)!&=4!\\ 7-r&=4\\ r&=7-4\\ r&=\color{red}3 \end{aligned} \end{array}$


Binomial Newton pada Kombinasi (Matematika Wajib Kelas XII)

 Pengayaan:

$\color{blue}\textrm{E. Binomial Newton}$

$\color{blue}\textrm{E. 1 Binomial Newton}$

$\begin{aligned}&\textrm{Perhatikanlah susunan bilangan berikut}\\\\ &\begin{array}{|c|l|}\hline &\\ 1=C_{0}^{\color{red}1}\quad 1=C_{1}^{\color{red}1}&(a+b)^{\color{red}1}\\ &\\ 1=C_{0}^{\color{red}2}\quad 2=C_{1}^{\color{red}2}\quad 1=C_{2}^{\color{red}2}&(a+b)^{\color{red}2}\\ &\\ 1=C_{0}^{\color{red}3}\quad 3=C_{1}^{\color{red}3}\quad 3=C_{2}^{\color{red}3}\quad 1=C_{3}^{\color{red}3}&(a+b)^{\color{red}3}\\ &\\ 1=C_{0}^{\color{red}4}\quad 4=C_{1}^{\color{red}4}\quad 6=C_{2}^{\color{red}4}\quad 4=C_{3}^{\color{red}4}\quad 1=C_{4}^{\color{red}4}&(a+b)^{\color{red}4}\\ \vdots &\: \: \quad\vdots \\ dst&(a+b)^{\color{red}\cdots }\\ &\\ \vdots&\: \: \quad\vdots \\ &(a+b)^{\color{red}n}\\\hline \end{array}\\\\ &\textrm{Susunan bilangan-bilangan di atas selanjutnya}\\ &\textrm{dinamakan}\: \: \: \textbf{Segitiga Pascal}\\ & \end{aligned}$

$\begin{aligned}&\textrm{Bilangan}\: \: C_{r}^{n}=\begin{pmatrix} n\\ r \end{pmatrix}\: \: \textrm{merupakan koefisien}\\ &\textrm{dari binomial}\: \: (a+b)^{n}\\ &\textrm{Selanjutnya perhatikanlah bahwa untuk}\\ &n=1,2,3,4,\cdots \: \: \: \textrm{berlaku}\\ &\color{red}\begin{aligned}(a+b)^{n}\color{black}=\, &\color{red}C_{0}^{n}a^{n}b^{0}+C_{1}^{n}a^{n-1}b^{1}+C_{2}^{n}a^{n-2}b^{2}\\ &+C_{3}^{n}a^{n-3}b^{3}+\cdots +C_{n-3}^{n}a^{3}b^{n-3}\\ &+C_{n-2}^{n}a^{2}b^{n-2}+C_{n-1}^{n}a^{1}b^{n-1}+C_{n}^{n}a^{0}b^{n}\\ &\color{black}=\displaystyle \sum_{r=0}^{n}C_{r}^{\color{red}n}a^{\color{red}n\color{black}-r}b^{r} \end{aligned}\\ & \end{aligned}$

$\color{blue}\textrm{E. 2 Perluasan Binomial Newton}$

$\begin{aligned}&\textrm{Untuk bilangan real}\: \: n\: \: \textrm{dan bilangan}\\ &\textrm{non negatif}\: \: r,\: \: \textrm{serta}\: \: \left | A \right |<1,\: \textrm{berlaku}:\\ &(1+A)^{n}=\displaystyle \sum_{r=0}^{n}C_{r}^{n}A^{r} \end{aligned}$

$\color{blue}\textrm{E. 3 Teorema Multinomial}$

Pada bentuk multinomial dengan ekspresi  $(x_{1}+x_{2}+x_{3}+\cdots +x_{r})^{n}$  dengan n dan r bilangan bulat positif, maka koefisien dari  $\color{red}x_{1}^{n_{1}}x_{2}^{n_{2}}x_{3}^{n_{3}}\cdots x_{r}^{n_{r}}$   adalah  $\displaystyle \frac{n!}{n_{1}!n_{2}!n_{3}!\cdots n_{r}!}$  dinotasikan dengan  $\begin{pmatrix} n\\\\ n_{1},n_{2},n_{3},\cdots ,n_{r} \end{pmatrix}$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Misalkan untuk}\: \: n\: \: \textrm{bilangan bulat}\\ &\textrm{Positif. Tunjukklan bahwa}\\ &\textrm{a}.\quad (1+x)^{n}=\displaystyle \sum_{r=0}^{n}C_{r}^{n}x^{r}=\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}x^{r}\\ &\textrm{b}.\quad \begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}+\cdots +\begin{pmatrix} n\\ n \end{pmatrix}=2^{n}\\\\ &\textbf{Bukti}\\ &\color{red}\begin{aligned}\color{black}\textrm{a}.\quad(1+x)&^{n}\\ \color{black}=\, &\color{red}C_{0}^{n}1^{n}x^{0}+C_{1}^{n}1^{n-1}x^{1}+C_{2}^{n}1^{n-2}x^{2}\\ &+C_{3}^{n}1^{n-3}x^{3}+\cdots +C_{n-3}^{n}1^{3}x^{n-3}\\ &+C_{n-2}^{n}1^{2}x^{n-2}+C_{n-1}^{n}1^{1}x^{n-1}+C_{n}^{n}1^{0}x^{n}\\ =\, &\color{red}C_{0}^{n}+C_{1}^{n}x+C_{2}^{n}x^{2} +C_{3}^{n}x^{3}+\cdots \\ &+C_{n-3}^{n}x^{n-3} +C_{n-2}^{n}x^{n-2}+C_{n-1}^{n}x^{n-1}\\ &+C_{n}^{n}x^{n}\\ \color{black}\textrm{atau}&\: \color{black}\textrm{dengan bentuk lain}\\ =\, &\begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}x+\begin{pmatrix} n\\ 2 \end{pmatrix}x^{2}+\begin{pmatrix} n\\ 3 \end{pmatrix}x^{3}\\ &+\cdots +\begin{pmatrix} n\\ n-3 \end{pmatrix}x^{n-3}+\begin{pmatrix} n\\ n-2 \end{pmatrix}x^{n-2}\\ &+\begin{pmatrix} n\\ n-1 \end{pmatrix}x^{n-1}+\begin{pmatrix} n\\ n \end{pmatrix}x^{n}\\ \color{black}=&\color{black}\displaystyle \sum_{r=0}^{n}\begin{pmatrix} \color{red}n\\ r \end{pmatrix}x^{r} \end{aligned}\\ &\color{red}\begin{aligned}\color{black}\textrm{b}.\quad(1+x)&^{n}\: \: \color{black}\textrm{lihat jawaban poin}\: \: a,\: \: \textrm{saat}\: \: \color{blue}x=1\\ \color{black}(1+1)&^{n}\color{red} \color{black}=\color{red}\begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}1+\begin{pmatrix} n\\ 2 \end{pmatrix}1^{2}+\begin{pmatrix} n\\ 3 \end{pmatrix}1^{3}\\ &+\cdots +\begin{pmatrix} n\\ n-3 \end{pmatrix}1^{n-3}+\begin{pmatrix} n\\ n-2 \end{pmatrix}1^{n-2}\\ &+\begin{pmatrix} n\\ n-1 \end{pmatrix}1^{n-1}+\begin{pmatrix} n\\ n \end{pmatrix}1^{n}\\ \color{black}(2)&^{n}\color{red} \color{black}=\color{red}\begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}+\begin{pmatrix} n\\ 3 \end{pmatrix}\\ &+\cdots +\begin{pmatrix} n\\ n-1 \end{pmatrix}+\begin{pmatrix} n\\ n \end{pmatrix}\\ \color{black}=&\color{black}\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}\\ \color{black}\textrm{Sehing}&\color{black}\textrm{ga}\\ 2^{n}&=\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Misalkan untuk}\: \: n\: \: \textrm{bilangan bulat}\\ &\textrm{Positif. Tunjukklan bahwa}\\ & \begin{pmatrix} n\\ 0 \end{pmatrix}-\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}-\cdots +(-1)^{n}\begin{pmatrix} n\\ n \end{pmatrix}=0\\\\ &\textbf{Bukti}\\ &\textrm{Sebelumnya diketahui bahwa}\\ &\begin{aligned}&(a+b)^{n}=\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}a^{n-r}b^{r}\\ &\qquad\qquad\qquad \color{blue}\textrm{atau}\\ &\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}a^{n-r}b^{r}=(a+b)^{n}\\ &\blacklozenge \quad \textrm{saat}\: \: \color{blue}a=b=1,\: \: \color{black}\textrm{maka}\\ &\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}1^{n-r}1^{r}=(1+1)^{n}\\ &\Leftrightarrow \displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}=2^{n}\: ...\: (\color{red}\textrm{bukti no. 1.b})\\ &\blacklozenge \quad \textrm{saat}\: \: \color{blue}a=1\: \&\: b=-1\: \: \color{black}\textrm{maka}\\ &\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}1^{n-r}(-1)^{r}=(1-1)^{n}=0\\ &\textrm{Sehingga}\\ &\begin{pmatrix} n\\ 0 \end{pmatrix}-\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}-\cdots +(-1)^{n}\begin{pmatrix} n\\ n \end{pmatrix}=0\quad \blacksquare \end{aligned} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Untuk}\: n,r\geq 0,\: \textrm{tunjukkan bahwa}\\ &\textrm{a}.\quad \begin{pmatrix} n\\ r \end{pmatrix}=\begin{pmatrix} n\\ n-r \end{pmatrix}\\ &\textrm{b}.\quad \begin{pmatrix} n\\ r \end{pmatrix}=\displaystyle \frac{n}{r}\begin{pmatrix} n-1\\ r-1 \end{pmatrix}\\ &\textrm{c}.\quad \begin{pmatrix} n\\ r \end{pmatrix}=\displaystyle \frac{n-r+1}{r}\begin{pmatrix} n\\ r-1 \end{pmatrix}\\ &\textrm{d}.\quad\begin{pmatrix} -n\\ r \end{pmatrix}=(-1)^{k}\begin{pmatrix} n+r-1\\ r \end{pmatrix}\\ &\textrm{e}.\quad\begin{pmatrix} n\\ r \end{pmatrix}+\begin{pmatrix} n\\ r+1 \end{pmatrix}=\begin{pmatrix} n+1\\ r+1 \end{pmatrix}\\ &\textrm{f}.\quad \begin{pmatrix} n\\ m \end{pmatrix}\begin{pmatrix} m\\ r \end{pmatrix}=\begin{pmatrix} n\\ r \end{pmatrix}\begin{pmatrix} n-r\\ m-r \end{pmatrix}\\\\ &\textbf{Bukti}:\\ &\begin{aligned}\textrm{a}.\quad\begin{pmatrix} n\\ r \end{pmatrix}&=\displaystyle \frac{n!}{r!(n-r)!}\\ &=\displaystyle \frac{n!}{(n-r)!(n-(n-r))!}\\ &=\frac{n!}{(n-r)!r!}=\begin{pmatrix} n\\ n-r \end{pmatrix} \end{aligned}\\ &\begin{aligned}\textrm{b}.\quad\begin{pmatrix} n\\ r \end{pmatrix}&=\displaystyle \frac{n!}{r!(n-r)!}\\ &=\displaystyle \frac{n.(n-1)!}{r.(r-1)!\left ((n-1)-(r-1) \right )!}\\ &=\displaystyle \frac{n}{r}\frac{(n-1)!}{(r-1)!\left ( (n-1)-(r-1) \right )!}\\ &=\displaystyle \frac{n}{r}\begin{pmatrix} n-1\\ r-1 \end{pmatrix} \end{aligned}\\ &\begin{aligned}\textrm{c}.\quad\begin{pmatrix} n\\ r \end{pmatrix}&=\displaystyle \frac{n!}{r!(n-r)!}\\ &=\displaystyle \frac{n!}{r.(r-1)!(n-r)!}\times \frac{((n-r)+1)}{((n-r)+1)}\\ &=\displaystyle \frac{n-r+1}{r}\times \frac{n!}{(r-1)!((n-r)+1)!}\\ &=\displaystyle \frac{n-r+1}{r}\times \frac{n!}{(r-1)!(n-(r-1))!}\\ &=\displaystyle \frac{n-r+1}{r}\begin{pmatrix} n\\ r-1 \end{pmatrix} \end{aligned}\\ &\textrm{d}.\quad\textrm{Silahkan dicoba buat latihan}\\ &\textrm{e}.\quad\textrm{Silahkan dicoba buat latihan}\\ &\textrm{f}.\quad\textrm{Silahkan dicoba buat latihan} \end{array}$

$\begin{array}{ll}\\ 4.&\textrm{Tentukan nilai dari}\\ &\textrm{a}.\quad \begin{pmatrix} 1\\ 1 \end{pmatrix}+\begin{pmatrix} 2\\ 1 \end{pmatrix}+\begin{pmatrix} 3\\ 1 \end{pmatrix}+\cdots +\begin{pmatrix} 100\\ 1 \end{pmatrix}\\ &\textrm{b}.\quad \begin{pmatrix} 100\\ 100 \end{pmatrix}+\begin{pmatrix} 101\\ 100 \end{pmatrix}+\begin{pmatrix} 102\\ 100 \end{pmatrix}+\cdots +\begin{pmatrix} 200\\ 100 \end{pmatrix}\\\\ &\textrm{Jawab}:\\ &\color{blue}\begin{aligned}\textrm{a}.\quad &\begin{pmatrix} 1\\ 1 \end{pmatrix}+\begin{pmatrix} 2\\ 1 \end{pmatrix}+\begin{pmatrix} 3\\ 1 \end{pmatrix}+\cdots +\begin{pmatrix} 100\\ 1 \end{pmatrix}\\ &\color{red}\textrm{Sebelumnya perhatikan}\\ &=\begin{pmatrix} 1\\ 1 \end{pmatrix}+\begin{pmatrix} 2\\ 1 \end{pmatrix}+\begin{pmatrix} 3\\ 1 \end{pmatrix}+\cdots +\begin{pmatrix} n\\ 1 \end{pmatrix}\\ &\textrm{Karena}\\ &\begin{pmatrix} n\\ r-1 \end{pmatrix}+\begin{pmatrix} n\\ r \end{pmatrix}=\begin{pmatrix} n+1\\ r \end{pmatrix}\\ &\textrm{Saat}\\ &\begin{pmatrix} 1\\ 1 \end{pmatrix}+\begin{pmatrix} 2\\ 1 \end{pmatrix}=\begin{pmatrix} 2\\ 2 \end{pmatrix}+\begin{pmatrix} 2\\ 1 \end{pmatrix}=\begin{pmatrix} 3\\ 2 \end{pmatrix}\\ &\textrm{Sehingga}\\ &\underset{\begin{pmatrix} 5\\ 2 \end{pmatrix}}{\underbrace{\underset{\begin{pmatrix} 4\\ 2 \end{pmatrix}}{\underbrace{\underset{\begin{pmatrix} 3\\ 2 \end{pmatrix}}{\underbrace{\begin{pmatrix} 1\\ 1 \end{pmatrix}+\begin{pmatrix} 2\\ 1 \end{pmatrix}}}+\begin{pmatrix} 3\\ 1 \end{pmatrix} }}+\begin{pmatrix} 4\\ 1 \end{pmatrix}}}\\ &\textrm{maka}\\ &=\begin{pmatrix} 1\\ 1 \end{pmatrix}+\begin{pmatrix} 2\\ 1 \end{pmatrix}+\begin{pmatrix} 3\\ 1 \end{pmatrix}+\cdots +\begin{pmatrix} n\\ 1 \end{pmatrix}=\begin{pmatrix} n+1\\ 2 \end{pmatrix}\\ &\textrm{Jadi},\\ &\color{black}\begin{pmatrix} 1\\ 1 \end{pmatrix}+\begin{pmatrix} 2\\ 1 \end{pmatrix}+\begin{pmatrix} 3\\ 1 \end{pmatrix}+\cdots +\begin{pmatrix} 100\\ 1 \end{pmatrix}=\begin{pmatrix} 101\\ 2 \end{pmatrix} \end{aligned}\\ &\textrm{b}\quad \textrm{Silahkan coba sendiri}\\ &\: \: \quad\textrm{sebagai latihan} \end{array}$

$\begin{array}{ll}\\ 5.&\textrm{Tentukanlah nilai dari}\\ &\textrm{a}.\quad \displaystyle \sum_{r=0}^{1000}\begin{pmatrix} 1000\\ r \end{pmatrix}\\ &\textrm{b}.\quad \begin{pmatrix} 2009\\ 1 \end{pmatrix}+\begin{pmatrix} 2009\\ 2 \end{pmatrix}+\begin{pmatrix} 2009\\ 3 \end{pmatrix}+\cdots +\begin{pmatrix} 2009\\ 2004 \end{pmatrix}\\\\ &\: \: \qquad (\textbf{OSK 2009})\\\\ &\textrm{Jawab}:\\ &\textrm{a}.\quad \displaystyle \sum_{r=0}^{1000}\begin{pmatrix} 1000\\ r \end{pmatrix}=\displaystyle \sum_{r=0}^{1000}\begin{pmatrix} 1000\\ r \end{pmatrix}1^{1000-r}1^{r}\\\\ &\: \: \qquad=(1+1)^{1000}=2^{1000}\\ &\textrm{b}.\quad \displaystyle \sum_{r=0}^{2009}\begin{pmatrix} 2009\\ r \end{pmatrix}=2^{2009}\\ &\: \: \qquad \textrm{karena}\: \: \color{blue}\begin{pmatrix} n\\ r \end{pmatrix}\color{black}=\color{red}\begin{pmatrix} n\\ n-r \end{pmatrix},\: \color{black}\textrm{maka}\\ &\: \: \qquad \begin{pmatrix} 2009\\ 0 \end{pmatrix}=\begin{pmatrix} 2009\\ 2009 \end{pmatrix},\: \begin{pmatrix} 2009\\ 1 \end{pmatrix}=\begin{pmatrix} 2009\\ 2008 \end{pmatrix},\\ &\: \: \qquad \cdots ,\: \begin{pmatrix} 2009\\ 1004 \end{pmatrix}=\begin{pmatrix} 2009\\ 1005 \end{pmatrix}\\ &\: \: \qquad \textrm{Sehingga}\\ &\: \: \qquad \begin{pmatrix} 2009\\ 0 \end{pmatrix}+\begin{pmatrix} 2009\\ 1 \end{pmatrix}+\begin{pmatrix} 2009\\ 2 \end{pmatrix}+\cdots +\begin{pmatrix} 2009\\ 2009 \end{pmatrix}=\color{red}2^{2009}\\ &\: \: \qquad \Leftrightarrow \: \begin{pmatrix} 2009\\ 0 \end{pmatrix}+\begin{pmatrix} 2009\\ 1 \end{pmatrix}+\begin{pmatrix} 2009\\ 2 \end{pmatrix}+\cdots +\begin{pmatrix} 2009\\ 1004 \end{pmatrix}=\displaystyle \frac{2^{2009}}{2}=2^{2008}\\ &\: \: \qquad \Leftrightarrow \: 1+\begin{pmatrix} 2009\\ 1 \end{pmatrix}+\begin{pmatrix} 2009\\ 2 \end{pmatrix}+\begin{pmatrix} 2009\\ 3 \end{pmatrix}+\cdots +\begin{pmatrix} 2009\\ 1004 \end{pmatrix}=2^{2008}\\ &\: \: \qquad \Leftrightarrow \: \begin{pmatrix} 2009\\ 1 \end{pmatrix}+\begin{pmatrix} 2009\\ 2 \end{pmatrix}+\begin{pmatrix} 2009\\ 3 \end{pmatrix}+\cdots +\begin{pmatrix} 2009\\ 1004 \end{pmatrix}=2^{2008}-1 \end{array}$

  1. Bintari, N. 2009. Master Juara Olimpiade Matematika SMA Nasional dan Internasional. Yogyakarta: PUSTAKA WIDYATAMA.
  2. Kanginan, M., Terzalgi, Y. 2014. Matematika untuk SMA-MA/SMK Kelas XI. Bandung: SEWU.
  3. Rasiman, Rahmawati, N., D. 2012. Matematika Diskrit. Semarang: IKIP PGRI Semarang Press.
  4. Sharma, dkk. 2017. Jelajah Matematika SMA Kelas XII Program Wajib. Jakarta: YUDHISTIRA.

Contoh 3 Soal Permutasi dan Kombinasi (Matematika Wajib Kelas XII)

 $\begin{array}{ll}\\ 11.&\textrm{Dalam suatu rapat mengelilingi meja bundar}\\ &\textrm{yang dihadiri sebanyak 7 orang}\\ &\textrm{a}.\quad \textrm{ada berapa susunan yang terjadi}?\\ &\textrm{b}.\quad \textrm{Jika A dan B bagian dari 7 orang ini}\\ &\qquad \textrm{duduknya selalu berdampingan, maka}\\ &\qquad \textrm{posisi duduk yang terbentuk sejumlah}?\\ &\textrm{c}.\quad \textrm{Jika seperti poin b, tetapi yang}\\ &\qquad \textrm{duduk berdampingan atau saling berdekatan}\\ &\qquad \textrm{adalah A, B, dan C}\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui bahwa}\: \: n=7\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Posisi duduk melingkarnya}\\ &=(7-1)!=6!=\color{red}720\\ &\textbf{atau}\\ &n=r=7\: \: \textrm{orang, maka}\\ &=\displaystyle \frac{P(7,7)}{7}=6!=\color{red}720\\ \textrm{b}.\quad&\textrm{Ada syarat A dan B berdampingan, maka}\\ &\textrm{A dan B dihitung 1 objek dulu, sehingga total}\\ &\textrm{objek ada 1 objek ditambah sisanya = 6 objek}.\\ &\textrm{Dari 6 objek ini yang dianggap duduk melingkar}\\ &\textrm{dengan 2 orang (A dan B) bisa gantian posisi}.\\ &\textrm{sehingga}\\ &(6-1)!\times 2!=5!\times 2!=\color{red}240\\ &\textbf{atau}\\ &=\displaystyle \frac{P(6,6)}{6}\times P(2,2)\\ &=5!\times 2!=120\times 2=\color{red}240\\ \textrm{b}.\quad&\textrm{3 orang (A, B, dan C) dianggap 1 objek}\\ &\textrm{dulu sehigga yang duduk posisi melingkar}\\ &\textrm{dianggap 5 orang, sehingga perhitungannya}\\ &=\displaystyle \frac{P(5,5)}{5}\times P(3,3)\\ &=24\times 6=\color{red}144 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 12.&\textrm{Suatu kelompok yang terdiri dari 20 remaja}\\ &\textrm{a}.\quad \textrm{Jika mereka saling berjabat tangan}\\ &\qquad \textrm{seseorang dengan lainnya hanya satu kali}\\ &\qquad \textrm{maka banyak jabat tangan yang terjadi}?\\ &\textrm{b}.\quad \textrm{Jika mereka membentuk regu voly, maka}\\ &\qquad \textrm{berapa banyak regu voly yang terbentuk}?\\ &\textrm{c}.\quad \textrm{Jika mereka membentuk regu sepak bola},\\ &\qquad \textrm{maka banyak regu sepak bola yang terbentuk}?\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui bahwa}\: \: n=20\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Karena jabat tangan dilakukan hanya hanya}\\ &\textrm{pada dua remaja yang berbeda dan urutan}\\ &\textrm{tidak diperlukan, maka hal ini persoalan}\\ &\textrm{kombinasi. Sehingga banyaknya jabat tangan}\\ &\begin{pmatrix} n\\ r \end{pmatrix}=\displaystyle \frac{n!}{r!(n-r)!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 2 \end{pmatrix}=\displaystyle \frac{20!}{2!(20-2)!}=\frac{20!}{2!\times 18!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 2 \end{pmatrix}=\displaystyle \frac{20.19.\not{18!}}{2.\not{18!}}=\color{red}190\\ \textrm{b}.\quad&\textrm{Karena satu regu voli ada 6 orang, maka}\\ &\begin{pmatrix} 20\\ 6 \end{pmatrix}=\displaystyle \frac{20!}{6!(20-6)!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 6 \end{pmatrix}=\displaystyle \frac{20!}{6!\times 14!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 6 \end{pmatrix}=\color{red}\displaystyle \frac{20.19.18.17.16.15.\not{14!}}{720\times \not{14!}}\\ \textrm{c}.\quad&\textrm{Karena satu regu terdiri dari 11 orang},\\ &\textrm{maka}\\ &\begin{pmatrix} 20\\ 11 \end{pmatrix}=\displaystyle \frac{20!}{11!(20-11)!}=\color{red}\frac{20!}{11!\times 9!} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 13.&\textrm{Jajargenjang yang dapat dibuat oleh}\\ &\textrm{himpunan empat garis sejajar yang}\\ &\textrm{berpotongan dengan garis yang terhimpun}\\ &\textrm{dalam 7 garis sejajar adalah}\: ....\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui bahwa kombinasi dari dua himpunan}\\ &\textrm{garis sejajar yang masing-masing berjumlah}\\ &\textrm{4 dan 7 garis, maka}\: \color{red}\textrm{banyak jajar genjang}\\ &\begin{aligned}&=\begin{pmatrix} 4\\ 2 \end{pmatrix}\times \begin{pmatrix} 7\\ 2 \end{pmatrix}\\ &=\displaystyle \frac{4!}{2!(4-2)!}\times \frac{7!}{2!\times (7-2)!}\\ &=\displaystyle \frac{4\times 3\times \not{2!}}{2\times \not{2!}}\times \frac{7\times 6\times \not{5!}}{2\times \not{5!}}\\ &=6\times 21\\ &=\color{red}126\: \: \color{black}\textrm{jajar genjang} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 14.&\textrm{Diketahui segi enam beraturan. Tentukanlah}\\ &\textrm{a}.\quad \textrm{Banyak diagonal dapat dibentuk}?\\ &\textrm{b}.\quad \textrm{Banyak segi tiga di dalamnya}?\\ &\textrm{c}.\quad \textrm{Banyak perpotongan diagonal-diagonal}\\ &\qquad \textrm{jika tidak ada titik-titik perpotongan}\\ &\qquad \textrm{yang sama}?\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui segi}-n\: \: \textrm{dengan}\: \: n=6\\ &\textrm{Dan perlu diingat bahwa di sini tidak diperlukan}\\ &\textrm{urutan mana yang perlu didahulukan, maka}\\ &\textrm{rumus kombinasi yang perlu digunakan, yaitu}\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Banyak diagonalnya adalah}:\\ &\begin{pmatrix} n\\ 2\end{pmatrix}-n=\displaystyle \frac{n(n-3)}{2}\\ &\Leftrightarrow \qquad\quad=\displaystyle \frac{6.(6-3)}{2}=\frac{6.3}{2}=\color{red}9\\ \textrm{b}.\quad&\textrm{Banyaknya segi tiga, berarti melibatkan}\\ &\textrm{tiga garis, maka}\\ &\begin{pmatrix} 6\\ 3 \end{pmatrix}=\displaystyle \frac{6!}{3!\times (6-3)!}=\frac{6\times 5\times 4\times \not{3!}}{6\times \not{3!}}=\color{red}20\\ \textrm{c}.\quad&\textrm{Satu buah titik potong dapat dibentuk}\\ &\textrm{dengan dua garis ekuivalen dengan empat}\\ &\textrm{buah titik sudut, maka banyaknya titik}\\ &\textrm{potong adalah}:\\ &\begin{pmatrix} 6\\ 4 \end{pmatrix}=\displaystyle \frac{6!}{4!\times (6-4)!}=\frac{6!}{4!\times 2!}=\color{red}15 \end{aligned} \end{array}$



$\begin{array}{ll}\\ 15.&\textrm{Perhatikalah dua ilustrasi gambar berikut} \end{array}$
Gambar (1)


Gambar (2)
$\begin{array}{ll}\\ .\quad\: \, &\textrm{Tentukanlah}\\ &\textrm{a}.\quad \textrm{jalur terpendek dari titik A ke B}\\ &\qquad \textrm{pada gambar (1)}\\ &\textrm{b}.\quad \textrm{jalur terpendek dari titik P ke Q}\\ &\qquad \textrm{pada gambar (2)}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Perhatikanlah bahwa langkah dari titik A}\\ &\textrm{ke titik B harus terdiri dari 8 langkah, yaitu}\\ &\textrm{3 langkah ke kanan dan 5 langkah ke atas}\\ &\textrm{Karena yang diinginkan lintasan terpendek}\\ &\textrm{dan tidak ada kekhususn harus dimulai dari}\\ &\textrm{mana, maka banyaknya langkah berbdeda}\\ &\textrm{dan terpendek adalah}:\\ &\begin{pmatrix} 8\\ 3 \end{pmatrix}\: \: \color{red}\textrm{atau}\: \: \color{black}\begin{pmatrix} 8\\ 5 \end{pmatrix}.\: \textrm{Misal kita hitung salah}\\ &\textrm{satunya saja}:\\ &\begin{pmatrix} 8\\ 3 \end{pmatrix}=\displaystyle \frac{8!}{3!(8-5)!}=\frac{8!}{3!\times 5!}=\frac{8.7.6.\not{5!}}{6.\not{5!}}=\color{red}56 \end{aligned} \end{array}$
$.\qquad\: \, \begin{aligned}\textrm{b}.\quad&\textrm{Untuk poin b, perhatikanlah ilustrasi}\\ &\textrm{gambar berikut(untuk memudahkan}\\ &\textrm{perhitungan). Tempatkan titik-titik}\\ &\textrm{bantu A, B, C, D, E, dan F seperti}\\ &\textrm{pada gambar berikut} \end{aligned}$

$.\qquad\: \, \begin{aligned}.\quad&\textrm{Perhatikanlah untuk setiap lintasan}\\ &\textrm{terpendek dari titik P ke titik Q}\\ &\textrm{dapat dipastikan akan melewati}\\ &\textrm{titik A, B, C, dan D. Sehingga dari}\\ &\textrm{keempat titik itulah akan diperoleh}\\ &\textrm{rute PAQ, PBQ, PCQ, dan PDQ}.\\ &\textrm{Sehingga banyak rute terpendek dari}\\ &\textrm{titik P ke Q yang selanjutnya kita}\\ &\textrm{simbolkan dengan}\: \: \color{red}\#PQ\: \: \color{black}\textrm{adalah}:\\ &\begin{aligned}\color{red}\#PQ&=\#PAQ+\#PBQ+\#PCQ+\#PDQ\\ &=\begin{pmatrix} 4\\ 0 \end{pmatrix}\begin{pmatrix} 5\\ 0 \end{pmatrix}+\begin{pmatrix} 4\\ 3 \end{pmatrix}\begin{pmatrix} 5\\ 1 \end{pmatrix}+\color{magenta}\#PECQ+\#PFCQ+\#PFDQ\\ &=1.1+4.5+\color{magenta}\begin{pmatrix} 3\\ 2 \end{pmatrix}\begin{pmatrix} 3\\ 0 \end{pmatrix}\begin{pmatrix} 3\\ 2 \end{pmatrix}\color{black}+\color{magenta}\begin{pmatrix} 3\\ 1 \end{pmatrix}\begin{pmatrix} 3\\ 1 \end{pmatrix}\begin{pmatrix} 3\\ 2 \end{pmatrix}\color{black}+\color{magenta}\begin{pmatrix} 3\\ 1 \end{pmatrix}\begin{pmatrix} 3\\ 0 \end{pmatrix}\begin{pmatrix} 3\\ 0 \end{pmatrix}\\ &=1+20+\color{magenta}3.1.3\color{black}+\color{magenta}3.3.3\color{black}+\color{magenta}3.1.1\\ &=1+20+9+27+3\\ &=\color{red}60 \end{aligned} \end{aligned}$


DAFTAR PUSTAKA

  1. Bintari, N. 2009. Master Juara Olimpiade Matematika SMA Nasional dan Internasional. Yogyakarta: PUSTAKA WIDYATAMA.
  2. Ibrahim, Mussafi, N, S, M. 2013. Pengantar Kombinatorika dan Teori Graf. Yogyakarta: GRAHA ILMU.
  3. Kanginan, M., Terzalgi, Y. 2014. Matematika untuk SMA-MA/SMK Kelas XI (Wajib). Bandung: SRIKANDI EMPAT WIDYA UTAMA.
  4. Sobirin. 2006. Kompas Matematika: Strategi Praktis Menguasai Tes Matematika (SMA Kelas XI IPA). Jakarta: KAWAN PUSTAKA.
  5. Sukino. 2011. Maestro Olimpiade Matematika SMP Seri B. Jakarta: ERLANGGA.
  6. Susyanto, N, 2012. Tutor Senior Olimpiade Matematika Lima Benua Tingkat SMP. Yogyakarta: KENDI MAS MEDIA.
  7. Tampomas, H. 1999. SeribuPena Matematika SMU Jilid 2 Kelas 2 Berdasarkan Kurikulum 1994 Suplemen CBPP 1999. Jakarta: ERLANGGA.

Contoh 2 Soal Permutasi dan Kombinasi (Matematika Wajib Kelas XII)

 $\begin{array}{ll}\\ 6.&\textrm{Dari angka-angka 2,3,5,6,7, dan 9 dibuat}\\ &\textrm{susunan bilangan}\\ &\textrm{a. berapa banyak bilangan yang terdiri dari 4}\\ &\: \quad \textrm{angka berlainan}\\ &\textrm{b. berapa banyak bilangan yang terdiri dari 4}\\ &\: \quad \textrm{angka boleh berulang}\\ &\textrm{c. berapa banyak bilangan ganjil yang terdiri}\\ &\: \quad \textrm{dari 4 angka berlainan}\\ &\textrm{d. berapa banyak bilangan genap yang terdiri}\\ &\: \quad \textrm{dari 4 angka berlainan}\\ &\textrm{e. berapa banyak bilangan yang terdiri dari 4}\\ &\: \quad \textrm{angka berlainan yang lebih dari 2021}\\ &\textrm{f. berapa banyak bilangan yang terdiri dari 4}\\ &\: \quad \textrm{angka boleh berulang yang lebih dari 2021}\\ &\textrm{g. berapa banyak bilangan genap yang terdiri}\\ &\: \quad \textrm{dari 4 angka berlainan yang lebih dari 2021}\\ &\textrm{h. berapa banyak bilangan ganjil yang terdiri}\\ &\: \quad \textrm{dari 4 angka berlainan yang lebih dari 2021}\\\\ &\color{blue}\textbf{Jawab}:\\  \end{array}$

$.\quad\: \, \begin{aligned}\textrm{a}.\quad&P(6,4)=\displaystyle \frac{6!}{(6-2)!}=\frac{6!}{2!}=6.5.4.3=\color{red}360\\ \textrm{b}.\quad&P(6,1)^{4}=6^{4}=\color{red}1296\\ \textrm{c}.\quad&\textrm{Untuk digit satuan ditentukan dulu, yaitu}\\ &\textrm{karena digit ganjil ada 4, maka ada 4 pilihan}\\ &\textrm{sisanya disebar ke slot ribuan sampai puluhan}\\ &\textrm{maka}\\ &\begin{array}{|c|c|c|c|}\hline \color{blue}\textrm{kotak}&\color{blue}\textrm{kotak}&\color{blue}\textrm{kotak}&\color{blue}\textrm{kotak}\\ 1&2&3&4\\\hline \textrm{digit}&\textrm{digit}&\textrm{digit}&\textrm{digit}\\ \textrm{ribuan}&\color{red}\textrm{ratusan}&\textrm{puluhan}&\color{red}\textrm{satuan}\\\hline P(5,1)&P(4,1)&P(3,1)&P(4,1)\\ \textrm{pilihan}&\textrm{pilihan}&\textrm{pilihan}&\textrm{pilihan}\\\hline \end{array}\\ &\textrm{Sehingga banyak bilangan yg terjadi}\\ &P(5,1).P(4,1).P(3,1).P(4,1)=5.4.3.4=\color{red}240\\ \textrm{d}.\quad&\textbf{Cara pertama}\\ &\textrm{Semisal dengan jawaban poin c, Karena}\\ &\textrm{digit genap ada 2, maka digit satuan ada}\\ &\textrm{2 pilihan, sisanya disebar, yaitu}\\ &\begin{array}{|c|c|c|c|}\hline \color{blue}\textrm{kotak}&\color{blue}\textrm{kotak}&\color{blue}\textrm{kotak}&\color{blue}\textrm{kotak}\\ 1&2&3&4\\\hline \textrm{digit}&\textrm{digit}&\textrm{digit}&\textrm{digit}\\ \textrm{ribuan}&\color{red}\textrm{ratusan}&\textrm{puluhan}&\color{red}\textrm{satuan}\\\hline P(5,1)&P(4,1)&P(3,1)&P(2,1)\\ \textrm{pilihan}&\textrm{pilihan}&\textrm{pilihan}&\textrm{pilihan}\\\hline \end{array}\\ &\textrm{Sehingga banyak bilangan yg terjadi}\\ &P(5,1).P(4,1).P(3,1).P(2,1)=5.4.3.2=\color{red}120\\ &\textbf{Cara kedua}\\ &\textrm{Jawaban poin a dikurangi poin c, yaitu}\\ &360-240=\color{red}120 \end{aligned}$

$.\quad\: \, \begin{aligned}\textrm{e}.\quad&\textbf{Cara Pertama}\\ &\textrm{Karena digit pilihannya, 2,3,5,6,7, dan 9}\\ &\textrm{disusun bagaimanapun bilangan 4 digit}\\ &\textrm{yang diambilkan dari bilangan di atas}\\ &\textrm{pasti semunya akan lebih besar dari 2021}\\ &\textrm{maka banyaknya bilangan yang terjadi}\\ &\textrm{adalah}:\\ &\begin{array}{|c|c|c|c|}\hline \color{blue}\textrm{kotak}&\color{blue}\textrm{kotak}&\color{blue}\textrm{kotak}&\color{blue}\textrm{kotak}\\ 1&2&3&4\\\hline \textrm{digit}&\textrm{digit}&\textrm{digit}&\textrm{digit}\\ \textrm{ribuan}&\color{magenta}\textrm{ratusan}&\textrm{puluhan}&\color{magenta}\textrm{satuan}\\\hline P(6,1)&P(5,1)&P(4,1)&P(3,1)\\ \textrm{pilihan}&\textrm{pilihan}&\textrm{pilihan}&\textrm{pilihan}\\\hline \end{array}>2021\\ &\textrm{Sehingga totalnya banyaknya}\\ &P(6,1)\times P(5,1)\times P(4,1)\times P(3,1)\\ &=6.5.4.3=\color{red}360\\ &\textbf{Cara Kedua}\\ &\textrm{Sama seperti jawaban pada poin a}\\ \textrm{f}.\quad&\textrm{Sama persis jawaban poin b, yaitu}\\ &P(6,1)^{4}=6^{4}=\color{red}1296\\ &\textrm{Jika diuraikan adalah sebagai berikut}\\ &\begin{array}{|c|c|c|c|}\hline \color{blue}\textrm{kotak}&\color{blue}\textrm{kotak}&\color{blue}\textrm{kotak}&\color{blue}\textrm{kotak}\\ 1&2&3&4\\\hline \textrm{digit}&\textrm{digit}&\textrm{digit}&\textrm{digit}\\ \textrm{ribuan}&\color{magenta}\textrm{ratusan}&\textrm{puluhan}&\color{magenta}\textrm{satuan}\\\hline P(6,1)&P(6,1)&P(6,1)&P(6,1)\\ \textrm{pilihan}&\textrm{pilihan}&\textrm{pilihan}&\textrm{pilihan}\\\hline \end{array}>2021 \end{aligned}$

$\begin{array}{ll}\\ 7.&\textrm{Andi akan mengambil 4 buah bola dari}\\ &\textrm{10 warna yang berbeda. Berapakah banyak}\\ &\textrm{kombinasi warna yang berbeda yang diambil}\\ &\textrm{oleh Andi}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}n=10&\: \: \textrm{dan}\: \: r=4\\ C(n,r)&=\displaystyle \frac{n!}{r!(n-r)!}\\ C(10,4)&=\displaystyle \frac{10!}{4!(10-4)!}\\ &=\displaystyle \frac{10!}{4!\times 6!}\\ &=\displaystyle \frac{10\times 9\times 8\times 7\times 6!}{(4\times 3\times 2\times 1)\times 6!}\\ &=420\: \: \textrm{kombinasi warna bola berbeda} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 8.&\textrm{Berapa banyak cara dapat memilih untuk}\\ &\textrm{3 perwakilan dari 10 anggota suatu}\\ &\textrm{kelompok, jika}\\ &\textrm{a. tanpa perlakuan khusus}\\ &\textrm{b. salah seorang harus terpilih}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Dengan tanpa perlakuan}\\ &\textrm{memilih 3 orang dari 10 orang adalah}:\\ &C(10,3)=\displaystyle \frac{10!}{3!(10-3)!}=\frac{10!}{3!\times 7!}=\color{blue}120\\ \textrm{b}.\quad&\textrm{Dengan perlakuan 1 orang terpilih}\\ &\color{red}(\textrm{1 orang ini artinya tidak perlu diperhitungkan})\\ &\textrm{memilih 2 orang dari 9 orang adalah}:\\ &C(9,2)=\displaystyle \frac{9!}{2!(9-2)!}=\frac{9!}{2!\times 8!}=\color{blue}36 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 9.&\textrm{Berapa banyak cara dapat memilih 2 buku}\\ &\textrm{matematika dan 3 buku fisika serta 4 buku}\\ &\textrm{ekonomi pada suatu lemari buku yang}\\ &\textrm{di dalamnya terdapat 10 buku matematika,}\\ &\textrm{11 buku fisika dan 12 buku ekonomi}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}\textrm{Banyak}&\: \textrm{cara pemilihan tersebut adalah}:\\ &=C(10,2)\times C(11,3)\times C(12,4)\\ &=\displaystyle \frac{10!}{2!\times 8!}\times \frac{11!}{3!\times 8!}\times \frac{12!}{4!\times 8!}\\ &=\displaystyle \frac{10\times 9}{1\times 2}\times \frac{11\times 10\times 9}{1\times 2\times 3}\times \frac{12\times 11\times 10\times 9}{1\times 2\times 3\times 4}\\ &=\color{red}3675375 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 10.&\textrm{Banyak susunan huruf yang berbeda}\\ &\textrm{pada satu baris yang dapat dibentuk}\\ &\textrm{dari huruf-huruf pada kata "MATEMATIKA"}\\ &\textrm{adalah}\: ....\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{cases} \textrm{Jumlah huruf} & n=\color{red}10 \\ \textrm{Penyusunnya}\, , & \text{ yaitu }: \begin{cases} M & \text{ jumlah } =2 \\ A & \text{ jumlah } =3 \\ T & \text{ jumlah } =2 \\ E & \text{ banyak } =1 \\ I & \text{ banyak } =1 \\ K & \text{ banyak } =1 \end{cases} \end{cases}\\ &\textrm{Sehingga}\\ &\begin{aligned}P(10;2,3,2,1,1,1)&=\displaystyle \frac{\color{red}10\color{black}!}{2!.3!.2!.1!.1!.1!}\\ &=\displaystyle \frac{10\times 9\times 8\times 7\times 6\times 5\times 4}{4}\\ &=10\times 9\times 8\times 7\times 6\times 5\\ &=\color{red}151200 \end{aligned} \end{array}$

Contoh 1 Soal Permutasi dan Kombinasi (Matematika Wajib Kelas XII)

 $\begin{array}{ll}\\ 1.&\textrm{Bentuk sederhana dari}\\ &\textrm{a}.\quad \displaystyle 5!+6!+7!\\ &\textrm{b}.\quad \displaystyle \frac{(n+1)!}{(n-1)!}\\ &\textrm{c}.\quad \displaystyle \frac{(n+2)!}{n!}\\ &\textrm{d}.\quad \displaystyle \frac{(n-2)!}{(n+1)!}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&5!+6!+7!=5!+6.5!+7.6.5!\\ &\quad\quad\quad\quad \: \: \: \: =(1+6+42).5!\\ &\quad\quad\quad\quad \: \: \: \: =49.5!=49.120=5880\\ \textrm{b}.\quad&\displaystyle \frac{(n+1)!}{(n-1)!}=\frac{(n+1)n(n-1)!}{(n-1)!}\\ &\quad\quad\quad\: \: \: =(n+1)n=n^{2}+n\\ \textrm{c}.\quad&\displaystyle \frac{(n+2)!}{n!}=\frac{(n+1)(n+1)n!}{n!}\\ &\quad\quad\quad\: \: \: =(n+2)(n+1)\\ &\quad\quad\quad\: \: \: =n^{2}+3n+2\\ \textrm{d}.\quad&\displaystyle \frac{(n-2)!}{(n+1)!}=\frac{(n-2)!}{(n+1)n(n-1)(n-2)!}\\ &\quad\quad\quad\: \: \: =\displaystyle \frac{1}{(n+1)n(n-1)}\\ &\quad\quad\quad\: \: \: =\displaystyle \frac{1}{n^{3}-n} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah nilai}\: \: n\: \: \textrm{yang memenuhi}\\ &\textrm{persamaan berikut}\\ &\textrm{a}.\quad \displaystyle \frac{n!3!}{6!(n-3)!}=\frac{33}{4}\\ &\textrm{b}.\quad \displaystyle \frac{3}{8!}-\frac{2}{7!}+\frac{1}{6!}=\frac{5n+3}{8!}\\ &\textrm{c}.\quad \displaystyle \frac{7!}{5!2!}:\frac{10!}{5!5!}=1:4n\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\displaystyle \frac{n!3!}{6!(n-3)!}=\frac{33}{4}\\ &\Leftrightarrow \displaystyle \frac{n(n-1)(n-2) \not{(n-3)!}.\not{3!}}{6.5.\not{4}.\not{3!}\not{(n-3)}!}=\frac{33}{\not{4}}\\ &\Leftrightarrow n(n-1)(n-2)=33.6.5=11.10.9\\ &\Leftrightarrow n(n-1)(n-2)=11.(11-1).(11-2)\\ &\Leftrightarrow \qquad\qquad\qquad \: n=11\\ \textrm{b}.\quad&\displaystyle \frac{3}{8!}-\frac{2}{7!}+\frac{1}{6!}=\frac{5n+3}{8!}\\ &\Leftrightarrow \displaystyle \frac{3-2.8+56}{8!}=\frac{5n+3}{8!}\\ &\Leftrightarrow \frac{43}{8!}=\frac{5n+3}{8!}\\ &\Leftrightarrow 43=5n+3\Leftrightarrow 5n=40\Leftrightarrow n=8\\ \textrm{c}.\quad &\displaystyle \frac{7!}{5!2!}:\frac{10!}{5!5!}=1:4n\\ &\Leftrightarrow 4n=\displaystyle \frac{5!2!10!}{7!5!5!}\\ &\Leftrightarrow 4n=\displaystyle \frac{\not{5!}2!10.9.8.\not{7!}}{\not{7!}5!\not{5!}}\\&\Leftrightarrow \: \: n=3 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah nilai}\: \: n\: \: \textrm{yang memenuhi}\\ &\textrm{persamaan berikut}\\ &\textrm{a}.\quad P(n,2)=42\\ &\textrm{b}.\quad 7.P(n,3)=6.P(n+1,3)\\ &\textrm{c}.\quad 3.P(n,4)=P(n-1,5)\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&P(n,2)=42\\ &\Leftrightarrow \displaystyle \frac{n!}{(n-2)!}=42\\ &\Leftrightarrow \displaystyle \frac{n!}{(n-2)!}=\displaystyle \frac{n\times (n-1)\times (n-2)!}{(n-2)!}=42\\ &\Leftrightarrow \displaystyle n\times (n-1)=7.6=7.(7-1)\\ &\Leftrightarrow n=7\\ \textrm{b}.\quad&7.P(n,3)=6.P(n+1,3)\\ &\displaystyle \frac{7.n!}{(n-3)!}=\frac{6(n+1)!}{(n+1-3)!}\\ &\displaystyle \frac{7\not{n!}}{(n-3)!}=\frac{6.(n+1).\not{n!}}{(n-2)!}\\ &\Leftrightarrow \frac{7}{\not{(n-3)!}}=\frac{6n+6}{(n-1)\not{(n-3)!}}\\ &\Leftrightarrow 7(n-2)=6n+6\\ &\Leftrightarrow 7n-6n=6+14\Leftrightarrow n=20\\ \textrm{c}.\quad&3.P(n,4)=P(n-1,5)\\ &\Leftrightarrow \displaystyle \frac{3.n!}{(n-4)!}=\frac{(n-1)!}{(n-1-5)!}\\ &\Leftrightarrow \frac{3.n.\not{(n-1)!}}{(n-4)!}=\frac{\not{(n-1)!}}{(n-6)!}\\ &\Leftrightarrow \frac{3n}{(n-4)(n-5).\not{(n-6)!}}=\frac{1}{\not{(n-6)!}}\\ &\Leftrightarrow 3n=(n-4)(n-5)\\ &\Leftrightarrow 3n=n^{2}-9n+20\\ &\Leftrightarrow n^{2}-12n+20=0\\ &\Leftrightarrow (n-2)(n-10)=0\\ &\Leftrightarrow n=2\: \: \color{red}\textrm{tidak memenuhi}\: \: \color{black}\textrm{atau}\: \: n=10\\ &\textrm{jadi},\: \: n=10 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 4.&\textrm{Jika 10 siswa akan dipilih 4 orang untuk}\\ &\textrm{menjadi ketua kelas, wakil, sekretaris dan}\\ &\textrm{seorang bendahara, maka banyak susunan}\\ &\textrm{terjadi adalah}\: ....\\\\ &\color{blue}\textrm{Jawab}:\\ &\textrm{Penyusunan memerlukan urutan}\\ &\textrm{maka perlu digunakan permutasi, yaitu}:\\ &P(n,r)=\displaystyle \frac{n!}{(n-r)!}\\ &\Leftrightarrow P(10,4)=\displaystyle \frac{10!}{(10-4)!}=\frac{10!}{6!}\\ &\Leftrightarrow \qquad\qquad =\displaystyle \frac{10\times 9\times 8\times 7\times \not{6!}}{\not{6!}}\\ &\Leftrightarrow \qquad\qquad =5040 \end{array}$

$\begin{array}{ll}\\ 5.&\textrm{Jika dari kota A ke kota B terdapat 3 jalur.}\\ &\textrm{Dan dari kota B ke kota C terdapat 4 jalur,}\\ &\textrm{serta dari kota C sampai ke kota D ada 5 jalur}\\ &\textrm{Banyak jalan dari kota A ke kota D adalah}\: ....\\\\ &\color{blue}\textrm{Jawab}:\\ &\textrm{Jalur yang ada semuanya berbeda}\\ &\textrm{maka perlu digunakan permutasi, yaitu}:\\ &P(n,r)=\displaystyle \frac{n!}{(n-r)!}\\ &\begin{aligned}\textrm{a}&\textrm{dari A ke B ada 3 jalur cukup pilih satu, maka}\\ &\bullet \quad P(3,1)=\displaystyle \frac{3!}{(3-1)!}=\frac{3!}{2!}=3\\ \textrm{b}&\textrm{dari B ke C ada 4 jalur cukup pilih satu, maka}\\ &\bullet \quad P(4,1)=\displaystyle \frac{4!}{(4-1)!}=\frac{4!}{3!}=4\\ \textrm{c}&\textrm{dari C ke D ada 5 jalur cukup pilih satu, maka}\\ &\bullet \quad P(5,1)=\displaystyle \frac{5!}{(5-1)!}=\frac{5!}{4!}=5 \end{aligned}\\ &\textrm{Jadi, total jalur yang dapat di lalui dari A sampai D adalah}:\\ &\qquad P(3,1)\times P(4,1)\times P(5,1)=3\times 4\times 5=\color{red}60 \end{array}$

Notasi Faktorial, Permutasi dan Kombinasi (Matematika Wajib Kelas XII)

 $\color{blue}\textrm{C. Faktorial}$

Perhatikanlah tabel berikut yang berisi perkalian bilangan terurut pada bilangan asli

$\begin{array}{|c|}\hline n!=1\times 2\times 3\times 4\times \cdots \times (n-2)\times (n-1)\times n\\ \textbf{atau}\\ n!=n\times (n-1)\times (n-2)\times \cdots \times 4\times 3\times 2\times 1\\ \color{red}\textrm{dengan}\\ (n+1)!=(n+1)\times n!\: \: \textrm{untuk}\: \: n\geq 1,\: n\in \mathbb{N}\\ \color{blue}\textrm{serta didefinisikan bahwa}\\ 0!= 1!=1\\ \colorbox{yellow}{CONTOH}\\ 0!=1\\ 1!=1\\ 2!=2\times 1=2\\ 3!=3\times 2\times 1=6\\ 4!=4\times 3\times 2\times 1=24\\ 5!=5\times 4\times 3\times 2\times 1=120\\ 6!=6\times 5\times 4\times 3\times 2\times 1=720\\ \\ \vdots \\ \\ \color{black}n!=n\times (n-1)\times (n-2)\times \cdots \times 4\times 3\times 2\times 1\\\hline \end{array}$

$\LARGE\colorbox{aqua}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah nilai}\\ &\begin{array}{lll}\\ \textrm{a}.\quad 3!&\textrm{e}.\quad \displaystyle \frac{6!}{4!}&\textrm{i}.\quad \displaystyle \frac{2!}{0!}+\frac{3!}{1!}+\frac{4!}{2!}\\ \textrm{b}.\quad 5!&\textrm{f}.\quad \displaystyle \frac{10!}{6!}&\textrm{j}.\quad \displaystyle \frac{2!}{0!}\times \frac{3!}{1!}+\frac{4!}{2!}\\ \textrm{c}.\quad 0!+1!+2!+3!&\textrm{g}.\quad \displaystyle \frac{7!}{3!\times 4!}&\textrm{k}.\quad \displaystyle \frac{3\times 4!}{3!(5!-5!)}\\ \textrm{d}.\quad (2!)!+(3!)!&\textrm{h}.\quad \displaystyle \frac{13!}{12!+12!}&\textrm{l}.\quad \displaystyle \frac{3!+5!+7!}{4!+6!}\end{array}\\\\ &\textrm{Jawab}:\\\\ &\begin{array}{l}\\ \textrm{a}.\quad 3!=3.2.1=6\\ \textrm{b}.\quad 5!=5.4.3.2.1=120\\ \begin{aligned}\textrm{c}.\quad 0!+1!+2!+3!&=1+1+2+6\\ &=10 \end{aligned}\\ \begin{aligned}\textrm{d}.\quad (2!)!+(3!)!&=2!+6!\\ &=2+720\\ &=722 \end{aligned}\\ \textrm{e}.\quad \displaystyle \frac{6!}{4!}=\frac{720}{24}=30\quad \textrm{atau}\quad \displaystyle \frac{6!}{4!}=\displaystyle \frac{6.5.\not{4}.\not{3}.\not{2}.\not{1}}{\not{4}.\not{3}.\not{2}.\not{1}}=6.5=30\\ \textrm{f}.\quad \displaystyle \frac{10!}{6!}=\frac{10.9.8.7.6.5.4.3.2.1}{6.5.4.3.2.1}=.... (\textrm{silahkan diselesaikan sendiri})\\ \textrm{g}.\quad \displaystyle \frac{7!}{3!\times 4!}=\frac{7.6.5.4.3.2.1}{(3.2.1)\times (4.3.2.1)}=.... (\textrm{silahkan juga diselesaikan sendiri})\\ \vdots \\ (\textrm{silahkan selanjutnya diselesaikan sendiri}) \end{array} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Sederhanakanlah}\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle \frac{n!}{(n-1)!}&\textrm{e}.\quad \displaystyle \frac{1}{n!}+\frac{n}{(n+1)!}-\frac{1}{(n-1)!}\\ \textrm{b}.\quad \displaystyle \frac{(n+2)!}{(n+1)!}&\textrm{f}.\quad \displaystyle \frac{(4n)!}{(4n+1)!}+\frac{(4n)!}{(4n-1)!}\\ \textrm{c}.\quad \displaystyle \frac{(2n)!}{(2n+1)!}&\textrm{g}.\quad \displaystyle \frac{1}{n}-\frac{n!}{(n-1).(n-2)!}\\ \textrm{d}.\quad \displaystyle \frac{(n+2)!}{(n^{2}+3n+2)}&\textrm{h}.\quad 1.1!+2.2!+3.3!+4.4!+5.5!+...+n.n!\end{array}\\\\ &\textrm{Jawab}:\\\\ &\begin{array}{l}\\ \textrm{a}.\quad \displaystyle \frac{n!}{(n-1)!}=\frac{n.(n-1)!}{(n-1)!}=n\\ \textrm{b}.\quad \displaystyle \frac{(n+2)!}{(n+1)!}=\frac{(n+2).(n+1)!}{(n+1)!}=n+2\\ \textrm{c}.\quad \displaystyle \frac{(2n)!}{(2n+1)!}=\frac{(2n)!}{(2n+1).(2n)!}=\frac{1}{2n+1}\\ \textrm{d}.\quad \displaystyle \frac{(n+2)!}{n^{2}+3n+2}=\frac{(n+2)!}{(n+2).(n+1)}=\frac{(n+2).(n+1).n!}{(n+2).(n+1)}=n!\\ \vdots \\ (\textrm{silahkan selanjutnya diselesaikan sendiri sebagai latihan})\\ \vdots \\ \begin{aligned}\textrm{h}.\quad &1.1!+2.2!+3.3!+4.4!+5.5!+...+n.n!\\ & =(2-1).1!+(3-1).2!+(4-1).3!+(5-1).4!+...+(n+1-1).n!\\ &=2.1!+3.2!+4.3!+5.4!+...+(n+1).n!-1!-2!-3!-4!-...-n!\\ &=2!+3!+4!+5!+...+(n+1)!-\left ( 1!+2!+3!+4!+...+n! \right )\\ &=(n+1)!-1 \end{aligned} \end{array} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Sederhanakanlah bentuk penjumlahan berikut}\\ &\displaystyle \frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+\cdots +\displaystyle \frac{100}{98!+99!+100!}\\\\ &\textrm{Jawab}:\\\\ &\begin{aligned}\textrm{Perhatikan}&\, \: \textrm{bahwa}\\ &\displaystyle \frac{3}{1!+2!+3!}=\frac{3}{1+2+6}=\frac{3}{9}=\frac{1}{3}\times \frac{2}{2}=\frac{2}{1\times 2\times 3}=\frac{2}{3!}=\frac{3-1}{3!}=\frac{3}{3!}-\frac{1}{3!}=\frac{3}{2!\times 3}-\frac{1}{3!}=\frac{1}{2!}-\frac{1}{3!}\\ &\textrm{sehingga}\\ &\frac{3}{1!+2!+3!}=\frac{1}{2!}-\frac{1}{3!}\\ &\displaystyle \frac{4}{2!+3!+4!}=\cdots =\frac{1}{3!}-\frac{1}{4!}\\ &\displaystyle \frac{5}{3!+4!+5!}=\cdots =\frac{1}{4!}-\frac{1}{5!}\\ &\vdots \\ &\displaystyle \frac{100}{98!+99!+100!}=\cdots =\frac{1}{99!}-\frac{1}{100!}\\ &---------------------------\\ &\qquad\qquad\qquad\qquad\quad\quad =\frac{1}{2!}-\frac{1}{100!} \end{aligned} \end{array}$

$\color{blue}\textrm{D. Permutasi dan Kombinasi}$

$\begin{array}{|l|l|l|}\hline \textrm{Istilah}&\qquad\qquad\qquad\textrm{Permutasi}&\qquad\qquad\qquad\textrm{Kombinasi}\\\hline \textrm{Definisi}&\begin{aligned}&\textrm{Permutasi r unsur dari n unsur adalah}\\ &\textrm{banyaknya kemungkinan urutan r buah}\\ &\textrm{unsur yang dipilih dari n unsur}\\ &\textrm{yang tersedia}.\: \textrm{Tiap unsur berbeda dan}\\ & r\leq n \end{aligned}&\begin{aligned}&\textrm{Kombinasi r unsur dan n unsur adalah}\\ &\textrm{banyaknya kemungkinan tidak terurut}\\ &\textrm{dalam pemilihan r unsur yang diambil}\\ &\textrm{dari n unsur yang tersedia}.\: \textrm{Tiap unsur}\\ &\textrm{berbeda dan}\: \: r\leq n \end{aligned}\\\hline \textrm{Tipe}&\textrm{Bentuk khusus kaidah perkalian}&\textrm{Bentuk khusus permutasi}\\\hline \textrm{Notasi}&_{n}P_{r},\: P_{n}^{r},\: \textrm{atau}\: \: P(n,k)&_{n}C_{r},\: C_{r}^{n},\: \binom{n}{r},\: \textrm{atau}\: \: C(n,r)\\\hline \textrm{Rumus}&P(n,r)=\displaystyle \frac{n!}{(n-r)!}&\binom{n}{r}=C(n,r)=\displaystyle \frac{n!}{r!(n-r)!}\\\hline \end{array}$

Selanjutnya perhatikanlah tabel berikut

$\begin{array}{|c|c|c|}\hline \textrm{Permutasi}&\textrm{Permutasi}\\ \textrm{dengan unsur yang sama}&\textrm{Siklis}\\\hline \begin{aligned}&P(n;n_{1},n_{2},n_{3},...,n_{k})\\ &=\displaystyle \frac{P(n,n)}{n_{1}!n_{2}!n_{3}!...n_{k}!}\\ &=\displaystyle \frac{n!}{n_{1}!n_{2}!n_{3}!...n_{k}!} \end{aligned}&\begin{aligned}&\begin{cases} \textrm{Siklis} & =(n-1)! \\\\ \textrm{Kalung} & =\displaystyle \frac{(n-1)!}{2} \end{cases} \end{aligned}\\\hline \end{array}$

dan

$\begin{array}{|c|c|}\hline \textrm{Kombinasi}&\textrm{Kombinasi dalam}\\ \textrm{dengan pengulangan}&\textrm{Binom Newton}\\\hline \begin{aligned}&C(n+r-1,r)\\ &=C(n+r-1,n-1)\\ &\binom{n+r-1}{r}\\ &=\binom{n+r-1}{n-1} \end{aligned}&\begin{aligned}&(x+y)^{n}\\ &=\sum_{k=o}^{n}\binom{n}{r}x^{n-k}y^{k}\\\\ &\textrm{Koefisien untuk}\\ &x^{n-k}y^{k},\: \textrm{yaitu}\\ &\textrm{suku ke}-(k+1)\\ &\textrm{adalah}\: \binom{n}{r} \end{aligned}\\\hline \end{array}$

serta


$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Jika di suatu kelas terdapat 4 orang akan dipilih 3 orang }\\ &\textrm{untuk menjadi ketua, sekretaris, dan bendahara}.\\ &\textrm{Tentukanlah banyak cara memilih 3 orang tersebut?}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Karena ada 4 orang, misal A, B, C, dan D yang}\\ &\textrm{akan dipilih 3 orang untuk menduduki posisi} \\ &\textrm{ketua, sekretaris, dan bendahara, maka kita tinggal}\\ &\textrm{buat permutasinya, yaitu posisi ketua dapat dipilih }\\ &\textrm{dengan 4 cara, sekretaris dapat dipilih dengan 3 cara}, \\ &\textrm{dan bendahara dapat dipilih dengan 2 cara. atau} \\ &\color{blue} P(4,3)=\displaystyle \frac{4!}{(4-3)!}=\frac{4!}{1!}=\frac{4\times 3\times 2\times 1}{1}=24\: \: \textrm{cara}\\ &\textrm{Berikut ilustrasinya dengan diagram pohon} \end{aligned} \end{array}$
$\color{red}\begin{cases} A&\begin{cases} B & \begin{cases} C &\rightarrow ABC\\ D & \rightarrow ABD \end{cases} \\ C & \begin{cases} B &\rightarrow ACB\\ D & \rightarrow ACD \end{cases} \\ D & \begin{cases} B &\rightarrow ADB \\ C &\rightarrow ADC \end{cases} \end{cases} \\ \\ B&\begin{cases} A & \begin{cases} C &\rightarrow BAC\\ D & \rightarrow BAD \end{cases} \\ C & \begin{cases} A &\rightarrow BCA\\ D & \rightarrow BCD \end{cases} \\ D & \begin{cases} A &\rightarrow BDA \\ C &\rightarrow BDC \end{cases} \end{cases} \\ \\ C&\begin{cases} A & \begin{cases} B &\rightarrow CAB\\ D & \rightarrow CAD \end{cases} \\ B & \begin{cases} A &\rightarrow CBA\\ D & \rightarrow CBD \end{cases} \\ D & \begin{cases} A &\rightarrow CDA \\ B &\rightarrow CDB \end{cases} \end{cases} \\ \\ D&\begin{cases} A & \begin{cases} B &\rightarrow DAB\\ C & \rightarrow DAC \end{cases} \\ B & \begin{cases} A &\rightarrow DBA\\ C & \rightarrow DBC \end{cases} \\ C & \begin{cases} A &\rightarrow DCA \\ B &\rightarrow DCB \end{cases} \end{cases} \end{cases}$
$\begin{array}{ll}\\ 2.&\textrm{Seorang anak akan mengambil 4 buah bola dari}\\ &\textrm{10 warna yang berbeda. Berapakah banyak}\\ &\textrm{kombinasi warna yang berbeda yang diambil}\\ &\textrm{oleh Andi}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}n=10&\: \: \textrm{dan}\: \: r=4\\ C(n,r)&=\displaystyle \frac{n!}{r!(n-r)!}\\ C(10,4)&=\displaystyle \frac{10!}{4!(10-4)!}\\ &=\displaystyle \frac{10!}{4!\times 6!}\\ &=\displaystyle \frac{10\times 9\times 8\times 7\times 6!}{(4\times 3\times 2\times 1)\times 6!}\\ &=420\: \: \textrm{kombinasi warna bola berbeda} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Berapa banyak cara dapat memilih untuk}\\ &\textrm{3 perwakilan dari 10 anggota suatu}\\ &\textrm{kelompok, jika}\\ &\textrm{a. tanpa perlakuan khusus}\\ &\textrm{b. salah seorang harus terpilih}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Dengan tanpa perlakuan}\\ &\textrm{memilih 3 orang dari 10 orang adalah}:\\ &C(10,3)=\displaystyle \frac{10!}{3!(10-3)!}=\frac{10!}{3!\times 7!}=\color{blue}120\\ \textrm{b}.\quad&\textrm{Dengan perlakuan 1 orang terpilih}\\ &\color{red}(\textrm{1 orang ini artinya tidak perlu diperhitungkan})\\ &\textrm{memilih 2 orang dari 9 orang adalah}:\\ &C(9,2)=\displaystyle \frac{9!}{2!(9-2)!}=\frac{9!}{2!\times 8!}=\color{blue}36 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 4.&\textrm{Berapa banyak cara dapat memilih 2 buku}\\ &\textrm{matematika dan 3 buku fisika serta 4 buku}\\ &\textrm{ekonomi pada suatu lemari buku yang}\\ &\textrm{di dalamnya terdapat 10 buku matematika,}\\ &\textrm{11 buku fisika dan 12 buku ekonomi}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}\textrm{Banyak}&\: \textrm{cara pemilihan tersebut adalah}:\\ &=C(10,2)\times C(11,3)\times C(12,4)\\ &=\displaystyle \frac{10!}{2!\times 8!}\times \frac{11!}{3!\times 8!}\times \frac{12!}{4!\times 8!}\\ &=\displaystyle \frac{10\times 9}{1\times 2}\times \frac{11\times 10\times 9}{1\times 2\times 3}\times \frac{12\times 11\times 10\times 9}{1\times 2\times 3\times 4}\\ &=\color{red}3675375 \end{aligned} \end{array}$

DAFTAR PUSTAKA
  1. Johnaes, Kastolan, & Sulasim. 2004. Kompetensi Matematika SMA Kelas 2 Semester 1 Program Ilmu Sosial KBK 2004. Jakarta: YUDHISTIRA.
  2. Kartini, Suprapto, Subandi, & Setiyadi, U. 2005. Matematika Program Studi Ilmu Alam Kelas XI untuk SMA dan MA. Klaten: INTAN PARIWARA.
  3. Sobirin. 2006. Kompas Matematika Strategi Praktis Menguasai Tes Matematika. Jakarta: KAWAN PUSTAKA.







Kaidah Pencacahan (Kaidah Penjumlahan dan Perkalian)

 $\color{blue}\textrm{B. Kaidah Pencacahan}$

Dalam kombinatorial kita harus melakukan perhitungan (counting) untuk mendapatkan semua kemungkinan dari pengaturan objekgar hasilnya didaptkan valid. Dua kaidah dasar yang digunakan dalam hal ini adalah adalah kaidah perkalian (rule of product) dan kaidah penjumlahan (rule of sum). Kedua kaidah tersebut nantinya akan selalu digunakan secara terpisah atau secara gabungan tergantung kondisi yang diinginkan dalam penentuan aturan pengisian tempat.

 $\color{blue}\textrm{B. 1 Kaidah Perkalian}$

$\begin{cases} \color{red}\Rightarrow &\begin{array}{|c|}\hline \textrm{Kaidah Perkalian}\\\hline \begin{aligned}&\textrm{Jika percobaan 1 mendapat hasil}\: \: m,\\ & \textrm{percobaan 2 mendapatkan hasil}\: n,\\ & \textrm{maka jika percobaan 1 dan 2 dilakukan},\\ &\textrm{maka akan mendapatkan hasil} \: \: m \times n \\ &\textrm{kemungkinan} \end{aligned}\\\hline \end{array} \\\\\\ \color{blue}\Rightarrow &\begin{array}{|c|}\hline \textrm{Kaidah Penjumlah}\\\hline \begin{aligned}&\textrm{Jika percobaan 1 mendapat hasil}\: \: m,\\ & \textrm{percobaan 2 mendapatkan hasil}\: \: n,\\ & \textrm{maka jika hanya}\: \: \color{magenta}\textbf{satu percobaan}\: \: \color{black}\textrm{saja}\\ & \textrm{yang dilakukan (percobaan 1 atau percobaan 2)},\\ & \textrm{maka akan mendapatkan hasil}\: \: m + n\\ & \textrm{kemungkinan} \end{aligned}\\\hline \end{array} \end{cases}$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Sekumpulan pelajar terdiri dari 5 anak putra}\\ & \textrm{dan 4 anak putri. Tentukanlah jumlah cara memilih}\\ & \textrm{satu orang wakil siswa dan satu orang wakil siswi}?\\\\ &\textrm{Jawab}:\\ &\textrm{ada 5 kemungkinan memilih seorang wakil siswa}\\ & \textrm{dan ada 4 kemungkinan memilih wakil siswi}.\\ & \textrm{Jika 2 orang wakil harus dipilih yang terdiri}\\ & \textrm{dari 1 siswa dan 1 siswi, maka jumlah}\\ & \textrm{kemungkinan perwakilan tersebut adalah yang}\\ & \textrm{dapat dipilih adalah 5 x 4 = 20 cara} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah ruang sampel dan banyaknya}\\ &\textrm{anggota untuk percobaan}\\ &\textrm{a}.\quad \textrm{melambungkan sebuah koin sebanyak 3 kali}\\ &\textrm{b}.\quad \textrm{melambungkan dua buah dadu sebanyak sekali}\\\\ &\color{blue}\textrm{Jawab}:\\ &\textrm{Jika S adalah ruang sampel dan n(S) adalah}\\ &\textrm{banyak anggota ruang sampel, maka}\\ &\textrm{a}.\quad \textrm{karena muka koin ada 2, maka n(S)}\\ &\qquad n(S)=2\times 2\times 2=2^{3}=8\\ &\textrm{b}.\quad \textrm{karena muka dadu ada 6, maka n(S)}\\ &\qquad n(S)=6\times 6=6^{2}=36\\ &\textrm{Dan berikut ilustrasi untuk seluruh ruang}\\ &\color{red}\textrm{sampelnya untuk kedua kasus di atas}\\ &\begin{array}{|c|c|}\hline \textrm{a}&\textrm{b}\\\hline \left\{\begin{matrix} A\left\{\begin{matrix} A\left\{\begin{matrix} A&=AAA\\ \\ G&=AAG \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A&=AGA\\ \\ G&=AGG \end{matrix}\right. \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A\left\{\begin{matrix} A&=GAA\\ \\ G&=GAG \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A&=GGA\\ \\ G&=GGG \end{matrix}\right. \end{matrix}\right. \end{matrix}\right. &\begin{array}{|c|c|c|c|c|c|c|}\hline \setminus&1&2&3&4&5&6\\\hline 1&(1,1)&(1,2)&(1,3)&(1,4)&(1,5)&(1,6)\\\hline 2&(2,1)&(2,2)&(2,3)&(2,4)&(2,5)&(2,6)\\\hline 3&(3,1)&(3,2)&(3,3)&(3,4)&(3,5)&(3,6)\\\hline 4&(4,1)&(4,2)&(4,3)&(4,4)&(4,5)&(4,6)\\\hline 5&(5,1)&(5,2)&(5,3)&(5,4)&(5,5)&(5,6)\\\hline 6&(6,1)&(6,2)&(6,3)&(6,4)&(6,5)&(6,6)\\\hline \end{array} \\\hline \textrm{n}(\textrm{S})=8&\textrm{n}(\textrm{S})=36\\\hline \end{array} \end{array}$

Catatan :

Sebuah koin di lempar 3 kali sama dengan hasilnya untuk ruang sampel 3 buah koin dilempar sekali. Demikian juga sebuah dadu diundi 2 kali akan sama hasilnya dengan 2 buah dadi diundi sekali.

$\begin{array}{ll}\\ 3.&\textrm{Sekumpulan pelajar terdiri dari 5 anak putra dan}\\ & \textrm{4 anak putri. Tentukanlah jumlah cara memilih satu}\\ & \textrm{orang wakil pelajar tersebut(tidak masalah putra atau putri)}?\\\\ &\textrm{Jawab}:\\ &\textrm{ada 5 kemungkinan memilih seorang wakil siswa dan}\\ &\textrm{ada 4 kemungkinan memilih wakil siswi. Jika}\\ &\textrm{hanya 1 orang wakil yang harus dipilih}\\ & \textrm{(tidak peduli putra atau putri)},\\ & \textrm{maka banyak cara memilih adalah 5 + 4 = 9 cara} \end{array}$

$\begin{array}{ll}\\ 4.&\textrm{Sebuah bilangan dibentuk dari angka-angka}\\ & \textrm{1, 2, 3, 4, 5, 6, 7, 8, dan 9. Jika pengulangan} \\ &\textrm{tidak diperbolehkan, tentukan banyaknya bilangan}\\ &\textrm{a}.\quad \textrm{yang terdiri dari 1 angka dan kurang dari 5}\\ &\textrm{b}.\quad \textrm{yang terdiri dari 2 angka dan kurang dari 50}\\ &\textrm{c}.\quad \textrm{yang terdiri dari 3 angka dan kurang dari 500}\\ &\textrm{d}.\quad \textrm{yang terdiri dari 4 angka dan kurang dari 5000}\\ &\textrm{e}.\quad \textrm{yang terdiri dari 5 angka dan kurang dari 50000}\\ &\textrm{f}.\quad \textrm{yang terdiri dari 6 angka dan kurang dari 500000 dan habis dibagi 5}\\\\ &\textrm{Jawab}:\\ &\textrm{a}.\quad \textrm{jelas ada 4 angka yang memenuhi, yaitu: 1, 2, 3, dan 4}\\ &\textrm{b}.\quad \textrm{2 angka misalkan AB, posisi A dapat diisi dengan 4 cara dan posisi B dapat}\\ &\qquad \textrm{diisi dengan 8 cara, karena setelah diisikan ke A angka tinggal 8 buah dan}\\ &\qquad \textrm{semuanya memiliki kesempatan yang sama untuk diisikan ke B}.\\ &\qquad \textrm{sehingga AB dapat diisi dengan 4 x 8 = 32 cara}.\\ &\textrm{c}.\quad \textrm{3 angka misalkan ABC, posisi A dapat diisi dengan 4 cara, posisi B dapat}\\ &\qquad \textrm{diisi dengan 8 cara, dan posisi C dapat diisi dengan 7 cara}.\\ &\qquad \textrm{sehingga ABC dapat diisi dengan 4 x 8 x 7 = 224 cara}.\\ &\\ &\textrm{Untuk jawaban d, e, dan f silahkan dicoba sendiri sebagai latihan} \end{array}$



Aturan Pencacahan

 $\color{blue}\textrm{A. Pendahuluan}$

$\color{blue}\textrm{A. 1 Kombiatorial}$

Dalam matematika ada cabang ilmu yang mengkhususkan mempelajari tentang pengaturan objek-objek. Cabang matematika ini selanjutnya dinamakan Kombinatorial. Hasil dari mempelajari bagian ini adalah diperoleh jumlah cara pengaturan objek-objek tertentu di dalam himpunannya. 

Sebagai contoh nomor plat mobil di negara X terdiri atas 4 angka diikuti dengan 2 huruf. Angka pertama tidak boleh 0. Berapa banyak nomor plat mobil yang dapat dibuat?

Sebagai contoh yang lain sandi-lewat (password) sistem komputer panjangnya 6 sampai 8 karakter. Tiap karakter sendiri boleh berupa angka atau huruf, dengan huruf besar maupun huruf kecil tidak dibedakan. Berapa banyak sandi-lewat (password) yang dapat dibuat?

$\color{blue}\textrm{A. 2 Percobaan}$

Hasil dari Kombinatorial ini diperoleh dari percobaan(experiment). Percobaan dalam pengertian di sini adalah Proses yang berupa tindakan yang dapat diamati. Sebagai misal dalam percobaan melempar sebuah dadu, maka hasil yang mungkin adalah munculnya salah satu muka dadu yang enam, yaitu: 1,2,3,4,5, dan 6. Setiap kali kita melempar dapat dipastikan salah satu muka dadu akan muncul

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Pada saat melempar sebuah koin, maka akan}\\ &\textrm{didapatkan 2 kemungkinan, yaitu muka}\\ &\textrm{gambar (G) atau muka angka (A)}\\ 2.&\textrm{Ketika melempar dua koin sekaligus, maka }\\ &\textrm{akan didapatkan kemungkinan 4 muka koin}\\ &\textrm{4 kemungkinan itu yaitu: AA, AG, GA, dan GG}\\ 3.&\textrm{Selanjutnya saat kita melempar 3 koin sekaligus}\\ &\textrm{maka kita akan mendapatkan 8 kemungkinan}\\ &\textrm{muka koin, yaitu}:\\ &\textrm{AAA, AAG, AGA, AGG, GAA, GAG, GGA,}\\ &\textrm{dan GGG}\\ 4.&\textrm{Contoh yang lain saat kita melempar dua buah}\\ &\textrm{dadu, maka kita akan mendapatkan 36 kemungkinan}\\ &\textrm{muka dadu} \end{array}$

Untuk uraian contoh pada no.3 dan 4 disertakan tabel berikut

$\begin{array}{|c|c|}\hline \textrm{3}&\textrm{4}\\\hline \color{red}\left\{\begin{matrix} A\left\{\begin{matrix} A\left\{\begin{matrix} A&=AAA\\ \\ G&=AAG \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A&=AGA\\ \\ G&=AGG \end{matrix}\right. \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A\left\{\begin{matrix} A&=GAA\\ \\ G&=GAG \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A&=GGA\\ \\ G&=GGG \end{matrix}\right. \end{matrix}\right. \end{matrix}\right. &\color{blue}\begin{array}{|c|c|c|c|c|c|c|}\hline \setminus&1&2&3&4&5&6\\\hline 1&(1,1)&(1,2)&(1,3)&(1,4)&(1,5)&(1,6)\\\hline 2&(2,1)&(2,2)&(2,3)&(2,4)&(2,5)&(2,6)\\\hline 3&(3,1)&(3,2)&(3,3)&(3,4)&(3,5)&(3,6)\\\hline 4&(4,1)&(4,2)&(4,3)&(4,4)&(4,5)&(4,6)\\\hline 5&(5,1)&(5,2)&(5,3)&(5,4)&(5,5)&(5,6)\\\hline 6&(6,1)&(6,2)&(6,3)&(6,4)&(6,5)&(6,6)\\\hline \end{array} \\\hline \textrm{n}(\textrm{S})=8&\textrm{n}(\textrm{S})=36\\\hline \end{array}$

Sebagai catatan kemungkinan-kemungkinan yang muncul dalam setaip tindakan pada 4 contoh di atas selanjutnya akan disebut sebagai titik sampel. Titik sampel sampel sendiri adalah semua anggota dalam ruang sampel.

$\color{blue}\textrm{A. 3 Ruang sampel}$

Ruang sampel adalah himpunan semua hasil yang mungkin dari dari suatu percobaan. Jika dalam ruangnya sampel hanya terdapat satu titik sampel saja, maka disebut kejadian sederhana, tetapi jika titik sampelnya lebih dari satu, maka disebutlah dengan istilah kejadian majmuk. Ruang sampel dilambangkan dengan huruf S dan banyaknya anggota (titik sampel) dalam ruang sampel ini dituliskan dengan n(S). Adapun cara menentukan ruang sampel ini dapat dilakukan dengan beberapa cara di antaranya, yaitu: dengan mendaftar, dengan tabel, dan dengan diagram pohon.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Perhatikan lagi tabel di atas}\\ &\textrm{Tuliskan lagi ruang sampelnya}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Pada tabel kolom 3, anggota}\\&\textrm{ruang sampelnya adalah sebagai berikut}\\ &\left \{AAA,AAG,AGA,AGG,GAA,GAG,GGA,GGG \right \}\\ &\textrm{Jadi},\: \: n(S)=\color{red}8 \end{aligned}\\ &\begin{aligned}\textrm{b}.\quad&\textrm{Pada tabel kolom 4, anggota}\\&\textrm{ruang sampelnya adalah sebagai berikut}\\ &\left \{ (1,1),(1,2),(1,3),\cdots ,(6,4),(6,5),(6,6) \right \}\\ &\textrm{Jadi},\: \: n(S)=\color{red}36 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Pada pelemparan dua buah koin}\\ &\textrm{uang logam tentukan banyaknya }\\ &\textrm{ruang sampel dengan tabel dan}\\ &\textrm{tentukan jumlahnya}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Dengan tabel yaitu}\\ &\begin{array}{|c|c|c|}\hline &A&G\\\hline A&AA&AG\\\hline G&GA&GG\\\hline \end{array}\\ &S=\left \{ AA,AG,GA,GG \right \}\\  &\textrm{Jadi},\: \: n(S)=\color{red}4 \end{aligned} \end{array}$.

DAFTAR PUSTAKA

  1. Munir, R. 2012. Matematika Diskrit. Bandung: IMFORMATIKA.



Contoh Soal 3 Kaidah Pencacahan

$\begin{array}{ll}\ 11.&\textrm{Nilai}\: \: n\: \: \textrm{yang memenuhi persamaan}\\ &\begin{pmatrix} 100\\ 45 \end{pmatrix}=\begin{pmatrix} 100\\ 5n \end{pmatrix}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 15&&&\textrm{d}.&\displaystyle 12\\\\ \textrm{b}.&\displaystyle 14&\textrm{c}.&\displaystyle 13&\textrm{e}.&\color{red}\displaystyle 11 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}\\ &\begin{pmatrix} 100\\ 45 \end{pmatrix}=\begin{pmatrix} 100\\ 5n \end{pmatrix},\: \: \textrm{maka}\\ &45+5n=100\\ &5n=100-45=55\\ &\: \: n=\displaystyle \frac{55}{5}=\color{red}11 \end{aligned} \end{array}$

$\begin{array}{ll}\ 12.&\textrm{Koefisien suku ke-4 dari}\: \: (2x-3)^{4}\\ &\begin{array}{llllll}\\ \textrm{a}.&\color{red}\displaystyle -216&&&\textrm{d}.&\displaystyle 81\\\\ \textrm{b}.&\displaystyle -96&\textrm{c}.&\displaystyle 16&\textrm{e}.&\displaystyle 216 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}\\ &(2x-3)^{4}=\displaystyle \sum_{i=0}^{4}\begin{pmatrix} 4\\ i \end{pmatrix}(2x)^{4-i}(-3)^{i}\\ &\textrm{Suku ke-4-nya adalah}:\: \: r=4.\\ &\textrm{Suku ke-r}=\color{red}\begin{pmatrix} n\\ r-1 \end{pmatrix}a^{n-r+1}b^{r-1}\\ &\textrm{Sehingga suku ke-4 adalah}:\\ &=\begin{pmatrix} 4\\ 4-1 \end{pmatrix}(2x)^{4-4+1}(-3)^{4-1}\\ &=\begin{pmatrix} 4\\ 3 \end{pmatrix}(2x)^{1}(-3)^{3}\\ &=\displaystyle \frac{4!}{3!\times 1!}2x(-27)\\ &=-4.2.27x\\ &=\color{red}-216 \end{aligned} \end{array}$

$\begin{array}{ll}\ 13.&\textrm{Bentuk sederhana dari}\: \: \displaystyle \sum_{r=1}^{n}r\displaystyle \begin{pmatrix} n\\ r \end{pmatrix}\\ &\textrm{dengan}\: \: \begin{pmatrix} n\\ r \end{pmatrix}=\displaystyle \frac{n!}{r!(n-r)!}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 2^{n+1}&&&\textrm{d}.&\displaystyle 3^{n}\\\\ \textrm{b}.&\color{red}\displaystyle n2^{n-1}&\textrm{c}.&\displaystyle n2^{n}&\textrm{e}.&\displaystyle 3^{n+1} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\displaystyle \sum_{r=1}^{n}r\displaystyle \begin{pmatrix} n\\ r \end{pmatrix}&=\displaystyle \sum_{r=1}^{n}r\displaystyle \frac{n!}{r!(n-r)!}\\ &=\displaystyle \sum_{r=1}^{n}r\displaystyle \frac{n(n-1)!}{r(r-1)!(n-r)!}\\ &=n\displaystyle \sum_{r=1}^{n}\displaystyle \frac{(n-1)!}{(r-1)!(n-r)!}\\ &=n\displaystyle \sum_{r=1}^{n}\displaystyle \frac{(n-1)!}{(r-1)!((n-1)-(r-1))!}\\ &=\displaystyle \sum_{r=1}^{n}\begin{pmatrix} n-1\\ r-1 \end{pmatrix}\\ &=\color{red}n.2^{r-1} \end{aligned} \end{array}$

$\begin{array}{ll}\ 14.&\textrm{Banyaknya diagonal segi 6 adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 15&&&\textrm{d}.&\color{red}\displaystyle 9\\\\ \textrm{b}.&\displaystyle 14&\textrm{c}.&\displaystyle 10&\textrm{e}.&\displaystyle 6 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Banyak diagonal segi}-n \: \: \textrm{adalah}:\\ &C(n,2)-n.\: \textrm{Jika seperti soal dengan}\\ &n=6,\: \: \textrm{maka}\\ &C(6,2)=\displaystyle \frac{6!}{2!\times 4!}=\frac{6\times 5\times \not{4!}}{2\times 1\times \not{4!}}=15\\ &\textrm{Sehingga}\\ &C(6,2)-6=15-6=\color{red}9 \end{aligned} \end{array}$

$\begin{array}{ll}\ 15.&\textrm{Diketahui himpunan yang terdiri dari 5}\\ &\textrm{huruf vokal dan 10 huruf konsonan yang}\\ &\textrm{semuanya berlainan. Dari himpunan itu}\\ &\textrm{disusun suatu kata yang terdiri dari 2}\\ &\textrm{huruf vokal dan 3 konsonan. Banyak kata}\\ &\textrm{yang dapat disusun sebanyak}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\color{red}\displaystyle 144.000&&&\textrm{d}.&\displaystyle 72.000\\\\ \textrm{b}.&\displaystyle 126.000&\textrm{c}.&\displaystyle 96.000&\textrm{e}.&\displaystyle 36.000 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa ingin menyusun}\\ & \textbf{5 huruf dengan susunan berbeda}\\ &\color{red}\textit{yang tersusun dari}\\ &\textrm{2 dari 5 vokal berbeda disusun, dan}\\ &\textrm{3 dari 10 konsonan berbeda juga disusun}\\ &\textrm{maka banyak susunan kata terbentuk}:\\ &\textrm{Seperti menyusun 5 objek (kombinasi)}\\ &\textrm{2 benda dari 5 benda, atau 3 }\\ &\textrm{benda yang terbentuk dari 5}\\ &\textrm{objek yg tidak identik(permutasi)}\\ &\textbf{Cara pertama}\\ &=C((2+3),\color{red}2)\color{blue}\times P(5,2)\times P(10,5)\\ &=\displaystyle \frac{5!}{2!\times 3!}\times \frac{5!}{(5-2)!}\times \frac{10!}{(10-3)!}\\ &=\displaystyle \frac{5!}{2!\times 3!}\times \frac{5!}{3!}\times \frac{10!}{7!}\\ &=10\times 60\times 720\\ &=\color{red}144.000\\ &\textbf{Cara kedua}\\ &=C((2+3),\color{red}3)\color{blue}\times P(5,2)\times P(10,5)\\ &=\displaystyle \frac{5!}{3!\times 2!}\times \frac{5!}{(5-2)!}\times \frac{10!}{(10-3)!}\\ &=\displaystyle \frac{5!}{3!\times 2!}\times \frac{5!}{3!}\times \frac{10!}{7!}\\ &=10\times 60\times 720\\ &=\color{red}144.000 \end{aligned} \end{array}$

Contoh Soal 2 Kaidah Pencacahan

$\begin{array}{ll}\ 6.&\textrm{Banyaknya cara menyusun huruf-huruf dari}\\ &\textrm{kata "SEMARANG" adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 1680&&&\textrm{d}.&\displaystyle 20320\\\\ \textrm{b}.&\displaystyle 6720&\textrm{c}.&\color{red}\displaystyle 20160&\textrm{e}.&\displaystyle 40320 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Penyelesaian di atas dapat diselesaikan}\\ &\textrm{baik dengan permutasi maupun kombinasi}\\ &\textrm{Susunan huruf berbeda yang diambil dari}\\ &\textrm{kata "SEMARANG" adalah}:\\ &\begin{cases} \textrm{S} &=1 \\ \textrm{E} &=1 \\ \textrm{M} &=1 \\ \textrm{A} &=2 \\ \textrm{R} &=1 \\ \textrm{N} &=1 \\ \textrm{G} &=1 \end{cases}\\ &\textrm{Jumlah huruf ada 8 buah}\\ &\color{purple}\textrm{Dengan cara permutasi}\\ &\begin{aligned}P(n;n_{1},n_{2},n_{2},...,n_{r})&=\displaystyle \frac{n!}{n_{1}!.n_{2}!.n_{3}!...n_{r}!}\\ P(8;1,1,1,2,1,1,1)&=\displaystyle \frac{8!}{1!.1!.1!.2!.1!.1!.1!}\\ &=\displaystyle \frac{40.320}{2}\\ &=\color{red}20.160 \end{aligned}\\ &\color{purple}\textrm{Dengan cara kombinasi}\\ &\begin{aligned}C(n;...)&=\displaystyle \frac{n!}{n_{1}!.n_{2}!.n_{3}!...n_{r}!}\\ C(8;...)&=\displaystyle \binom{8}{1}.\binom{7}{1}.\binom{6}{1}.\binom{5}{2}.\binom{3}{1}.\binom{2}{1}\\ &=\displaystyle 8.7.6.\displaystyle \frac{5.4}{2}.3.2\\ &=\displaystyle \frac{40.320}{2}\\ &=\color{red}20.160 \end{aligned} \end{aligned} \end{array}$

$\begin{array}{ll}\ 7.&\textrm{Jumlah susunan dari sebelas huruf}\\ &\qquad\qquad\: \textbf{MISSISSIPPI}\\ &\textrm{Banyak susunan berbeda dari semua}\\ &\textrm{huruf di atas jika keempat huruf}\: \: \textbf{I}\\ &\textrm{selalu tampil berdampingan}\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle \displaystyle \frac{9!}{2!4!}&&&\textrm{d}.&\displaystyle \frac{6!}{2!4!}\\\\ \textrm{b}.&\color{red}\displaystyle \frac{8!}{2!4!}&\textrm{c}.&\displaystyle \frac{7!}{2!4!}&\textrm{e}.&\displaystyle \frac{5!}{2!4!} \end{array}\\\\ &\textrm{National University of Singapore}\\ &\textrm{Sample Test Entrance Examination}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Pandang semua huruf}\: I\: \: \textrm{dianggap 1}\\ &\textrm{maka perhitungannnya}\\ &P(8;1,1,4,2)=\color{red}\displaystyle \frac{8!}{2!4!} \end{aligned} \end{array}$

$\begin{array}{ll}\ 8.&\textrm{Nilai dari}\: \: P(4,2)\times P(5,3)=\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 12&&&\textrm{d}.&\displaystyle 480\\\\ \textrm{b}.&\displaystyle 48&\textrm{c}.&\displaystyle 60&\textrm{e}.&\color{red}\displaystyle 720 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&P(4,2)\times P(5,3)\\ &=\displaystyle \frac{4!}{(4-2)!}\times \frac{5!}{(5-3)!}\\ &=\displaystyle \frac{4!}{2!}\times \frac{5!}{2!}\\ &=\displaystyle \frac{4.3.\not{2!}}{\not{2!}}\times \frac{5.4.3.\not{2!}}{\not{2!}}\\ &=\color{red}720 \end{aligned} \end{array}$

$\begin{array}{ll}\ 9.&\textrm{Nilai}\: \: n\: \: \textrm{jika}\: \: P(n+1,3)=P(n,4)\\ &\textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 3&&&\textrm{d}.&\displaystyle 6\\\\ \textrm{b}.&\displaystyle 4&\textrm{c}.&\color{red}\displaystyle 5&\textrm{e}.&\displaystyle 7 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}P(n+1,3)&=P(n,4)\\ \displaystyle \frac{(n+1)!}{((n+1)-3)!}&=\displaystyle \frac{n!}{(n-4)!}\\ \displaystyle \frac{(n+1)!}{(n-2)!}&=\frac{n!}{(n-4)!}\\ \displaystyle \frac{(n+1).\not{n!}}{(n-2).(n-3).\not{(n-4)!}}&=\displaystyle \frac{\not{n!}}{\not{(n-4)!}}\\ \displaystyle \frac{n+1}{n^{2}-5n+6}&=1\\ n^{2}-5n+6&=n+1\\ n^{2}-6n+5&=0\\ (n-1)(n-5)&=0\\ n=1\: \: \textrm{atau}\: \: n=\color{red}5& \end{aligned} \end{array}$

$\begin{array}{ll}\ 10.&\textrm{Berikut ini nilainya tidak sama dengan}\\ &C(7,5)\: \: \textrm{adalah}\: ....\\\\ &(i)\: \: \displaystyle \frac{7!}{5!(7-5)!}\\\\ &(ii)\: \: C(6,1)\\\\ &(iii)\: \: \displaystyle \frac{P(7,5)}{5!}\\\\ &(iv)\: \: \begin{pmatrix} 6\\ 1 \end{pmatrix}\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle (i),(ii),\& (iii)&&&\textrm{d}.&\displaystyle \textrm{hanya}\: (i)\\\\ \textrm{b}.&\displaystyle (i)\& (iii)&\textrm{c}.&\color{red}(ii)\&(iv)&\textrm{e}.&\displaystyle \textrm{hanya}\: (iv) \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &C(7,5)=\displaystyle \frac{P(7,5)}{5!}=\frac{7!}{5!(7-5)!} \end{array}$


Contoh Soal 1 Kaidah Pencacahan

$\begin{array}{ll}\ 1.&\textrm{Nilai dari}\: \: \displaystyle \frac{1}{14!}-\frac{10}{15!}+\frac{4}{16!}\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle \frac{114}{16!}&&&\textrm{d}.&\displaystyle \frac{9}{16!}\\\\ \textrm{b}.&\displaystyle \frac{108}{16!}&\textrm{c}.&\color{red}\displaystyle \frac{84}{16!}&\textrm{e}.&\displaystyle \frac{4}{16!} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\displaystyle \frac{1}{14!}&-\displaystyle \frac{10}{15!}+\frac{4}{16!}\\ &=\displaystyle \frac{15\times 16}{14!\times 15\times 16}-\frac{10\times 16}{15!\times 16}+\frac{4}{16!}\\ &=\displaystyle \frac{240}{16!}-\frac{160}{16!}+\frac{4}{16!}\\ &=\color{red}\displaystyle \frac{84}{16!} \end{aligned} \end{array}$

$\begin{array}{ll}\ 2.&\textrm{Permutasi 4 unsur dari 11 unsur}\\ &\textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 7980&&&\textrm{d}.&\displaystyle 7290\\\\ \textrm{b}.&\color{red}\displaystyle 7920&\textrm{c}.&\displaystyle 7820&\textrm{e}.&\displaystyle 7280 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}P(n,r)&=\displaystyle \frac{n!}{(n-r)!}\\ P(11,4)&=\displaystyle \frac{11!}{(11-4)!}\\ &=\displaystyle \frac{11!}{7!}=\frac{11\times 10\times 9\times 8\times \not{7!}}{\not{7!}}\\ &=\color{red}7920 \end{aligned} \end{array}$

$\begin{array}{ll}\ 3.&\textrm{Empat siswa dan dua siswi akan duduk}\\ &\textrm{berdampingan. Apabila siswi selalu duduk}\\ &\textrm{paling pinggir, banyak cara mereka duduk}\\ &\textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 24&&&\textrm{d}.&\displaystyle 64\\ \textrm{b}.&\color{red}\displaystyle 48&\textrm{c}.&\displaystyle 56&\textrm{e}.&\displaystyle 72 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Total ada 6 anak; 4 siswa, 2 siswi}\\ &\textrm{Karena ini posisi orang, maka dan semuanya}\\ &\textrm{tidak identik, maka dapat diurutkan}\\ &\textrm{Sehingga rumus yang dipergunakan adalah}\\ &\textrm{permutasi, yaitu}:\\ &\textrm{Perhatikan posisi mereka}\\ &\textbf{Posisi pertama}\\ &\begin{array}{|c|cccc|c|}\hline (1)&(2)&(3)&(4)&(5)&(6)\\ \textrm{A}&\square &\square &\square &\square &\textrm{B}\\\hline \end{array}\\ &=P(1,1)\times P(4,4)\times P(1,1)=\color{purple}24\\ &\textbf{Posisi kedua}\\ &\begin{array}{|c|cccc|c|}\hline (1)&(2)&(3)&(4)&(5)&(6)\\ \textrm{B}&\square &\square &\square &\square &\textrm{A}\\\hline \end{array}\\ &=P(1,1)\times P(4,4)\times P(1,1)=\color{purple}24\\ &\textrm{Total}=24+24=\color{red}48 \end{aligned} \end{array}$

$\begin{array}{ll}\ 4.&\textrm{Jika}\: \: P(7,r)=210,\: \: \textrm{maka nilai}\: \: r\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 2&&&\textrm{d}.&\displaystyle 5\\\\ \textrm{b}.&\color{red}\displaystyle 3&\textrm{c}.&\displaystyle 4&\textrm{e}.&\displaystyle 6 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}P(7,r)&=\displaystyle \frac{7!}{(7-r)!}\\ 210&=\displaystyle \frac{7!}{(7-r!)}\\ (7-r)!&=\displaystyle \frac{7!}{210}=\frac{7\times 6\times 5\times 4\times 3\times 2\times 1}{7\times 5\times 3\times 2\times 1}\\ (7-r)!&=6.4=24\\ (7-r)!&=4!\\ 7-r&=4\\ r&=7-4\\ r&=\color{red}3 \end{aligned} \end{array}$

$\begin{array}{ll}\ 5.&\textrm{Banyaknya cara milih 4 orang dari 10 orang }\\ &\textrm{anggota jika salah seorang di antaranya}\\ &\textrm{selalu terpilih adalah}.... \\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle 72&&&\textrm{d}.&\displaystyle 504\\\\ \color{red}\textrm{b}.&\color{red}\displaystyle 84&\textrm{c}.&\displaystyle 252&\textrm{e}.&\displaystyle 3024 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Cara memilih}=\textrm{Kombinasi}=C(10-1,4-1)\\ & \textrm{karena 1 orang di antaranya selalu ada/terpilih}\\ &=C(9,3)\\ &=\binom{9}{3}\\ &=\displaystyle \frac{9!}{3!\times (9-3)!}\\ &=\displaystyle \frac{9\times 8\times 7\times \not{6!}}{3\times 2\times \times \not{6!}}\\&=\displaystyle \frac{9.8.7}{3.2}\\ &=\color{red}84 \end{aligned} \end{array}$

Contoh 3 Soal dan Pembahasan Materi Permutasi dan Kombinasi

$\begin{array}{ll}\\ 11.&\textrm{Dalam suatu rapat mengelilingi meja bundar}\\ &\textrm{yang dihadiri sebanyak 7 orang}\\ &\textrm{a}.\quad \textrm{ada berapa susunan yang terjadi}?\\ &\textrm{b}.\quad \textrm{Jika A dan B bagian dari 7 orang ini}\\ &\qquad \textrm{duduknya selalu berdampingan, maka}\\ &\qquad \textrm{posisi duduk yang terbentuk sejumlah}?\\ &\textrm{c}.\quad \textrm{Jika seperti poin b, tetapi yang}\\ &\qquad \textrm{duduk berdampingan atau saling berdekatan}\\ &\qquad \textrm{adalah A, B, dan C}\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui bahwa}\: \: n=7\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Posisi duduk melingkarnya}\\ &=(7-1)!=6!=\color{red}720\\ &\textbf{atau}\\ &n=r=7\: \: \textrm{orang, maka}\\ &=\displaystyle \frac{P(7,7)}{7}=6!=\color{red}720\\ \textrm{b}.\quad&\textrm{Ada syarat A dan B berdampingan, maka}\\ &\textrm{A dan B dihitung 1 objek dulu, sehingga total}\\ &\textrm{objek ada 1 objek ditambah sisanya = 6 objek}.\\ &\textrm{Dari 6 objek ini yang dianggap duduk melingkar}\\ &\textrm{dengan 2 orang (A dan B) bisa gantian posisi}.\\ &\textrm{sehingga}\\ &(6-1)!\times 2!=5!\times 2!=\color{red}240\\ &\textbf{atau}\\ &=\displaystyle \frac{P(6,6)}{6}\times P(2,2)\\ &=5!\times 2!=120\times 2=\color{red}240\\ \textrm{b}.\quad&\textrm{3 orang (A, B, dan C) dianggap 1 objek}\\ &\textrm{dulu sehigga yang duduk posisi melingkar}\\ &\textrm{dianggap 5 orang, sehingga perhitungannya}\\ &=\displaystyle \frac{P(5,5)}{5}\times P(3,3)\\ &=24\times 6=\color{red}144 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 12.&\textrm{Suatu kelompok yang terdiri dari 20 remaja}\\ &\textrm{a}.\quad \textrm{Jika mereka saling berjabat tangan}\\ &\qquad \textrm{seseorang dengan lainnya hanya satu kali}\\ &\qquad \textrm{maka banyak jabat tangan yang terjadi}?\\ &\textrm{b}.\quad \textrm{Jika mereka membentuk regu voly, maka}\\ &\qquad \textrm{berapa banyak regu voly yang terbentuk}?\\ &\textrm{c}.\quad \textrm{Jika mereka membentuk regu sepak bola},\\ &\qquad \textrm{maka banyak regu sepak bola yang terbentuk}?\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui bahwa}\: \: n=20\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Karena jabat tangan dilakukan hanya hanya}\\ &\textrm{pada dua remaja yang berbeda dan urutan}\\ &\textrm{tidak diperlukan, maka hal ini persoalan}\\ &\textrm{kombinasi. Sehingga banyaknya jabat tangan}\\ &\begin{pmatrix} n\\ r \end{pmatrix}=\displaystyle \frac{n!}{r!(n-r)!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 2 \end{pmatrix}=\displaystyle \frac{20!}{2!(20-2)!}=\frac{20!}{2!\times 18!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 2 \end{pmatrix}=\displaystyle \frac{20.19.\not{18!}}{2.\not{18!}}=\color{red}190\\ \textrm{b}.\quad&\textrm{Karena satu regu voli ada 6 orang, maka}\\ &\begin{pmatrix} 20\\ 6 \end{pmatrix}=\displaystyle \frac{20!}{6!(20-6)!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 6 \end{pmatrix}=\displaystyle \frac{20!}{6!\times 14!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 6 \end{pmatrix}=\color{red}\displaystyle \frac{20.19.18.17.16.15.\not{14!}}{720\times \not{14!}}\\ \textrm{c}.\quad&\textrm{Karena satu regu terdiri dari 11 orang},\\ &\textrm{maka}\\ &\begin{pmatrix} 20\\ 11 \end{pmatrix}=\displaystyle \frac{20!}{11!(20-11)!}=\color{red}\frac{20!}{11!\times 9!} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 13.&\textrm{Jajargenjang yang dapat dibuat oleh}\\ &\textrm{himpunan empat garis sejajar yang}\\ &\textrm{berpotongan dengan garis yang terhimpun}\\ &\textrm{dalam 7 garis sejajar adalah}\: ....\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui bahwa kombinasi dari dua himpunan}\\ &\textrm{garis sejajar yang masing-masing berjumlah}\\ &\textrm{4 dan 7 garis, maka}\: \color{red}\textrm{banyak jajar genjang}\\ &\begin{aligned}&=\begin{pmatrix} 4\\ 2 \end{pmatrix}\times \begin{pmatrix} 7\\ 2 \end{pmatrix}\\ &=\displaystyle \frac{4!}{2!(4-2)!}\times \frac{7!}{2!\times (7-2)!}\\ &=\displaystyle \frac{4\times 3\times \not{2!}}{2\times \not{2!}}\times \frac{7\times 6\times \not{5!}}{2\times \not{5!}}\\ &=6\times 21\\ &=\color{red}126\: \: \color{black}\textrm{jajar genjang} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 14.&\textrm{Diketahui segi enam beraturan. Tentukanlah}\\ &\textrm{a}.\quad \textrm{Banyak diagonal dapat dibentuk}?\\ &\textrm{b}.\quad \textrm{Banyak segi tiga di dalamnya}?\\ &\textrm{c}.\quad \textrm{Banyak perpotongan diagonal-diagonal}\\ &\qquad \textrm{jika tidak ada titik-titik perpotongan}\\ &\qquad \textrm{yang sama}?\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui segi}-n\: \: \textrm{dengan}\: \: n=6\\ &\textrm{Dan perlu diingat bahwa di sini tidak diperlukan}\\ &\textrm{urutan mana yang perlu didahulukan, maka}\\ &\textrm{rumus kombinasi yang perlu digunakan, yaitu}\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Banyak diagonalnya adalah}:\\ &\begin{pmatrix} n\\ 2\end{pmatrix}-n=\displaystyle \frac{n(n-3)}{2}\\ &\Leftrightarrow \qquad\quad=\displaystyle \frac{6.(6-3)}{2}=\frac{6.3}{2}=\color{red}9\\ \textrm{b}.\quad&\textrm{Banyaknya segi tiga, berarti melibatkan}\\ &\textrm{tiga garis, maka}\\ &\begin{pmatrix} 6\\ 3 \end{pmatrix}=\displaystyle \frac{6!}{3!\times (6-3)!}=\frac{6\times 5\times 4\times \not{3!}}{6\times \not{3!}}=\color{red}20\\ \textrm{c}.\quad&\textrm{Satu buah titik potong dapat dibentuk}\\ &\textrm{dengan dua garis ekuivalen dengan empat}\\ &\textrm{buah titik sudut, maka banyaknya titik}\\ &\textrm{potong adalah}:\\ &\begin{pmatrix} 6\\ 4 \end{pmatrix}=\displaystyle \frac{6!}{4!\times (6-4)!}=\frac{6!}{4!\times 2!}=\color{red}15 \end{aligned} \end{array}$



$\begin{array}{ll}\\ 15.&\textrm{Perhatikalah dua ilustrasi gambar berikut} \end{array}$
Gambar (1)


Gambar (2)
$\begin{array}{ll}\\ .\quad\: \, &\textrm{Tentukanlah}\\ &\textrm{a}.\quad \textrm{jalur terpendek dari titik A ke B}\\ &\qquad \textrm{pada gambar (1)}\\ &\textrm{b}.\quad \textrm{jalur terpendek dari titik P ke Q}\\ &\qquad \textrm{pada gambar (2)}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Perhatikanlah bahwa langkah dari titik A}\\ &\textrm{ke titik B harus terdiri dari 8 langkah, yaitu}\\ &\textrm{3 langkah ke kanan dan 5 langkah ke atas}\\ &\textrm{Karena yang diinginkan lintasan terpendek}\\ &\textrm{dan tidak ada kekhususn harus dimulai dari}\\ &\textrm{mana, maka banyaknya langkah berbdeda}\\ &\textrm{dan terpendek adalah}:\\ &\begin{pmatrix} 8\\ 3 \end{pmatrix}\: \: \color{red}\textrm{atau}\: \: \color{black}\begin{pmatrix} 8\\ 5 \end{pmatrix}.\: \textrm{Misal kita hitung salah}\\ &\textrm{satunya saja}:\\ &\begin{pmatrix} 8\\ 3 \end{pmatrix}=\displaystyle \frac{8!}{3!(8-5)!}=\frac{8!}{3!\times 5!}=\frac{8.7.6.\not{5!}}{6.\not{5!}}=\color{red}56 \end{aligned} \end{array}$
$.\qquad\: \, \begin{aligned}\textrm{b}.\quad&\textrm{Untuk poin b, perhatikanlah ilustrasi}\\ &\textrm{gambar berikut(untuk memudahkan}\\ &\textrm{perhitungan). Tempatkan titik-titik}\\ &\textrm{bantu A, B, C, D, E, dan F seperti}\\ &\textrm{pada gambar berikut} \end{aligned}$

$.\qquad\: \, \begin{aligned}.\quad&\textrm{Perhatikanlah untuk setiap lintasan}\\ &\textrm{terpendek dari titik P ke titik Q}\\ &\textrm{dapat dipastikan akan melewati}\\ &\textrm{titik A, B, C, dan D. Sehingga dari}\\ &\textrm{keempat titik itulah akan diperoleh}\\ &\textrm{rute PAQ, PBQ, PCQ, dan PDQ}.\\ &\textrm{Sehingga banyak rute terpendek dari}\\ &\textrm{titik P ke Q yang selanjutnya kita}\\ &\textrm{simbolkan dengan}\: \: \color{red}\#PQ\: \: \color{black}\textrm{adalah}:\\ &\begin{aligned}\color{red}\#PQ&=\#PAQ+\#PBQ+\#PCQ+\#PDQ\\ &=\begin{pmatrix} 4\\ 0 \end{pmatrix}\begin{pmatrix} 5\\ 0 \end{pmatrix}+\begin{pmatrix} 4\\ 3 \end{pmatrix}\begin{pmatrix} 5\\ 1 \end{pmatrix}+\color{magenta}\#PECQ+\#PFCQ+\#PFDQ\\ &=1.1+4.5+\color{magenta}\begin{pmatrix} 3\\ 2 \end{pmatrix}\begin{pmatrix} 3\\ 0 \end{pmatrix}\begin{pmatrix} 3\\ 2 \end{pmatrix}\color{black}+\color{magenta}\begin{pmatrix} 3\\ 1 \end{pmatrix}\begin{pmatrix} 3\\ 1 \end{pmatrix}\begin{pmatrix} 3\\ 2 \end{pmatrix}\color{black}+\color{magenta}\begin{pmatrix} 3\\ 1 \end{pmatrix}\begin{pmatrix} 3\\ 0 \end{pmatrix}\begin{pmatrix} 3\\ 0 \end{pmatrix}\\ &=1+20+\color{magenta}3.1.3\color{black}+\color{magenta}3.3.3\color{black}+\color{magenta}3.1.1\\ &=1+20+9+27+3\\ &=\color{red}60 \end{aligned} \end{aligned}$


DAFTAR PUSTAKA

  1. Bintari, N. 2009. Master Juara Olimpiade Matematika SMA Nasional dan Internasional. Yogyakarta: PUSTAKA WIDYATAMA.
  2. Ibrahim, Mussafi, N, S, M. 2013. Pengantar Kombinatorika dan Teori Graf. Yogyakarta: GRAHA ILMU.
  3. Kanginan, M., Terzalgi, Y. 2014. Matematika untuk SMA-MA/SMK Kelas XI (Wajib). Bandung: SRIKANDI EMPAT WIDYA UTAMA.
  4. Sobirin. 2006. Kompas Matematika: Strategi Praktis Menguasai Tes Matematika (SMA Kelas XI IPA). Jakarta: KAWAN PUSTAKA.
  5. Sukino. 2011. Maestro Olimpiade Matematika SMP Seri B. Jakarta: ERLANGGA.
  6. Susyanto, N, 2012. Tutor Senior Olimpiade Matematika Lima Benua Tingkat SMP. Yogyakarta: KENDI MAS MEDIA.
  7. Tampomas, H. 1999. SeribuPena Matematika SMU Jilid 2 Kelas 2 Berdasarkan Kurikulum 1994 Suplemen CBPP 1999. Jakarta: ERLANGGA.