- Faires, J. Douglas. 2006. Langkah Pertama Menuju Olimpiade Matematika Menggunakan Kompetisi Matematika Amerika, ed. ke-3. Terjemahan: Tim Penerjemah. Pakar Raya, Bandung. 307 hal.
Contoh Soal Numerasi Lanjutan Persiapan Asesmen Nasional (AN)
Mencoba Lebih Dekat dengan Numerasi AKM untuk Siswa Setingkat SMA/MA atau Sederajat pada Asesmen Nasional (AN)
A. Apa itu AKM
AKM adalah singkatan dari Asesmen Kompetensi Minimum merupakan penilaian kompetensi mendasar yang diperlukan oleh semua murid untuk mampu mengembangkan kapasitas diri dan berpartisipasi positif pada masyarakat.
Ada 2 macam kompetensi mendasar yang akan diukur pada AKM ini, yaitu: literasi membaca dan literasi matematika (numerasi). Baik literasi membaca maupun literasi matematika/numerasi, kompetensi mendasar yang akan dinilai mencakup
- keterampilan berpikir logis-sistematis
- keterampilan bernalar dengan konsep yang ada
- keterampilan mengolah data dan fakta dari informasi yang ada.
- Azis, A., Budi, D. S. 2013. Kupas Tuntas Olimpiade Matematika Tingkat SD. Yogyakarta: ANDI.
- Pusat Asesmen dan Pembelajaran Balitbang dan Perbukuan. 2021. Kebijakan Asesmen Nasional 2021. Jakarta: Kementerian Pendidikan dan Kebudayaan.
- Pusat Asesmen dan Pembelajaran: Asesmen Kompetensi Minimum. http://pusmenjar.kemdikbud.go.id/AKM
- Susyanto, N. 2012. Tutor Senior Olimpiade Matematika Lima Benua Tingkat SMP. Yogyakarta: KENDI MAS MEDIA.
- Thohir, Ahmad, 2013. Materi Contoh Soal dan Pembahasan Olimpiade Matematika MA/SMA. Grobogan: MA FUTUHIYAH.
Lanjutan 4 Persamaan Trigonometri
B. 2 Persamaan Trigonometri Bentuk Kuadrat
Persamaan trigonometri terkadang juga terdapat dalam bentuk kuadrat, sehingga penyelesaiannya menyesuaikan dengan persamaan kuadrat tersebut yaitu proses faktorisasi, atau melengkapkan kudrat sempurna,dan atau dengan rumus ABC.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &\sin x-2\sin ^{2}x=0\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq x\leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &\sin x-2\sin ^{2}x=0\: \: (\textbf{lalu difaktorkan})\\ &\sin x\left ( 1-2\sin x \right )=0\\ &\sin x=0\: \: \textrm{atau}\: \: 1-2\sin x=0\\ &\textrm{selanjutnya}\\ &\begin{array}{|l|l|}\hline \begin{aligned}\sin x&=0\\ \sin x&=\sin 0^{\circ}\\ x&=0^{\circ}+k.360^{\circ}\\ &\color{red}\textrm{atau}\\ x&=180^{\circ}+k.360^{\circ}\\ \textrm{saat}&\: \: k=0\\ x&=0^{\circ}\: \: \textrm{dan}\: \: 180^{\circ}\\ \textrm{saat}&\: \: k=1\\ x&=360^{\circ}\: \: \textrm{dan}\: \: \color{red}540^{\circ} \end{aligned}&\begin{aligned}\sin x&=\displaystyle \frac{1}{2}\\ \sin x&=\sin 30^{\circ}\\ x&=30^{\circ}+k.360^{\circ}\\ &\color{red}\textrm{atau}\\ x&=\left (180^{\circ}-30^{\circ} \right )+k.360^{\circ}\\ &=150^{\circ}+k.360^{\circ}\\ \textrm{saat}&\: \: k=0\\ x&=30^{\circ}\: \: \textrm{dan}\: \: 150^{\circ}\\ \textrm{saat}&\: \: k=1\\ x&=\color{red}390^{\circ}\: \: \color{black}\textrm{dan}\: \: \color{red}510^{\circ} \end{aligned} \\\hline \end{array}\\ &\textbf{HP}=\left \{ 0^{\circ},30^{\circ},150^{\circ},180^{\circ},360^{\circ} \right \} \end{array}$
$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &2\tan ^{2}\theta -\sec \theta +1=0\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq \theta \leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &\tan ^{2}\theta -\sec \theta +1=0\\ &2\left (\sec ^{2}\theta -1 \right )-\sec \theta +1=0\\ &2\sec ^{2}\theta -\sec \theta -1=0\: \: (\textbf{lalu difaktorkan})\\ &\left (2\sec \theta +1 \right )\left ( \sec \theta -1 \right )=0\\ &\left (2\sec \theta +1 \right )=0\: \: \textrm{atau}\: \: \left (\sec \theta -1 \right )=0\\ &\sec \theta =-\displaystyle \frac{1}{2}\: \: \textrm{atau}\: \: \sec \theta =1\\ &\displaystyle \frac{1}{\cos \theta }=-\frac{1}{2}\: \: \textrm{atau}\: \: \displaystyle \frac{1}{\cos \theta }=1\\ &\cos \theta =-2\: (\textbf{tidak mungkin})\: \: \textrm{atau}\: \: \cos \theta =1\\ &\textrm{selanjutnya}\\ &\cos \theta =1\Leftrightarrow \cos \theta =\cos 0^{\circ}\\ &\Leftrightarrow \theta =\pm 0^{\circ}+k.360^{\circ}\Leftrightarrow \theta =k.360^{\circ}\\ &k=0\Rightarrow x=0^{\circ}\\ &k=1\Rightarrow x=360^{\circ}\\ &k=2\Rightarrow x=\color{red}720^{\circ}\: \: \textrm{tidak memenuhi}\\ &\textbf{HP}=\left \{ 0^{\circ},360^{\circ} \right \} \end{array}$.
$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &5\cos ^{2}\beta +3\cos \beta =2\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq \beta \leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &5\cos ^{2}\beta +3\cos \beta =2\\ &5\cos ^{2}\beta +3\cos \beta -2=0\: \: (\textbf{lalu difaktorkan})\\ &\left ( 5\cos \beta -2 \right )\left ( \cos \beta +1 \right )=0\\ &\left ( 5\cos \beta -2 \right )=0\: \: \textrm{atau}\: \: \left ( \cos \beta +1 \right )=0\\ &5\cos \beta -2=0\: \: \textrm{atau}\: \: \cos \beta +1=0\\ &\cos \beta =\displaystyle \frac{2}{5}\: \: \textrm{atau}\: \: \cos \beta =-1\\ &\cos \beta =\cos 66,4^{\circ}\: \: \textrm{atau}\: \: \cos \beta =180^{\circ}\\ &\textrm{selanjutnya}\\ &\begin{array}{|l|l|}\hline \begin{aligned}\beta &=\pm 66,4^{\circ}+k.360^{\circ}\\ k=0&\Rightarrow \beta =66,4^{\circ}\: \: \textrm{atau}\\ &\beta =-66,4^{\circ}\: \: (\textrm{tm})\\ k=1&\Rightarrow \beta =426,4^{\circ}\: \: (\textrm{tm})\\ & \textrm{atau}\: \: \beta =293,6^{\circ}\\ k=2&\Rightarrow \beta \: \: \textrm{tidak ada }\\ &\qquad\textrm{yang memenuhi} \end{aligned}&\begin{aligned}\beta &=\pm 180^{\circ}+k.360^{\circ}\\ k=0&\Rightarrow \beta =180^{\circ}\: \: \textrm{atau}\\ &\beta =-180^{\circ}\: \: (\textrm{tm})\\ k=1&\Rightarrow \beta =540^{\circ}\: \: (\textrm{tm})\\ &\textrm{atau}\: \: \beta =180^{\circ}\\ k=2&\Rightarrow \beta \: \: \textrm{tidak ada }\\ &\qquad\textrm{yang memenuhi} \end{aligned} \\\hline \end{array}\\ &\textbf{HP}=\left \{ 66,4^{\circ},180^{\circ},293,6^{\circ} \right \} \end{array}$.
$\begin{array}{ll}\\ 4.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &2\sin ^{2}\gamma +3\cos \gamma =3\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq \gamma \leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &2\sin ^{2}\gamma +3\cos \gamma =3\\ &2\left ( 1-\cos ^{2}\gamma \right ) +3\cos \gamma -3=0\\ &2-2\cos ^{2}\gamma +3\cos \gamma -3=0\\ &-2\cos ^{2}\gamma +3\cos \gamma -1=0\\ &2\cos ^{2}\gamma -3\cos \gamma +1=0\: \: (\textbf{lalu difaktorkan})\\ &\left ( 2\cos \gamma -1 \right )\left ( \cos \gamma -1 \right )=0\\ &\left ( 2\cos \gamma -1 \right )=0\: \:\textrm{ atau}\: \: \left ( \cos \gamma -1 \right )=0\\ &\cos \gamma =\displaystyle \frac{1}{2}\: \: \textrm{atau}\: \: \cos \gamma =1\\ &\cos \gamma =\cos 60^{\circ}\: \: \textrm{atau}\: \: \cos \gamma =0^{\circ}\\ &\textrm{selanjutnya}\\ &\begin{array}{|l|l|}\hline \begin{aligned}\gamma &=\pm 60^{\circ}+k.360^{\circ}\\ k=0&\Rightarrow \gamma =60^{\circ}\: \: \textrm{atau}\\ &\gamma =-60^{\circ}\: \: (\textrm{tm})\\ k=1&\Rightarrow \gamma =420^{\circ}\: \: (\textrm{tm})\\ & \textrm{atau}\: \: \gamma =300^{\circ}\\ k=2&\Rightarrow \gamma \: \: \textrm{tidak ada }\\ &\quad\textrm{yang memenuhi} \end{aligned}&\begin{aligned}\gamma &=\pm 0^{\circ}+k.360^{\circ}\\ \gamma &=0^{\circ}+k.360^{\circ}\\ k=0&\Rightarrow \gamma =0^{\circ}\\ k=1&\Rightarrow \gamma =360^{\circ}\\ k=2&\Rightarrow \gamma \: \: \textrm{tidak ada}\\ &\quad\textrm{yang memenuhi}\\ &\vdots \\ \end{aligned} \\\hline \end{array}\\ &\textbf{HP}=\left \{ 0^{\circ},60^{\circ},300^{\circ},360^{\circ} \right \} \end{array}$
B. 3 Persamaan Trigonometri Bentuk a sin x + b cos x
Selain bentuk sederhana seperti yang telah diuraikan pada materi sebelumnya (lihat di sini), terdapat persamaan trigonometri bentuk $a\sin x+b\cos x$. Bentuk $a\sin x+b\cos x$ ini dalam penyelesaiannya diubah ke dalam bentuk $k\cos (x-\alpha )$. Adapun untuk menemukan pembuktian dari kesamaan rumus ini, Anda harus mempelajari materi rumus trigonometri jumlah dan selisih dua sudut.
$\begin{aligned}a\sin x&+b\cos x=k\cos \left ( x-\theta \right )\\ \color{purple}\textrm{denga}&\color{purple}\textrm{n}:\: \: \\ &k=\sqrt{a^{2}+b^{2}}\\ &\tan \theta =\displaystyle \frac{a}{b}\\ &(a>0\: \: \textrm{dan}\: \: b>0,\: \textrm{maka}\: \theta \: \textrm{di kuadran I})\\ &(a>0\: \: \textrm{dan}\: \: b<0,\: \textrm{maka}\: \theta \: \textrm{di kuadran II})\\ &(a<0\: \: \textrm{dan}\: \: b<0,\: \textrm{maka}\: \theta \: \textrm{di kuadran III})\\ &(a<0\: \: \textrm{dan}\: \: b>0,\: \textrm{maka}\: \theta \: \textrm{di kuadran IV})\\\\ &\textrm{dengan}\: \: a\: \: \textrm{pada sumbu Y dan}\\ &\: \: \, \quad\quad\quad b\: \: \textrm{pada sumbu X} \end{aligned}$
$\begin{aligned}&\textbf{Dan ingat juga tabel nilai tangen}\\ &\textbf{berikut}\\ &\begin{array}{|c|c|c|c|c|c|}\hline \theta &0^{\circ}&30^{\circ}&45^{\circ}&60^{\circ}&90^{\circ}\\ &&&&&\\\hline \tan \theta &\color{blue}0&\displaystyle \frac{1}{3}\sqrt{3}&1&\sqrt{3}&\color{red}\textbf{TD}\\ &&&&&\\\hline \theta &120^{\circ}&135^{\circ}&150^{\circ}&180^{\circ}&\\ &&&&&\\\hline \tan \theta &-\sqrt{3}&-1&-\displaystyle \frac{1}{3}\sqrt{3}&\color{blue}0&\\ &&&&&\\\hline \end{array} \end{aligned}$.
$\begin{aligned}&\begin{array}{|c|c|c|c|c|c|}\hline \theta &180^{\circ}&210^{\circ}&225^{\circ}&240^{\circ}&270^{\circ}\\ &&&&&\\\hline \tan \theta &\color{blue}0&\displaystyle \frac{1}{3}\sqrt{3}&1&\sqrt{3}&\color{red}\textbf{TD}\\ &&&&&\\\hline \theta &300^{\circ}&315^{\circ}&345^{\circ}&360^{\circ}&\\ &&&&&\\\hline \tan \theta &-\sqrt{3}&-1&-\displaystyle \frac{1}{3}\sqrt{3}&\color{blue}0&\\ &&&&&\\\hline \end{array} \end{aligned}$.
Untuk lebih lanjut tentang bukti dan lain sebagainya akan dipelajari di subbab berikutnya setelah materi persamaan trigonometri ini.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &\sin x+\sqrt{3}\cos x=2\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq \theta \leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &\sin x+\sqrt{3}\cos x=2\quad \left (\textbf{ingat}:a=1,\: b=\sqrt{3} \right )\\ &\sin x+\sqrt{3}\cos x=k\cos \left ( x-\theta \right )=2\\ &\begin{cases} k & =\sqrt{1^{2}+\left ( \sqrt{3} \right )^{2}}=\sqrt{4}=2 \\ \tan & \theta =\displaystyle \frac{a}{b}=\displaystyle \frac{1}{\sqrt{3}}=\displaystyle \frac{1}{3}\sqrt{3}\Rightarrow \theta =30^{\circ} \end{cases}\\ &\qquad\quad\textrm{sudut}\: \: \theta \: \: \textrm{di kuadran I, karena}\: \: a,b>0\\ &\textrm{selanjutnya}\\ &\begin{aligned}&\sin x+\sqrt{3}\cos x=k\cos \left ( x-\theta \right )=2\\ &\Leftrightarrow 2\cos\left ( x-30^{\circ} \right )=2\\ &\Leftrightarrow \: \: \, \cos \left ( x-30^{\circ} \right )=1\\ &\Leftrightarrow \: \: \,\cos \left ( x-30^{\circ} \right )=\cos 0^{\circ}\\ &\Leftrightarrow \quad x-30^{\circ} =\pm 0^{\circ}+k.360^{\circ}\\ &\Leftrightarrow \quad x=30^{\circ}\pm 0^{\circ}+k.360^{\circ}\\ &\Leftrightarrow \quad x=30^{\circ}+k.360^{\circ}\\ &k=0\Rightarrow x=30^{\circ}\qquad (\color{blue}\textrm{memenuhi})\\ &k=1\Rightarrow x=390^{\circ}\qquad (\color{red}\textrm{tm})\\ \end{aligned}\\ &\textbf{HP}=\left \{30^{\circ} \right \} \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &\sin x-\sqrt{3}\cos x=\sqrt{2}\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq \theta \leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &\sin x-\sqrt{3}\cos x=\sqrt{2}\: \: \left (\textbf{ingat}:a=1,\: b=-\sqrt{3} \right )\\ &\sin x-\sqrt{3}\cos x=k\cos \left ( x-\theta \right )=\sqrt{2}\\ &\begin{cases} k & =\sqrt{1^{2}+\left ( -\sqrt{3} \right )^{2}}=\sqrt{4}=2 \\ \tan & \theta =\displaystyle \frac{a}{b}=\displaystyle \frac{1}{-\sqrt{3}}=-\displaystyle \frac{1}{3}\sqrt{3}\Rightarrow \theta =150^{\circ} \end{cases}\\ &\quad\quad\textrm{sudut}\: \: \theta \: \: \textrm{di kuadran II, karena}\: \: a>0,\: b<0\\ &\textrm{selanjutnya}\\ &\begin{aligned}&\sin x-\sqrt{3}\cos x=k\cos \left ( x-\theta \right )=\sqrt{2}\\ &\Leftrightarrow 2\cos\left ( x-150^{\circ} \right )=\sqrt{2}\\ &\Leftrightarrow \: \: \, \cos \left ( x-150^{\circ} \right )=\displaystyle \frac{\sqrt{2}}{2}=\displaystyle \frac{1}{2}\sqrt{2}\\ &\Leftrightarrow \: \: \,\cos \left ( x-150^{\circ} \right )=\cos 45^{\circ}\\ &\Leftrightarrow \quad x-150^{\circ} =\pm 45^{\circ}+k.360^{\circ}\\ &\Leftrightarrow \quad x=150^{\circ}\pm 45^{\circ}+k.360^{\circ}\\ &k=0\Rightarrow x=150^{\circ}+45^{\circ}=195^{\circ}\: \: (\color{blue}\textrm{mm})\: \: \color{black}\textrm{atau}\\ &\qquad\qquad x=150^{\circ}-45^{\circ}=105^{\circ}\: \: (\color{blue}\textrm{mm})\\ &k=1\Rightarrow x=150^{\circ}\pm 45^{\circ}+360^{\circ}\quad (\color{red}\textrm{tm})\\ \end{aligned} \\ &\textbf{HP}=\left \{105^{\circ},195^{\circ} \right \} \end{array}$.
$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &\sqrt{6}\sin x+\sqrt{2}\cos x=2\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq \theta \leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &\sqrt{6}\sin x+\sqrt{2}\cos x=2\: \: \left (\textbf{ingat}:a=\sqrt{6},\: b=\sqrt{2} \right )\\ &\sqrt{6}\sin x+\sqrt{2}\cos x=k\cos \left ( x-\theta \right )=2\\ &\begin{cases} k & =\sqrt{\left (\sqrt{6} \right )^{2}+\left ( \sqrt{2} \right )^{2}}=\sqrt{8}=2\sqrt{2} \\ \tan & \theta =\displaystyle \frac{a}{b}=\displaystyle \frac{\sqrt{6}}{\sqrt{2}}=\sqrt{3}\Rightarrow \theta =60^{\circ} \end{cases}\\ &\quad\quad\textrm{sudut}\: \: \theta \: \: \textrm{di kuadran I, karena}\: \: a>0,\: b>0\\ &\textrm{selanjutnya}\\ &\begin{aligned}&\sqrt{6}\sin x+\sqrt{2}\cos x=k\cos \left ( x-\theta \right )=2\\ &\Leftrightarrow 2\sqrt{2}\cos\left ( x-60^{\circ} \right )=2\\ &\Leftrightarrow \: \: \, \cos \left ( x-60^{\circ} \right )=\displaystyle \frac{2}{2\sqrt{2}}=\frac{1}{\sqrt{2}}=\displaystyle \frac{1}{2}\sqrt{2}\\ &\Leftrightarrow \: \: \,\cos \left ( x-60^{\circ} \right )=\cos 45^{\circ}\\ &\Leftrightarrow \quad x-60^{\circ} =\pm 45^{\circ}+k.360^{\circ}\\ &\Leftrightarrow \quad x=60^{\circ}\pm 45^{\circ}+k.360^{\circ}\\ &k=0\Rightarrow x=60^{\circ}+45^{\circ}=105^{\circ}\: \: (\color{blue}\textrm{mm})\: \: \color{black}\textrm{atau}\\ &\qquad\qquad x=60^{\circ}-45^{\circ}=15^{\circ}\: \: (\color{blue}\textrm{mm})\\ &k=1\Rightarrow x=60^{\circ}\pm 45^{\circ}+360^{\circ}\quad (\color{red}\textrm{tm})\\ \end{aligned} \\ &\textbf{HP}=\left \{15^{\circ},105^{\circ} \right \} \end{array}$.
$\begin{array}{ll}\\ 4.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &\cos x-\sqrt{3}\sin x=1\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq \theta \leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &-\sqrt{3}\sin x+\cos x=1\: \: \left (\textbf{ingat}:a=-\sqrt{3},\: b=1 \right )\\ &-\sqrt{3}\sin x+\cos x=k\cos \left ( x-\theta \right )=1\\ &\begin{cases} k & =\sqrt{\left ( -\sqrt{3} \right )^{2}+\left ( 1 \right )^{2}}=\sqrt{4}=2 \\ \tan & \theta =\displaystyle \frac{a}{b}=\displaystyle \frac{-\sqrt{3}}{1}=-\sqrt{3}\Rightarrow \theta =300^{\circ} \end{cases}\\ &\quad\quad\textrm{sudut}\: \: \theta \: \: \textrm{di kuadran IV, karena}\: \: a<0,\: b>0\\ &\textrm{selanjutnya}\\ &\begin{aligned}&-\sqrt{3}\sin x+\cos x=k\cos \left ( x-\theta \right )=1\\ &\Leftrightarrow 2\cos\left ( x-300^{\circ} \right )=1\\ &\Leftrightarrow \: \: \, \cos \left ( x-300^{\circ} \right )=\displaystyle \frac{1}{2}\\ &\Leftrightarrow \: \: \,\cos \left ( x-300^{\circ} \right )=\cos 60^{\circ}\\ &\Leftrightarrow \quad x-300^{\circ} =\pm 60^{\circ}+k.360^{\circ}\\ &\Leftrightarrow \quad x=300^{\circ}\pm 60^{\circ}+k.360^{\circ}\\ &k=0\Rightarrow x=300^{\circ}+60^{\circ}=360^{\circ}=0^{\circ}\: \: (\color{blue}\textrm{mm})\: \: \color{black}\textrm{atau}\\ &\qquad\qquad x=300^{\circ}-60^{\circ}=240^{\circ}\: \: (\color{blue}\textrm{mm})\\ &k=1\Rightarrow x=300^{\circ}\pm 60^{\circ}+360^{\circ}\quad (\color{red}\textrm{tm})\\ \end{aligned} \\ &\textbf{HP}=\left \{0^{\circ},240^{\circ},360^{\circ} \right \} \end{array}$
DAFTAR PUSTAKA
- Kanginan, M., Nurdiasyah, H., Akhmad, G. 2016. Matematika untuk Siswa SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: YRAMA WIDYA.
- Noormandiri, B. K. 2016. Matematika untuk Siswa SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.
- Sembiring, S., Zulkifli, M., Marsito, Rusdi, I. 2017. Matematika untuk Siswa SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: SRIKANDI EMPAT WIDYA UTAMA.
- Sukino. 2016. Matematika untuk Siswa SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.
Lanjutan Materi : Persamaan Eksponen
A. Persamaan Eksponen
Berikut bentuk persamaan eksponen yang sering digunakan terangkum dalam tabel berikut beserta cara penyelesaiannya
$\begin{array}{|c|l|l|}\hline \textbf{No}&\textbf{Persamaan Eksponen}&\textbf{Penyelesaian}\\\hline 1&a^{f(x)}=1,\: \: a>0,a\neq 1&f(x)=0\\\hline 2&a^{f(x)}=a^{p},\: \: a>0,a\neq 1&f(x)=p\\\hline 3&a^{f(x)}=a^{g(x)},\: \: a>0,a\neq 1&f(x)=g(x)\\\hline 4&a^{f(x)}=b^{f(x)},\: \: a>0,a\neq 1&f(x)=0\\ &\qquad\quad \textrm{dan}\: \: b>0,\: b\neq 1&\\\hline 5&h(x)^{f(x)}=h(x)^{g(x)}&\begin{aligned}(1)\: &f(x)=g(x)\\ (2)\: &h(x)=1\\ (3)\: &h(x)=0\\ &\textrm{dengan syarat}\\ &f(x)> 0\: \: \textrm{dan}\\ &g(x)> 0\\ (4)\: &h(x)=-1\\ &\textrm{dengan syarat}\\ &f(x)\: \textrm{dan}\: g(x)\\ &\textrm{keduanya}\\ &\textrm{genap atau}\\ &\textrm{keduanya}\\ &\textrm{ganjil}\\ &\color{red}\textrm{atau}\\ &\textrm{dapat juga}\\ &\textrm{ditunjukkan}\\ &\color{blue}(-1)^{f(x)}=(-1)^{g(x)} \end{aligned}\\\hline 6&g(x)^{f(x)}=h(x)^{f(x)}&\begin{aligned}(1)\: &g(x)=h(x)\\ (2)\: &f(x)=0\\ &\textrm{dengan syarat}\\ &g(x)\neq 0\: \: \textrm{dan}\\ &h(x)\neq 0\\ \end{aligned}\\\hline 7&f(x)^{g(x)}=1&\begin{aligned}(1)\: &f(x)=1\\ (2)\: &f(x)=-1\\ &\textrm{dengan syarat}\\ &g(x)\: \: \textrm{genap}\\ (3)\: &g(x)=0\\ &\textrm{dengan syarat}\\ &f(x)\neq 0 \end{aligned}\\\hline 8&A\left ( a^{f(x)} \right )^{2}+B\left ( a^{f(x)} \right )+C=0&\begin{aligned}&\textrm{ubah}\: \: a^{f(x)}=y\\ &\textrm{sehingga}\\ &Ay^{2}+By+C=0\\ &\textrm{selanjutnya}\\ &\textrm{substitusikan}\\ &\textrm{nilai}\: \: y\: \: \textrm{ke}\\ &\textrm{persamaan}\\ &a^{f(x)}=y \end{aligned}\\\hline \end{array}$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Tentukan himpunan penyelesaian dari}\\ &\textrm{a}.\quad 2^{2x-2021}=1\\ &\textrm{b}.\quad \left ( \displaystyle \frac{1}{2} \right )^{2x-2021}=1\\ &\textrm{c}.\quad \sqrt{2}^{2x-2021}=1\\\\ &\textbf{Jawab}:\\ &\begin{array}{|c|c|c|}\hline \textrm{a}&\textrm{b}&\textrm{c}\\\hline \begin{aligned} 2^{2x-2021}&=1\\ 2^{2x-2021}&=2^{0}\\ 2x-2021&=0\\ 2x&=2021\\ x&=\displaystyle \frac{2021}{2}\\ & \end{aligned}&\begin{aligned} \left ( \displaystyle \frac{1}{2} \right )^{2x-2021}&=1\\ \left ( \displaystyle \frac{1}{2} \right )^{2x-2021}&=\left ( \frac{1}{2} \right )^{0}\\ 2x-2021&=0\\ 2x&=2021\\ x&=\displaystyle \frac{2021}{2} \end{aligned}&\begin{aligned} \sqrt{2}^{2x-2021}&=1\\ \sqrt{2}^{2x-2021}&=\sqrt{2}^{0}\\ 2x-2021&=0\\ 2x&=2021\\ x&=\displaystyle \frac{2021}{2}\\ & \end{aligned}\\\hline \textbf{HP}=\left \{ \displaystyle \frac{2021}{2} \right \}&\textbf{HP}=\left \{ \displaystyle \frac{2021}{2} \right \}&\textbf{HP}=\left \{ \displaystyle \frac{2021}{2} \right \}\\\hline \end{array}\\ \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Tentukan himpunan penyelesaian dari}\\ &\textrm{a}.\quad 2^{2x-2021}=128\\ &\textrm{b}.\quad \left ( \displaystyle \frac{1}{2} \right )^{2x-2021}=128\\ &\textrm{c}.\quad \sqrt{2}^{2x-2021}=128\\\\ &\textbf{Jawab}:\\ &\begin{array}{|c|c|c|}\hline \textrm{a}&\textrm{b}&\textrm{c}\\\hline \begin{aligned} 2^{2x-2021}&=128\\ 2^{2x-2021}&=2^{7}\\ 2x-2021&=7\\ 2x=7&+2021\\ x=\displaystyle \frac{2028}{2}&=1014\\ & \end{aligned}&\begin{aligned} \left ( \displaystyle \frac{1}{2} \right )^{2x-2021}&=128\\ \left ( \displaystyle \frac{1}{2} \right )^{2x-2021}&=\left ( \displaystyle \frac{1}{2} \right )^{-7}\\ 2x-2021&=-7\\ 2x=2021&-7\\ x=\displaystyle \frac{2014}{2}&=1007 \end{aligned}&\begin{aligned} \sqrt{2}^{2x-2021}&=128\\ \sqrt{2}^{2x-2021}&=\sqrt{2}^{256}\\ 2x-2021&=256\\ 2x=2021&+256\\ x&=\displaystyle \frac{2277}{2}\\ & \end{aligned}\\\hline \textbf{HP}=\left \{ 1014 \right \}&\textbf{HP}=\left \{ \displaystyle 1007 \right \}&\textbf{HP}=\left \{ \displaystyle \frac{2277}{2} \right \}\\\hline \end{array}\\ \end{array}$.
$\begin{array}{ll}\\ 3.&(\textbf{SPMB 04})\textrm{Nilai}\: \: x\: \: \textrm{yang memenuhi}\\ &\displaystyle \frac{27}{3^{2x-1}}=81^{-0,125} \: \: \textrm{adalah... .}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\displaystyle \frac{27}{3^{2x-1}}&=81^{-0,125}\\ 3^{3-(2x-1)}&=3^{4(\frac{1}{8})}\\ 3-2x+1&=-\displaystyle \frac{1}{2}\\ -2x+4&=-\displaystyle \frac{1}{2}\\ -x+2&=-\displaystyle \frac{1}{4}\\ -x&=-2-\displaystyle \frac{1}{4}\\ -x&=-2\displaystyle \frac{1}{4}\\ x&=2\displaystyle \frac{1}{4} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 4.&(\textbf{UMPTN 00})\\ &\textrm{Bentuk}\: \: \left (\sqrt[3]{\displaystyle \frac{1}{243}} \right )^{3x}=\left ( \displaystyle \frac{3}{3^{x-2}} \right )^{2}\sqrt[3]{\displaystyle \frac{1}{9}}\\ &\textrm{Jika}\: \: x_{0}\: \: \textrm{memenuhi persamaan, maka nilai}\\ &1-\displaystyle \frac{3}{4}x_{0}=\: ....\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\left (\sqrt[3]{\displaystyle \frac{1}{243}} \right )^{3x}&=\left ( \displaystyle \frac{3}{3^{x-2}} \right )^{2}\sqrt[3]{\displaystyle \frac{1}{9}}\\ 3^{-5x}&=3^{2(1-(x-2))}.3^{-\frac{2}{3}}\\ -5x&=2(1-(x-2))+\left ( -\displaystyle \frac{2}{3} \right ),\: \: \textrm{dikali}\: \: 3\\ -15x&=6(3-x)+(-2)\\ -15x&=18-6x-2\\ 6x-15x&=16\\ -9x&=16\\ x&=\displaystyle \frac{16}{-9}\\ x_{0}&=-\displaystyle \frac{16}{9},\: \: \textrm{selanjutnya}\\ 1-\displaystyle \frac{3}{4}x_{0}&=1-\displaystyle \frac{3}{4}\times \left (-\frac{16}{9} \right )\\ &=1+\frac{4}{3}\\ &=1+1\displaystyle \frac{1}{3}\\ &=2\displaystyle \frac{1}{3} \end{aligned} \end{array}$.
$\begin{array}{l}\\ 5.&\textrm{Jumlah akar-akar persamaan}\\ & 5^{x+1}+5^{2-x}-30=0\: \: \textrm{adalah}\: ....\\\\ &\textbf{Jawab}:\\ &\begin{aligned}5^{x+1}+5^{2-x}-30&=0\\ \left (5^{x} \right ).5^{1}+\displaystyle \frac{5^{2}}{5^{x}}-30&=0\\ 5\left ( 5^{x} \right )^{2}+25-30\left ( 5^{x} \right )&=0\\ \textrm{Persamaan kuadrat}&\: \textrm{dalam}\: \: 5^{x},\: \textrm{maka}\\ 5(5^{x})^{2}-30(5^{x})+25&=0\begin{cases} a & =5 \\ b & =-30 \\ c & =25 \end{cases}\\ (5^{x_{1}}).\left ( 5^{x_{2}} \right )&=\displaystyle \frac{c}{a}\\ 5^{x_{1}+x_{2}}&=\displaystyle \frac{25}{5}=5\\ 5^{x_{1}+x_{2}}&=5^{1}\\ x_{1}+x_{2}&=1 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 6.&\textrm{Jumlah akar-akar persamaan}\\ &2023^{x^{2}-7x+7}=2024^{x^{2}-7x+7}\: \: \textrm{adalah}\: ....\\\\ &\textbf{Jawab}:\\ &\begin{aligned}2023^{x^{2}-7x+7}&=2024^{x^{2}-7x+7}\\ \textrm{Karena basis}&\: \textrm{tidak sama},\\ \textrm{maka harusl}&\textrm{ah pangkatnya}=0,\\ x^{2}-7x+7&=0\\ \textrm{dan jumlah}\: &\textrm{akar-akarnya adalah}:\\ x_{1}+x_{2}&=-\displaystyle \frac{b}{a}, \: \: \textrm{dari persamaan}\\ x^{2}-7x+7&=0\begin{cases} a &=1 \\ b &=-7 \\ c &=7 \end{cases}\\ \textrm{maka}\: \: x_{1}+x_{2}&=-\displaystyle \frac{b}{a}=-\frac{-7}{1}=7 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 7.&\textrm{Tentukan himpunan penyelesaian dari}\\ &(x-2)^{x^{2}-7x+6}=1\: \: \textrm{adalah}\: ....\\\\ &\textbf{Jawab}:\\ &\textrm{Ingat bentuk}\: \: \: f(x)^{g(x)}=1\begin{cases} f(x) & =x-2 \\ g(x) & =x^{2}-7x+5 \end{cases}\\ &\begin{array}{|l|l|l|}\hline f(x)=1&f(x)=-1&g(x)=0\\ &\textrm{Syarat}\: \: g(x)\: \: \textrm{genap}&\textrm{Syarat}\: \: f(x)\neq 0\\\hline \begin{aligned}x&-2=1\\ x&=3\\ & \end{aligned}&\begin{aligned}x&-2=-1\\ x&=2-1=1\\ & \end{aligned}&\begin{aligned}x^{2}&-7x+6=0\\ \Leftrightarrow &(x-1)(x-6)\\ \Leftrightarrow &\: x=1\: \: \textrm{atau}\: \: x=6 \end{aligned}\\\hline &\begin{aligned}\textrm{S}&\textrm{yaratnya}\: \: x\\ \textrm{u}&\textrm{ntuk}\: \: x=1\\ g&(1)=1^{2}-7+6\\ &=0\: \: (\textrm{memenuhi}) \end{aligned}&\begin{aligned}f(1)&=1-2=-1\neq 0\\ f(6)&=6-2=4\neq 0\\ &\\ & \end{aligned}\\ &\textbf{Catatan}:\: 0&\\ &\textrm{paritasnya genap}&\\\hline \end{array}\\ &\textbf{HP}=\left \{ 1,3,6 \right \} \end{array}$.
$\begin{array}{ll}\\ 8.&\textrm{Tentukan himpunan penyelesaian dari}\\ &(x^{2}-9x+19)^{2x+3}=(x^{2}-9x+19)^{x-1}\: \: \textrm{adalah}\: ....\\\\ &\textbf{Jawab}:\\ &\textrm{Ingat bentuk}\: \: \: h(x)^{f(x)}=h(x)^{g(x)}\begin{cases} h(x) & =x^{2}-9x+19 \\ f(x) & =2x+3\\ g(x)&=x-1 \end{cases}\\ &\begin{array}{|l|l|}\hline \begin{aligned}&\textrm{Syarat-syaratnya}\\ &\bullet \: \: f(x)=g(x)\\ &\Leftrightarrow 2x+3=x-1\\ &\Leftrightarrow x=-4\\ &\bullet \: \: h(x)=1\\ &\Leftrightarrow x^{2}-9x+19=1\\ &\Leftrightarrow x^{2}-9x+18=0\\ &\Leftrightarrow (x-3)(x-6)=0\\ &\Leftrightarrow x=3\: \: \textrm{atau}\: \: x=6\\ &\bullet \: \: h(x)=0\\ &\Leftrightarrow x^{2}-9x+19=0\\ &\Leftrightarrow x_{1,2}=\displaystyle \frac{9\pm \sqrt{5}}{2}\\ &\quad \textrm{gunakan rumus ABC}\\ &\textrm{Setelah diuji keduanya}\\ &\textrm{positif, maka}\\ &x=\displaystyle \frac{9\pm \sqrt{5}}{2}\: \: \textrm{merupakan}\\ &\textbf{penyelesaian} \end{aligned} &\begin{aligned}&\textrm{lanjutannya}\\ &\bullet \: \: h(x)=-1\\ &\Leftrightarrow x^{2}-9x+19=-1\\ &\Leftrightarrow x^{2}-9x+20=0\\ &\Leftrightarrow (x-4)(x-5)=0\\ &\Leftrightarrow x=4\: \: \textrm{atau}\: \: x=5\\ &\textrm{Uji nilanya}\\ &\color{red}\textrm{untuk}\: \: x=4\\ &\blacklozenge \: \: f(4)=2(4)+3\: \: \textrm{ganjil}\\ &\blacklozenge \: \: g(4)=4-1\: \: \textrm{ganjil}\\ &\textrm{karena}\: f(4),g(4)\: \textrm{keduanya }\\ &\textrm{ganjil, maka}\: \: x=4\\ &\textrm{adalah}\: \textbf{penyelesaian} \\ &\color{red}\textrm{untuk}\: \: x=5\\ &\blacklozenge \: \: f(5)=2(5)+3\: \: \textrm{ganjil}\\ &\blacklozenge \: \: g(5)=5-1\: \: \textrm{genapl}\\ &\textrm{karena}\: f(4)\neq g(4),\: \textrm{maka}\: \: x=5\\ &\textrm{adalah}\: \textbf{bukan penyelesaian}\\ &\\ \end{aligned}\\\hline \end{array}\\ &\textbf{HP}=\left \{ -4,3,4,6,\displaystyle \frac{9-\sqrt{5}}{2},\frac{9+\sqrt{5}}{2} \right \} \end{array}$.
DAFTAR PUSTAKA
- Kurnia, N, dkk. 2016. Jelajah Matematika I SMA Kelas X Peminatan MIPA. Jakarta: YUDHISTIRA.
Lanjutan 4 Materi Geometri Ruang (Dimensi Tiga)
C. 1 Sudut antara Garis dengan Bidang
Secara definisi jika garis $g$ menembus bidang $\alpha$ secara tidak tegak lurus, maka sudut antara garis $g$ dan bidang $\alpha$ adalah sudut lancip yang dibentuk oleh garis $g$ dan proyeksi garis $g$ pada bidang $\alpha$.
Perhatikanlah ilustrasi berikut
C. 2 Sudut antara Bidang dengan Bidang
Sudut antara bidang dua yang berpotongan adalah sudut yang terbentuk oleh dua garis pada masing-masing bidang tersebut di mana setiap garis itu tegak lurus pada garis potong kedua bidang tersebut di satu titik.- Rasiman. 2000. Diktat Geometri. Semarang: IKIP Semarang
- Tampomas, H. 1999. Seribu Pena Matematika SMU Kelas 3. Jakarta: ERLANGGA.
Lanjutan 3 Persamaan Trigonometri
B. 1 Persamaan Trigonometri Sederhana
Dalam penyelesaian persamaan trigonometri sederhana dapat digunakan salah satu rumus berikut, yaitu:
$\begin{aligned}(1).\quad\sin x&=\sin \alpha ^{\circ}\\ &\left\{\begin{matrix} x=\alpha ^{\circ}+k.360^{\circ}\qquad\qquad\\ \color{red}\textrm{atau}\qquad\qquad\\ x=\left ( 180^{\circ}-\alpha ^{\circ} \right )+k.360^{\circ} \end{matrix}\right.\\ (2).\quad\cos x&=\cos \alpha ^{\circ}\\ &\left\{\begin{matrix} x=\alpha ^{\circ}+k.360^{\circ}\: \: \: \\ \color{red}\textrm{atau}\\ x=-\alpha ^{\circ}+k.360^{\circ} \end{matrix}\right.\\ (3).\quad\tan x&=\tan \alpha ^{\circ}\\ &x=\alpha ^{\circ}+k.180^{\circ} \end{aligned}$.
Jika sudutnya dinyatakan dalam phi radian $\left (\pi \quad \textrm{dibaca}:\: \: phi \right )$, maka persamaan trigonometri sederhananya adalah:
$\begin{aligned}(1).\quad\sin x&=\sin \alpha ^{\circ}\\ &\left\{\begin{matrix} x=\alpha ^{\circ}+k.2\pi \qquad\quad\\ \color{red}\textrm{atau}\qquad\qquad\\ x=\left ( \pi -\alpha ^{\circ} \right )+k.2\pi \end{matrix}\right.\\ (2).\quad\cos x&=\cos \alpha ^{\circ}\\ &\left\{\begin{matrix} x=\alpha ^{\circ}+k.2\pi \: \: \: \\ \color{red}\textrm{atau}\\ x=-\alpha ^{\circ}+k.2\pi \end{matrix}\right.\\ (3).\quad\tan x&=\tan \alpha ^{\circ}\\ &x=\alpha ^{\circ}+k.\pi \end{aligned}$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah akar-akar persamaan trigonometri}\\ &\textrm{berikut dan tentukan pula himpunan}\\ &\textrm{penyelesaiannya untuk}\: \: 0^{\circ}\leq x\leq 360^{\circ}\\ &\textrm{a}.\quad \sin x=\sin 50^{\circ}\\ &\textrm{b}.\quad \cos x=\cos 50^{\circ}\\ &\textrm{c}.\quad \tan x=\tan 50^{\circ}\\\\ &\textbf{Jawab}:\\ &\color{black}\begin{aligned}.\: \quad\textrm{a}.\quad\sin x&=\sin 50^{\circ}\\ x&=\begin{cases} 50^{\circ} & +k.360^{\circ}\\ \left (180^{\circ}-50^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 50^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \\ 130^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \end{cases}\\ k=1&\: \: \textrm{tidak ada yang memenuhi}\\ \textrm{HP}&=\left \{ 50^{\circ},130^{\circ} \right \} \end{aligned}\\ &\color{black}\begin{aligned}.\: \quad\textrm{b}.\quad\cos x&=\cos 50^{\circ}\\ x&=\begin{cases} 50^{\circ} & +k.360^{\circ}\\ -50^{\circ} & +k.360^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 50^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \\ -50^{\circ}\: \: (\color{red}\textrm{tidak memenuhi}) & \end{cases}\\ k=1&\\ x&=\begin{cases} 50^{\circ}+360^{\circ}=410^{\circ}\: \: (\color{red}\textrm{tidak memenuhi}) & \\ -50^{\circ}+360^{\circ}=310^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \end{cases}\\ \textrm{HP}&=\left \{ 50^{\circ},310^{\circ} \right \} \end{aligned} \\ &\color{black}\begin{aligned}.\: \quad\textrm{c}.\quad\tan x&=\tan 50^{\circ}\\ x&=50^{\circ}+k.180^{\circ}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=50^{\circ}\: \: \color{magenta}\textrm{memenuhi}\\ k=1&\\ x&=50^{\circ}+180^{\circ}=230^{\circ}\: \: \color{magenta}\textrm{memenuhi}\\ k=2&\\ x&=50^{\circ}+360^{\circ}=410^{\circ}\: \: \color{red}\textrm{tidak memenuhi}\\ \textrm{HP}&=\left \{ 50^{\circ},230^{\circ} \right \} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah himpunan penyelesaian dari }\\ &\textrm{persamaan-persamaan trigonometri berikut}\\ &\textrm{ini untuk}\: \: 0^{\circ}\leq x\leq 360^{\circ}\\ &\begin{array}{lllllll}\\ \textrm{a}.& \sin x=\displaystyle \frac{1}{2}&\textrm{f}.& \tan x=-\displaystyle \frac{1}{3}\sqrt{3}&\textrm{k}.& \sin 2x=\displaystyle \frac{1}{2}\\ \textrm{b}.& \cos x=\displaystyle \frac{1}{2}\sqrt{3}&\textrm{g}& 2\cos x=-\sqrt{3}&\textrm{l}.& \cos 2x=-\displaystyle \frac{1}{2}\sqrt{3}\\ \textrm{c}.& \tan x=\sqrt{3}&\textrm{h}& 3\tan x=\sqrt{3}&\textrm{m}.& \tan 2x=\sqrt{3}\\ \textrm{d}.& \sin x=-1&\textrm{i}.& \sin x=\sin 46^{\circ}&\textrm{n}.& \sin \left ( 2x-30^{\circ} \right )=\sin 45^{\circ}\\ \textrm{e}.& \cos x=-\displaystyle \frac{1}{2}\sqrt{2}&\textrm{j}.& \cos x=\cos 93^{\circ}&\textrm{o}.& \sin \left ( 2x+60^{\circ} \right )=\sin 90^{\circ}\\ \end{array}\\ \end{array}$
$.\: \quad\color{blue}\textrm{Jawab}:$
$\color{black}\begin{aligned}.\: \quad\textrm{a}.\quad\sin x&=\displaystyle \frac{1}{2}\\ \sin x&=\sin 30^{\circ}\\ x&=\begin{cases} 30^{\circ} & +k.360^{\circ}\\ \left (180^{\circ}-30^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 30^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \\ 150^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \end{cases}\\ k=1&\: \: \textrm{tidak ada yang memenuhi}\\ \textrm{HP}&=\left \{ 30^{\circ},150^{\circ} \right \} \end{aligned}$
$\color{black}\begin{aligned}.\: \quad\textrm{b}.\quad\cos x&=\displaystyle \frac{1}{2}\sqrt{3}\\ \cos x&=\cos 30^{\circ}\\ x&=\begin{cases} 30^{\circ} & +k.360^{\circ}\\ -30^{\circ} & +k.360^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 30^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \\ -30^{\circ}\: \: (\color{red}\textrm{tidak memenuhi}) & \end{cases}\\ k=1&\\ x&=\begin{cases} 30^{\circ}+360^{\circ}=390^{\circ}\: \: (\color{red}\textrm{tidak memenuhi}) & \\ -30^{\circ}+360^{\circ}=330^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \end{cases}\\ \textrm{HP}&=\left \{ 30^{\circ},330^{\circ} \right \} \end{aligned}$
$\color{purple}\begin{aligned}.\: \quad\textrm{c}.\quad\tan x&=\sqrt{3}\\ \tan x&=\tan 60^{\circ}\\ x&=60^{\circ}+k.180^{\circ}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=60^{\circ}\: \: \color{magenta}\textrm{memenuhi}\\ k=1&\\ x&=60^{\circ}+180^{\circ}=240^{\circ}\: \: \color{magenta}\textrm{memenuhi}\\ k=2&\\ x&=60^{\circ}+360^{\circ}=420^{\circ}\: \: \color{red}\textrm{tidak memenuhi}\\ \textrm{HP}&=\left \{ 60^{\circ},240^{\circ} \right \} \end{aligned}$
$\color{black}\begin{aligned}.\: \quad\textrm{d}.\quad\sin x&=-1\\ \sin x&= \sin 270^{\circ}\\ x&=\begin{cases} 270^{\circ} & +k.360^{\circ} \\ \left ( 180^{\circ}-270^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}\\ x&=\begin{cases} 270^{\circ} & \color{magenta}\textrm{memenuhi} \\ -90^{\circ} & \color{red}\textrm{tidak memenuhi} \end{cases}\\ k=1&\: \: \textrm{tidak memenuhi semuanya}\\ \textrm{HP}&=\left \{ 270^{\circ} \right \} \end{aligned}$.
$\color{black}\begin{aligned}.\: \quad\textrm{k}.\quad\sin 2x&=\displaystyle \frac{1}{2}\\ \sin 2x&=\sin 30^{\circ}\\ 2x&=\begin{cases} 30^{\circ} & +k.360^{\circ}\\ \left (180^{\circ}-30^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ \color{red}\textrm{sehin}&\color{red}\textrm{gga}\\ x&=\begin{cases} 15^{\circ} & +k.180^{\circ}\\ \left (90^{\circ}-15^{\circ} \right ) & +k.180^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 15^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \\ 75^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \end{cases}\\ k=1&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 15^{\circ}+180^{\circ}=195^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \\ 75^{\circ}+180^{\circ}=255^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \end{cases}\\ k=2&\: \: \textrm{tidak ada yang memenuhi}\\ \textrm{HP}&=\left \{ 15^{\circ},75^{\circ},195^{\circ},255^{\circ} \right \} \end{aligned}$.
$\color{black}\begin{aligned}.\: \quad\textrm{l}.\quad\cos 2x&=-\displaystyle \frac{1}{2}\sqrt{3}\\ \cos 2x&=-\cos 30^{\circ}=\cos \left ( 180^{\circ}-30^{\circ} \right )=\cos 150^{\circ}\\ 2x&=\begin{cases} 150^{\circ} & +k.360^{\circ}\\ -150^{\circ} & +k.360^{\circ} \end{cases}\\ \color{red}\textrm{sehin}&\color{red}\textrm{gga}\\ x&=\begin{cases} 75^{\circ} & +k.180^{\circ}\\ -75^{\circ} & +k.180^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 75^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \\ -75^{\circ}\: \: (\color{red}\textrm{tidak memenuhi}) & \end{cases}\\ k=1&\\ x&=\begin{cases} 75^{\circ}+180^{\circ}=255^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \\ -75^{\circ}+180^{\circ}=105^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \end{cases}\\ k=2&\\ x&=\begin{cases} 75^{\circ}+360^{\circ}=435^{\circ}\: \: (\color{red}\textrm{tidak memenuhi}) & \\ -75^{\circ}+360^{\circ}=285^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \end{cases}\\ k=3&\: \: \textrm{tidak ada yang memenuhi}\\ \textrm{HP}&=\left \{ 75^{\circ},105^{\circ},255^{\circ},285^{\circ} \right \} \end{aligned}$.
$\color{black}\begin{aligned}.\: \quad\textrm{m}.\quad\tan 2x&=\sqrt{3}\\ \tan 2x&=\tan 60^{\circ}\\ 2x&=60^{\circ}+k.180^{\circ}\\ \color{red}\textrm{sehin}&\color{red}\textrm{gga}\\ x&=30^{\circ}+k.90^{\circ}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=30^{\circ}\: \: \color{blue}\textrm{memenuhi}\\ k=1&\\ x&=30^{\circ}+90^{\circ}=120^{\circ}\: \: \color{blue}\textrm{memenuhi}\\ k=2&\\ x&=30^{\circ}+180^{\circ}=210^{\circ}\: \: \color{blue}\textrm{memenuhi}\\ k=3&\\ x&=30^{\circ}+270^{\circ}=300^{\circ}\: \: \color{blue}\textrm{memenuhi}\\ k=4&\\ x&=30^{\circ}+360^{\circ}=390^{\circ}\: \: \color{red}\textrm{tidak memenuhi}\\ \textrm{HP}&=\left \{ 30^{\circ},120^{\circ},210^{\circ},300^{\circ} \right \} \end{aligned}$.
$\color{black}\begin{aligned}.\: \quad\textrm{n}.\quad\sin \left ( 2x-30^{\circ} \right )&=\sin 45^{\circ}\\ \left ( 2x-30^{\circ} \right )&=\begin{cases} 45^{\circ} & +k.360^{\circ} \\ \left ( 180^{\circ}-45^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ 2x&=\begin{cases} 45^{\circ}+30^{\circ} &+k.360^{\circ} \\ 135^{\circ}+30^{\circ} &+ k.360^{\circ} \end{cases}\\ x&=\begin{cases} 37,5^{\circ} & +k.180^{\circ} \\ 82,5^{\circ} & +k.180^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}\\ x&=\begin{cases} 37,5^{\circ} & \\ 82,5^{\circ} & \end{cases}\\ k=1&\: \: \textrm{diperoleh}\\ x&=\begin{cases} 37,5^{\circ}+180^{\circ} &=217,5^{\circ} \\ 82,5^{\circ}+180^{\circ} &=262,5^{\circ} \end{cases}\\ k=2&\: \: \color{red}\textrm{tidak ada yang memenuhi}\\ \textrm{HP}&=\left \{ 37,5^{\circ},82,5^{\circ},217,5^{\circ},262,5^{\circ} \right \} \end{aligned}$.
$\color{black}\begin{aligned}.\: \quad\textrm{o}.\quad\sin \left ( 2x+60^{\circ} \right )&=\sin 90^{\circ}\\ \left ( 2x+60^{\circ} \right )&=\begin{cases} 90^{\circ} & +k.360^{\circ} \\ \left ( 180^{\circ}-90^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ 2x&=\begin{cases} 90^{\circ}-60^{\circ} &+k.360^{\circ} \\ 90^{\circ}-60^{\circ} &+ k.360^{\circ} \end{cases}\\ x&=15^{\circ}+k.180^{\circ}\\ k=0&\: \: \textrm{diperoleh}\\ x&=15^{\circ}\\ k=1&\: \: \textrm{diperoleh}\\ x&=15^{\circ}+180^{\circ}=195^{\circ}\\ k=2&\: \: \color{red}\textrm{tidak ada yang memenuhi}\\ \textrm{HP}&=\left \{ 15^{\circ},195^{\circ} \right \} \end{aligned}$
Lanjutan 2 Persamaan Trigonometri
A. 2 Relasi Sudut
Mengingatkan kembali materi tentang nilai sudut diberbagai kuadran yang selanjutnya berkaitan erat dengan relasi sudutnya dari kuadran selain satu diubah ke kuadran satu supaya mudah menentukan nilai trigonometri.
Untuk tanda perbandingan trigonometrinya berkaitan dengan relasi sudutnya adalah disajikan sebagaimana dalam bagan berikut
$\begin{array}{ccc|cccc} \textrm{Nilai yang positif}&&&&&\\ \textrm{hanya}\quad \color{red}\textbf{sinus}&&&&\textrm{Semua nilai trigon}&\color{blue}\textbf{positif}\\ &&&&&\\\hline \textrm{Nilai yang positif}&&&&\textrm{Nilai yang positif}&\\ \textrm{hanya}\quad \color{red}\textbf{tangen}&&&&\textrm{hanya}\quad \color{red}\textbf{cosinus}&\\ \end{array}$.
atau
$\begin{array}{ccc|cccc} \begin{array}{ll}\\ \begin{cases} \color{blue}\sin & =+ \\ \cos & =- \\ \tan & =- \\ \color{red}\csc & = +\\ \sec & = -\\ \cot & = - \end{cases}& \end{array}&&&&&\begin{array}{ll}\\ \begin{cases} \color{blue}\sin & =+ \\ \color{blue}\cos & =+ \\ \color{blue}\tan & =+ \\ \color{red}\csc & = +\\ \color{red}\sec & = +\\ \color{red}\cot & = + \end{cases}& \end{array}\\ &&&&\\ &&&&&\\\hline &&&&&\\ \begin{array}{ll}\\ \begin{cases} \sin & =- \\ \cos & =- \\ \color{blue}\tan & =+ \\ \csc & = -\\ \sec & = -\\ \color{red}\cot & = + \end{cases}& \end{array}&&&&&\begin{array}{ll}\\ \begin{cases} \sin & =- \\ \color{blue}\cos & =+ \\ \tan & =- \\ \csc & = -\\ \color{red}\sec & = +\\ \cot & = - \end{cases}& \end{array}\\ \end{array}$.
Adapun penjabaran sudut-sudut yang berelasi sebagaimana ilustrasi bagan berikut, yaitu:
$\begin{array}{ccc|cccc} \textrm{Kuadran II}&&&&\textrm{Kuadran I}&\\ \left (180^{\circ}-\alpha \right )&&&&\textrm{Semua nilai trigon}&\color{blue}\textbf{positif}\\ &&&&&\\\hline \textrm{Kuadran III}&&&&\textrm{Kuadran IV}&\\ \left (180^{\circ}+\alpha \right )&&&&\left (360^{\circ}-\alpha \right )& \\ \end{array}$
Ketentuan perubahan trigonometri berkaitan dengan sudut berelasi adalah sebagaimana tabel berikut:
KUADRAN PERTAMA
$\begin{array}{|c|c|l|}\hline \textrm{Posisi}&\textrm{Perubahan}&\qquad\textrm{Relasi Sudut}\\\hline \begin{aligned}&\textrm{Kuadran I}\\ &0^{\circ}<\alpha <90^{\circ}\\ &=\left ( 90^{\circ}-\alpha \right ) \end{aligned}&\begin{cases} \color{blue}\sin & =\cos \\ \cos & =\sin \\ \tan & =\cot \\ \color{red}\csc & = \sec \\ \sec & = \csc \\ \cot & = \tan \end{cases}&\begin{aligned}\sin \left ( 90^{\circ}-\alpha \right )&=\cos \alpha \\ \cos \left ( 90^{\circ}-\alpha \right )&=\sin \alpha \\ \tan \left ( 90^{\circ}-\alpha \right )&=\cot \alpha\\ \csc \left ( 90^{\circ}-\alpha \right )&=\sec \alpha \\ \sec \left ( 90^{\circ}-\alpha \right )&=\csc \alpha\\ \cot \left ( 90^{\circ}-\alpha \right )&=\tan \alpha \end{aligned}\\\hline \end{array}$.
KUADRAN KEDUA
ada 2 pilihan yaitu:
pertama
$\begin{array}{|c|c|l|}\hline \textrm{Posisi}&\textrm{Perubahan}&\qquad\textrm{Relasi Sudut}\\\hline \begin{aligned}&\textrm{Kuadran II}\\ &90^{\circ}<\alpha <180^{\circ}\\ &=\left ( 90^{\circ}+\alpha \right ) \end{aligned}&\begin{cases} \color{blue}\sin & =\cos \\ \cos & =\sin \\ \tan & =\cot \\ \color{red}\csc & = \sec \\ \sec & = \csc \\ \cot & = \tan \end{cases}&\begin{aligned}\sin \left ( 90^{\circ}+\alpha \right )&=\cos \alpha \\ \cos \left ( 90^{\circ}+\alpha \right )&=-\sin \alpha \\ \tan \left ( 90^{\circ}+\alpha \right )&=-\cot \alpha\\ \csc \left ( 90^{\circ}+\alpha \right )&=\sec \alpha \\ \sec \left ( 90^{\circ}+\alpha \right )&=-\csc \alpha\\ \cot \left ( 90^{\circ}+\alpha \right )&=-\tan \alpha \end{aligned}\\\hline \end{array}$.
kedua
$\begin{array}{|c|c|l|}\hline \textrm{Posisi}&\textrm{Tidak Ada Perubahan}&\qquad\textrm{Relasi Sudut}\\\hline \begin{aligned}&\textrm{Kuadran II}\\ &90^{\circ}<\alpha <180^{\circ}\\ &=\left ( 180^{\circ}-\alpha \right ) \end{aligned}&\begin{cases} \color{blue}\sin & =\sin \\ \cos & =\cos \\ \tan & =\tan \\ \color{red}\csc & = \csc \\ \sec & = \sec \\ \cot & = \cot \end{cases}&\begin{aligned}\sin \left ( 180^{\circ}-\alpha \right )&=\sin \alpha \\ \cos \left ( 180^{\circ}-\alpha \right )&=-\cos \alpha \\ \tan \left ( 180^{\circ}-\alpha \right )&=-\tan \alpha\\ \csc \left ( 180^{\circ}-\alpha \right )&=\csc \alpha \\ \sec \left ( 180^{\circ}-\alpha \right )&=-\sec \alpha\\ \cot \left ( 180^{\circ}-\alpha \right )&=-\cot \alpha \end{aligned}\\\hline \end{array}$.
KUADRAN KETIGA
ada 2 pilihan juga yaitu:
pertama
$\begin{array}{|c|c|l|}\hline \textrm{Posisi}&\textrm{Tidak Ada Perubahan}&\qquad\textrm{Relasi Sudut}\\\hline \begin{aligned}&\textrm{Kuadran III}\\ &180^{\circ}<\alpha <270^{\circ}\\ &=\left ( 180^{\circ}+\alpha \right ) \end{aligned}&\begin{cases} \color{blue}\sin & =\sin \\ \cos & =\cos \\ \tan & =\tan \\ \color{red}\csc & = \csc \\ \sec & = \sec \\ \cot & = \cot \end{cases}&\begin{aligned}\sin \left ( 180^{\circ}+\alpha \right )&=-\sin \alpha \\ \cos \left ( 180^{\circ}+\alpha \right )&=-\cos \alpha \\ \tan \left ( 180^{\circ}+\alpha \right )&=\tan \alpha\\ \csc \left ( 180^{\circ}+\alpha \right )&=-\csc \alpha \\ \sec \left ( 180^{\circ}+\alpha \right )&=-\sec \alpha\\ \cot \left ( 180^{\circ}+\alpha \right )&=\cot \alpha \end{aligned}\\\hline \end{array}$.
kedua
$\begin{array}{|c|c|l|}\hline \textrm{Posisi}&\textrm{Perubahan}&\qquad\textrm{Relasi Sudut}\\\hline \begin{aligned}&\textrm{Kuadran III}\\ &180^{\circ}<\alpha <270^{\circ}\\ &=\left ( 270^{\circ}-\alpha \right ) \end{aligned}&\begin{cases} \color{blue}\sin & =\cos \\ \cos & =\sin \\ \tan & =\cot \\ \color{red}\csc & = \sec \\ \sec & = \csc \\ \cot & = \tan \end{cases}&\begin{aligned}\sin \left ( 270^{\circ}-\alpha \right )&=-\cos \alpha \\ \cos \left ( 270^{\circ}-\alpha \right )&=-\sin \alpha \\ \tan \left ( 270^{\circ}-\alpha \right )&=\cot \alpha\\ \csc \left ( 270^{\circ}-\alpha \right )&=-\sec \alpha \\ \sec \left ( 270^{\circ}-\alpha \right )&=-\csc \alpha\\ \cot \left ( 270^{\circ}-\alpha \right )&=\tan \alpha \end{aligned}\\\hline \end{array}$.
KUADRAN KEEMPAT
ada 2 pilihan juga yaitu:
pertama
$\begin{array}{|c|c|l|}\hline \textrm{Posisi}&\textrm{Perubahan}&\qquad\textrm{Relasi Sudut}\\\hline \begin{aligned}&\textrm{Kuadran IV}\\ &270^{\circ}<\alpha <360^{\circ}\\ &=\left ( 270^{\circ}+\alpha \right ) \end{aligned}&\begin{cases} \color{blue}\sin & =\cos \\ \cos & =\sin \\ \tan & =\cot \\ \color{red}\csc & = \sec \\ \sec & = \csc \\ \cot & = \tan \end{cases}&\begin{aligned}\sin \left ( 270^{\circ}+\alpha \right )&=-\cos \alpha \\ \cos \left ( 270^{\circ}+\alpha \right )&=\sin \alpha \\ \tan \left ( 270^{\circ}+\alpha \right )&=-\cot \alpha\\ \csc \left ( 270^{\circ}+\alpha \right )&=-\sec \alpha \\ \sec \left ( 270^{\circ}+\alpha \right )&=\csc \alpha\\ \cot \left ( 270^{\circ}+\alpha \right )&=-\tan \alpha \end{aligned}\\\hline \end{array}$.
kedua
$\begin{array}{|c|c|l|}\hline \textrm{Posisi}&\textrm{Tidak Ada Perubahan}&\qquad\textrm{Relasi Sudut}\\\hline \begin{aligned}&\textrm{Kuadran IV}\\ &270^{\circ}<\alpha <360^{\circ}\\ &=\left ( 360^{\circ}-\alpha \right ) \end{aligned}&\begin{cases} \color{blue}\sin & =\sin \\ \cos & =\cos \\ \tan & =\tan \\ \color{red}\csc & = \csc \\ \sec & = \sec \\ \cot & = \cot \end{cases}&\begin{aligned}\sin \left ( 360^{\circ}-\alpha \right )&=-\sin \alpha \\ \cos \left ( 360^{\circ}-\alpha \right )&=\cos \alpha \\ \tan \left ( 360^{\circ}-\alpha \right )&=-\tan \alpha\\ \csc \left ( 360^{\circ}-\alpha \right )&=-\csc \alpha \\ \sec \left ( 360^{\circ}-\alpha \right )&=\sec \alpha\\ \cot \left ( 360^{\circ}-\alpha \right )&=-\cot \alpha \end{aligned}\\\hline \end{array}$.
A. 3 Sudut Negatif dan Sudut lebih Besar dari $360^{\circ}$
$\begin{aligned}\textrm{a}.\quad&\begin{cases} \sin \left ( -A \right ) & =-\sin A \\ \cos \left ( -A \right ) & =\cos A \\ \tan \left ( -A \right ) & = -\tan A \end{cases}\\ \textrm{b}.\quad&\begin{cases} \csc \left ( -A \right ) &=-\csc A \\ \sec \left ( -A \right ) &=\sec A \\ \cot \left ( -A \right ) &=-\cot A \end{cases}\\ \textrm{c}.\quad&\begin{cases} \sin \left ( n.360^{\circ}+A \right ) & =\sin A \\ \cos \left ( n.360^{\circ}+A \right ) & =\cos A \\ \tan \left ( n.360^{\circ}+A \right ) & =\tan A \end{cases},\qquad n\in \mathbb{N} \end{aligned}$.
Catatan : $0^{\circ}$=$360^{\circ}$=$720^{\circ}$=$1080^{\circ}$=$n.360^{\circ}$
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah nilai}\\ &\textrm{a}.\quad\sin 120^{\circ}\\ &\textrm{b}.\quad\cos 240^{\circ}\\ &\textrm{c}.\quad\tan 315^{\circ}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad\sin 120^{\circ}&=\sin \left ( 180^{\circ}-60^{\circ} \right )=\sin 60^{\circ}\\ &=\displaystyle \frac{1}{2}\sqrt{3},\qquad \color{red}\textrm{atau}\\ &=\sin \left ( 90^{\circ}+30^{\circ} \right )=\cos 30^{\circ}=\displaystyle \frac{1}{2}\sqrt{3}\\ \textrm{b}.\quad\cos 240^{\circ}&=\cos \left ( 180^{\circ}+60^{\circ} \right) =-\cos 60^{\circ}\\ &=-\displaystyle \frac{1}{2},\qquad \color{red}\textrm{atau}\\ &=\cos \left ( 270^{\circ}-30^{\circ} \right )=-\sin 30^{\circ}=-\frac{1}{2}\\ \textrm{c}.\quad\tan 315^{\circ}&=\tan \left ( 360^{\circ}-45^{\circ} \right )=-\tan 45^{\circ}\\ &=-1,\qquad \color{red}\textrm{atau}\\ &=\tan \left ( 270^{\circ}+45^{\circ} \right )=-\cot 45^{\circ}=-1 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Buktikan bahwa}\\\\ &\textrm{a}.\quad \displaystyle \frac{\cos \left ( 90^{\circ}-B \right )}{\sec B}+\frac{\sin \left ( 90^{\circ}-B \right )}{\csc B}=2\sin B\cos B\\\\ &\textrm{b}.\quad \tan C+\tan \left ( 90^{\circ}-C \right )=\sec C.\sec \left ( 90^{\circ}-C \right )\\\\ &\textbf{Bukti}:\\ &\begin{aligned}\textrm{a}.\quad&\displaystyle \frac{\cos \left ( 90^{\circ}-B \right )}{\sec B}+\frac{\sin \left ( 90^{\circ}-B \right )}{\csc B}\\ &=\displaystyle \frac{\sin B}{\sec B}+\frac{\cos B}{\csc B}\\ &=\displaystyle \frac{\sin B}{\displaystyle \frac{1}{\cos B}}+\frac{\cos B}{\displaystyle \frac{1}{\sin B}}\\ &=\sin B\cos B+\sin B\cos B\\ &=2\sin B\cos B\qquad\quad \blacksquare \end{aligned} \\ &\begin{aligned}\textrm{b}.\quad&\tan C+\tan \left ( 90^{\circ}-C \right )\\ &=\tan C+\cot C\\ &=\displaystyle \frac{\sin C}{\cos C}+\frac{\cos C}{\sin C}\\ &=\displaystyle \frac{\sin ^{2}C+\cos ^{2}C}{\sin C\cos C}=\displaystyle \frac{1}{\sin C\cos C}\\ &=\displaystyle \frac{1}{\cos C}.\frac{1}{\sin C}\\ &=\sec C.\csc C\\ &=\sec C.\sec \left ( 90^{\circ}-C \right )\qquad\quad \blacksquare \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah nilai}\\ &\textrm{a}.\quad \tan \left ( A-90^{\circ} \right )\sin \left ( -A \right )\\ &\textrm{b}.\quad\cos 540^{\circ}+\sin 690^{\circ}\\ &\textrm{c}.\quad \sin 2021^{\circ}+\cos 2021^{\circ}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\tan \left ( A-90^{\circ} \right )\sin \left ( -A \right )\\ &=\tan \left ( -\left (90^{\circ}-A \right ) \right )\left ( -\sin A \right )\\ &=-\tan \left ( 90^{\circ}-A \right )\left ( -\sin A \right )\\ &= \tan \left ( 90^{\circ}-A \right )\left ( \sin A \right )\\ &=\cot A.\sin A\\ &=\displaystyle \frac{\cos A}{\sin A}.\sin A\\ &=\cos A \end{aligned} \\ &\begin{aligned}\textrm{b}.\quad&\cos 540^{\circ}+\sin 690^{\circ}\\ &=\cos \left ( 360^{\circ}+180^{\circ} \right )+\sin \left ( 720^{\circ}-30^{\circ} \right )\\ &=\cos \left ( 0^{\circ}+180^{\circ} \right )+\sin \left ( 0^{\circ}-30^{\circ} \right )\\ &=\cos 180^{\circ}+ \sin \left ( -30^{\circ} \right ) \\ &=\cos 180^{\circ}-\sin 30^{\circ}\\ &=-1-\displaystyle \frac{1}{2}\\ &=-\displaystyle \frac{3}{2} \end{aligned} \\ &\begin{aligned}\textrm{c}.\quad&\sin 2021^{\circ}+\cos 2021^{\circ}\\ &=\sin \left ( 5.360^{\circ}+221^{\circ} \right )+\cos \left ( 5.360^{\circ}+221^{\circ} \right )\\ &=\sin \left (0^{\circ}+221^{\circ} \right )+\cos \left (0^{\circ}+221^{\circ} \right )\\ &=\sin 221^{\circ}+\cos 221^{\circ}\\ &=\sin \left ( 180^{\circ}+41^{\circ} \right )+\cos \left ( 180^{\circ}+41^{\circ} \right )\\ &=-\sin 41^{\circ}-\cos 41^{\circ} \end{aligned} \end{array}$