$\begin{array}{ll}\\ 21.&\textbf{(SPMB '04)}\\ &\textrm{Jika}\: \: a>1\: ,\: \textrm{maka penyelesaian untuk}\\ &\left (^{a}\log (2x+1) \right )\left ( ^{3}\log \sqrt{a} \right )=1\: \: \textrm{adalah}\: ....\\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle 1\\ \textrm{b}.&\displaystyle 2\\ \textrm{c}.&\displaystyle 3\\ \color{red}\textrm{d}.&\displaystyle 4\\ \textrm{e}.&\displaystyle 5 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\color{blue}\begin{aligned}\left (^{a}\log (2x+1) \right )\left ( ^{3}\log \sqrt{a} \right )&=1\\ \left ( ^{3}\log \sqrt{a} \right )\left (^{a}\log (2x+1) \right )&=1\\ \left ( ^{3}\log a^{.^{^{\frac{1}{2}}}} \right )\left (^{a}\log (2x+1) \right )&=1\\ \displaystyle \frac{1}{2}\left ( ^{3}\log a \right )\left (^{a}\log (2x+1) \right )&=1\\ ^{3}\log (2x+1)&=2\\ 2x+1&=3^{2}\\ 2x&=9-1\\ 2x&=8\\ x&=4 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 22.&\textbf{(SPMB '04)}\\ &\textrm{Nilai}\: \: \displaystyle \frac{\left ( ^{5}\log 10 \right )^{2}-\left ( ^{5}\log 2 \right )^{2}}{^{5}\log \sqrt{20}}\: \: \textrm{adalah}\: ....\\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle \frac{1}{2}\\ \textrm{b}.&\displaystyle 1\\ \color{red}\textrm{c}.&\displaystyle 2\\ \textrm{d}.&\displaystyle 4\\ \textrm{e}.&\displaystyle 5 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\color{blue}\begin{aligned}&\displaystyle \frac{\left ( ^{5}\log 10 \right )^{2}-\left ( ^{5}\log 2 \right )^{2}}{^{5}\log \sqrt{20}}\\ &=\displaystyle \frac{\left ( ^{5}\log 10+\: ^{5}\log 2 \right )\left ( ^{5}\log 10-\: ^{5}\log 2 \right )}{^{5}\log (20)^{.^{\frac{1}{2}}}}\\ &=\displaystyle \frac{^{5}\log (10.2)\times ^{5}\log \left (\frac{10}{2} \right )}{\displaystyle \frac{1}{2}\times \: ^{5}\log 20}\\ &=2\times \left ( \displaystyle \frac{^{5}\log 20}{^{5}\log 20} \right )\times \: ^{5}\log 5\\ &=2.1.1\\ &=2 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 23.&\textbf{(SPMB '03)}\\ &\textrm{Jika diketahui bahwa}\\ &^{4}\log ^{4}\log x-\: ^{4}\log ^{4}\log ^{4}\log 16=2\\ & \textrm{maka}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle ^{2}\log x=8\\ \textrm{b}.&\displaystyle ^{2}\log x=4\\ \color{red}\textrm{c}.&\displaystyle ^{4}\log x=8\\ \textrm{d}.&\displaystyle ^{4}\log x=16\\ \textrm{e}.&\displaystyle ^{16}\log x=8 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\color{blue}\begin{aligned}&^{4}\log \: ^{4}\log x-\: ^{4}\log \: ^{4}\log \: ^{4}\log 16=2\\ &\Leftrightarrow \: ^{4}\log \: ^{4}\log x-\: ^{4}\log \: ^{4}\log \: ^{4}\log 4^{2}=2\\ &\Leftrightarrow \: ^{4}\log \: ^{4}\log x-\: ^{4}\log \: ^{4}\log 2=2\\ &\Leftrightarrow \: ^{4}\log \: ^{4}\log x-\: ^{4}\log \: ^{2^{2}}\log 2^{1}=2\\ &\Leftrightarrow \: ^{4}\log \: ^{4}\log x-\: ^{4}\log \left ( \displaystyle \frac{1}{2} \right )=2\\ &\Leftrightarrow \: ^{4}\log \: ^{4}\log x-\: ^{2^{2}}\log 2^{-1}=2\\ &\Leftrightarrow \: ^{4}\log \: ^{4}\log x-\left ( -\displaystyle \frac{1}{2} \right )=2\\ &\Leftrightarrow \: ^{4}\log \: ^{4}\log x+\frac{1}{2}=2\\ &\Leftrightarrow \: ^{4}\log \: ^{4}\log x=2-\displaystyle \frac{1}{2}=\frac{3}{2}\\ &\Leftrightarrow \: ^{4}\log x=4^{.\frac{3}{2}}\\ &\Leftrightarrow \: ^{4}\log x=\left (2^{2} \right )^{.^{\frac{3}{2}}}\\ &\Leftrightarrow \: ^{4}\log x=2^{3}\\ &\Leftrightarrow \: ^{4}\log x=8\\ \end{aligned} \end{array}$
$\begin{array}{ll}\\ 24.&\textbf{(UMPTN '92)}\\ &\textrm{Jika}\: \: x\: \: \textrm{memenuhi persamaan}\\ &^{4}\log ^{4}\log x-\: ^{4}\log ^{4}\log ^{4}\log 16=2\\ & \textrm{maka nilai}\: \: ^{16}\log x=\: ....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&\displaystyle 4\\ \textrm{b}.&\displaystyle 2\\ \textrm{c}.&\displaystyle 1\\ \textrm{d}.&\displaystyle -2\\ \textrm{e}.&\displaystyle -4 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\color{blue}\begin{aligned}&^{4}\log \: ^{4}\log x-\: ^{4}\log \: ^{4}\log \: ^{4}\log 16=2\\ &\textrm{menyebabkan}\\ & ^{4}\log x=8\Rightarrow x=4^{8}\\ &(\color{purple}\textrm{lihat pembahasan no.23})\\ &\textrm{maka},\\ &\: ^{16}\log x=\: ^{16}\log 4^{8}=\: ^{4^{2}}\log 4^{8}\\ &=\displaystyle \frac{8}{2}\\ &=4 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 25.&\textbf{(UMPTN '94)}\\ &\textrm{Hasil kali akar-akar persamaan}\\ &^{3}\log x^{.\left (^{2+\: ^{3}\log x} \right )}=15\\ & \textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&\displaystyle \frac{1}{9}\\ \textrm{b}.&\displaystyle \frac{1}{3}\\ \textrm{c}.&\displaystyle 1\\ \textrm{d}.&\displaystyle 3\\ \textrm{e}.&\displaystyle 9 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\color{blue}\begin{aligned}&^{3}\log x^{.\left (^{2+\: ^{3}\log x} \right )}=15\\ &\Leftrightarrow \: \left ({2+\: ^{3}\log x} \right )^{3}\log x-15=0\\ &\Leftrightarrow 2\: ^{3}\log x+\: \left ( ^{3}\log x \right )^{2}-15=0\\ &\Leftrightarrow \: \left ( ^{3}\log x \right )^{2}+2\: ^{3}\log x-15=0\\ &\Leftrightarrow \: \left (^{3}\log x_{1}+5 \right )\left ( ^{3}\log x_{2}-3 \right )=0\\ &\Leftrightarrow \: ^{3}\log x_{1}+5=0\: \: \textrm{atau}\: \: ^{3}\log x_{1}-3=0\\ &\Leftrightarrow \: ^{3}\log x_{1}=-5\: \: \textrm{atau}\: \: ^{3}\log x_{2}=3\\ &\Leftrightarrow \: x_{1}=3^{-5}\: \: \textrm{atau}\: \: x_{2}=3^{3}\\ &\qquad \textrm{maka}\\ &\Leftrightarrow \: x_{1}\times x_{2}=3^{-5}\times 3^{3}=3^{-5+3}=3^{-2}\\ &\Leftrightarrow \qquad =\displaystyle \frac{1}{3^{2}}\\ &\Leftrightarrow \qquad =\frac{1}{9} \end{aligned} \end{array}$