4. Ketaksamaan Schur
(Bagian Pertama)
Misal $a,b,c$ adalah bilangan real positif dan $r$ adalah bilangan positif, maka pertidaksamaan berikut berlaku
$\begin{aligned}a^{r}(a-b)(a-c)+b^{r}(b-a)(b-c)+c^{r}(c-a)(c-b)\geq 0 \end{aligned}$.
Atau dapat pula dituliskan dengan lebih sederhana
$\displaystyle \sum_{\textrm{siklik}}^{.}a^{r}(a-b)(a-c)\geq 0$.
Kesamaan terjadi ketika $a=b=c$ atau jika dua di antara $a,b,c$ bernilai sama dan nilai yang lain sama dengan nol.
Bukti:
$\begin{aligned}&\textrm{Asumsikan dengan tanpa mengurangi keumuman}\\ &\textrm{yaitu}\: \: \color{red}a\ge b\ge c,\:\: \color{black}\textrm{maka kita akan mendapatkan}\\ &(a-b)\left( a^{r}(a-c)-b^{r}(b-c) \right)+c^{r}(c-a)(c-b)\ge 0\qquad \blacksquare \end{aligned}$.
Cukup jelas bahwa ruas kiri bernilai tak negatif.
Misalkan untuk $r=1$, didapatkan hasil berikut,:
$\begin{aligned}&a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b)\\ &=a^{3}+b^{3}+c^{3}-\left( a^{2}b+a^{2}c+b^{2}a+b^{2}c+c^{2}a+c^{2}b \right)+3abc\\ &=\displaystyle \sum_{\textrm{sym}}^{.}\left( a^3-2a^{2}b+abc \right)\ge 0 \end{aligned}$.
$\begin{array}{|l|}\hline \begin{aligned}&\color{red}\textrm{Sebagai pengingat bahwa}\\ &\begin{aligned}1.\quad&\sum_{sym}^{.}a^{3}=2a^{3}+2b^{3}+2c^{3}\\ 2.\quad &\sum_{sym}^{.}a^{2}b=a^{2}b+ab^{2}+a^{2}c+ac^{2}+b^{2}c+bc^{2}\\ 3.\quad &\sum_{sym}^{.}abc=6abc \end{aligned} \end{aligned}\\\hline \end{array}$.
Selanjutnya saat $\color{red}r=1$, kita bisa mendaptkan
$\begin{aligned}1.\quad &a^{3}+b^{3}+c^{3}+3abc\geq ab(a+b)+bc(b+c)+ca(c+a)\\ 2.\quad &abc\geq (a+b-c)(b+c-a)(c+a-b)\\ 3.\quad &(a+b+c)^{3}+9abc\geq 4(a+b+c)(ab+bc+ca) \end{aligned}$.
$\begin{aligned}&\textrm{Selanjutnya, masih saat}\: \: \color{red}r=1\\ &\bullet \quad \textrm{untuk}\: \: c=0,\: \textrm{maka}\: \: (a-b)(a^{k+1}-b^{k+1})\geq 0\\ &\bullet \quad \textrm{untuk}\: \: b=c=0,\: \textrm{maka}\: \: a^{k+2}\geq 0\\ &\bullet \quad \textrm{untuk}\: \: b=c,\: \textrm{maka}\: \: a^{k}(a-c)^{2}\geq 0 \end{aligned}$.
Dan saat $\color{red}r=2$, kita bisa mendaptkan
$\begin{aligned}a^{4}+&b^{4}+c^{4}+abc(a+b+c)\geq ab(a^{2}+b^{2})+bc(b^{2}+c^{2})+ca(c^{2}+a^{2}) \end{aligned}$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Buktikan bahwa setiap bilangan real}\\ &\textrm{positif}\: \: a,\: b\: \: \textrm{dan}\: \: c\: \: \textrm{berlaku}\\ & a^{2}+b^{2}+c^{2}\geq ab+ac+bc\\\\ &\textbf{Bukti}\\ &\begin{aligned}&\color{blue}\textrm{Alternatif 1}\\ &\textrm{Perhatikan bahwa}\: \: (a-b)^{2}\geq 0\\ &(a-c)^{2}\geq 0,\: \: \textrm{dan}\: \: (b-c)^{2}\geq 0\\ &\textrm{adalah benar, maka}\\ &(a-b)^{2}=a^{2}-2ab+b^{2}\geq 0\\ &\Leftrightarrow a^{2}+b^{2}\geq 2ab\: .....(1)\\ &\textrm{Dengan cara yang kurang lebih sama}\\ &\textrm{akan didapatkan}\\ &\bullet \quad a^{2}+c^{2}\geq 2ac\: .....(2)\\ &\bullet \quad b^{2}+c^{2}\geq 2bc\: .....(1)\\ &\textrm{Jika ketaksamaan}\quad (1),(2), \& \: (3)\: \: \textrm{dijumlahkan}\\ &\textrm{akan didapatkan bentuk}\\ &2a^{2}+2b^{2}+2c^{2}\geq 2ab+2ac+2bc\\ &\Leftrightarrow \: a^{2}+b^{2}+c^{2}\geq ab+ac+bc\quad \blacksquare\\ &\color{blue}\textrm{Alternatif 2}\\ &\textrm{Dengan ketaksamaan}\: \: \color{red}\textbf{Cauchy-Schwarz}\\ &(a^{2}+b^{2}+c^{2})(b^{2}+c^{2}+a^{2})\geq (ab+bc+ca)^{2}\\ &\Leftrightarrow a^{2}+b^{2}+c^{2}\geq ab+ac+bc\qquad \blacksquare\\ &\color{blue}\textrm{Alternatif 3}\\ &\textrm{Untuk barisan}\: \: (a,b,c),\: \textrm{asumsikan}\: a\geq b\geq c\\ &\textrm{maka dengan}\: \: \color{red}\textbf{Ketaksamaan Renata}\: \: \color{black}\textrm{diperoleh}\\ &a.a+b.b+c.c\geq ab+bc+ca\\ &a^{2}+b^{2}+c^{2}\geq ab+ac+bc\qquad \blacksquare \\ &\color{blue}\textrm{Alternatif 4}\\ &\textrm{Dengan}\: \: \color{red}\textbf{Ketaksamaan Schur}\: \: \color{black}\textrm{saat}\: \: \color{red}r=0\color{black},\\ &\textrm{yaitu}\\ &a^{r}(a-b)(a-c)+b^{r}(b-a)(b-c)+c^{r}(c-a)(c-b)\geq 0\\ &\Leftrightarrow a^{0}(a-b)(a-c)+b^{0}(b-a)(b-c)+c^{0}(c-a)(c-b)\geq 0\\ &\Leftrightarrow (a-b)(a-c)+(b-a)(b-c)+(c-a)(c-b)\geq 0\\ &\Leftrightarrow a^{2}+b^{2}+c^{2}-ab-ac-bc\geq 0\\ &\Leftrightarrow a^{2}+b^{2}+c^{2}\geq ab+ac+bc\qquad \blacksquare \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 2.&\textbf{(IMO 1964)}\\ &\textrm{Jika}\: \: a,b,c\: \: \textrm{adalah panjang sisi-sisi segitiga}\\ &\textrm{tunjukkan bahwa}\\ &\quad a^{2}(b+c-a)+b^{2}(a+c-b)+c^{2}(a+b-c)\leq 3abc\\\\ &\textbf{Bukti}:\\ &\textrm{Dengan}\: \: \textbf{Ketaksamaan Schur}\: \: \textrm{saat}\: \: \color{red}r=1.\\ &a^{3}+b^{3}+c^{3}+3abc\geq ab(a+b)+bc(b+c)+ca(c+a)\\ &\Leftrightarrow 3abc\geq ab(a+b)-a^{3}+bc(b+c)-b^{3}+ca(c+a)-c^{3}\\ &\Leftrightarrow 3abc\geq a^{2}b+ab^{2}-c^{3}+b^{2}c+bc^{2}-b^{3}+c^{2}a+ca^{2}-c^{3}\\ &\Leftrightarrow 3abc\geq a^{2}b+ca^{2}-a^{3}+ab^{2}+b^{2}c-b^{3}+c^{2}a+bc^{2}-c^{3}\\ &\Leftrightarrow 3abc\geq a^{2}(b+c-a)+b^{2}(a+c-b)+c^{2}(a+b-c)\\ &\textrm{atau}\\ &\Leftrightarrow a^{2}(b+c-a)+b^{2}(a+c-b)+c^{2}(a+b-c)\leq 3abc\quad \blacksquare \end{array}$ .
$\begin{array}{ll}\\ 3.&\textbf{(IMO 2000)}\\ &\textrm{Jika}\: \: a,b,c\: \: \textrm{bilangan real positif dengan}\\ &abc=1,\: \: \textrm{tunjukkan bahwa}\\ &\quad \left (a+1- \displaystyle \frac{1}{b} \right )\left (b+1- \displaystyle \frac{1}{c} \right )\left (c+1- \displaystyle \frac{1}{a} \right )\leq 1\\\\ &\textbf{Bukti}:\\ &\textrm{Misalkan}\: \: a=\displaystyle \frac{x}{y},\: b=\frac{y}{z},\: \: \textrm{dan}\: \: c=\displaystyle \frac{z}{x},\: \: \textrm{maka}\\ &\left ( \displaystyle \frac{x}{y}+1-\frac{z}{y} \right )\left ( \displaystyle \frac{y}{z}+1-\frac{x}{z} \right )\left ( \displaystyle \frac{z}{x}+1-\frac{y}{x} \right ) \leq 1\\ &\Leftrightarrow \left ( \displaystyle \frac{x+y-z}{y} \right )\left ( \displaystyle \frac{y+z-x}{z} \right )\left ( \displaystyle \frac{z+x-y}{x} \right )\leq 1\\ &\Leftrightarrow (x+y-z)(y+z-x)(z+x-y)\leq xyz,\: \: \textrm{atau}\\ &\Leftrightarrow \color{red}xyz\geq (x+y-z)(y+z-x)(z+x-y)\\ &\textrm{Bentuk terakhir memenuhi bentuk kedua dari}\\ &\textbf{Ketaksamaan Schur}\: \: \textrm{saat}\: \: \color{red}r=1.\\ &\textrm{Jadi},\\ &\: \: \left (a+1- \displaystyle \frac{1}{b} \right )\left (b+1- \displaystyle \frac{1}{c} \right )\left (c+1- \displaystyle \frac{1}{a} \right )\leq 1\quad \blacksquare \end{array}$.
$\begin{array}{ll}\\ 4.&\textbf{(IMO 1983)}\\ &\textrm{Jika}\: \: a,b,c\: \: \textrm{adalah panjang sisi-sisi segitiga}\\ &\textrm{tunjukkan bahwa}\\ &\quad a^{2}b(a-b)+b^{2}c(b-c)+c^{2}a(c-a)\geq 0\\\\ &\textbf{Bukti}:\\ &\textrm{Pada sebuah segitiga dengan sisi}\: \: a,b,c\\ &\textrm{berlaku}\: \: \begin{cases} a+b>c & \Rightarrow a>c-b\\ a+c>b & \Rightarrow c>b-c\\ b+c>a & \Rightarrow b>a-c \end{cases}\\ &\textrm{Sehingga untuk ketaksamaan pada soal}\\ &\color{red}a^{2}b(a-b)+b^{2}c(b-c)+c^{2}a(x-a)\\ &\geq a^{2}(a-c)(a-b)+b^{2}(b-c)(b-c)+c^{2}(c-b)(c-a)\color{red}\geq 0\\ &\textrm{Bentuk terakhir memenuhi bentuk dari}\\ &\textbf{Ketaksamaan Schur}\: \: \textrm{saat}\: \: \color{red}r=2.\\ &\textrm{Jadi},\\ &\quad a^{2}b(a-b)+b^{2}c(b-c)+c^{2}a(c-a)\geq 0\quad \blacksquare \end{array}$.
$\begin{array}{ll}\\ 5.&\textrm{Misalkan}\: \: a,b,c\: \: \textrm{bilangan real positif dengan}\\ &a+b+c=2\: ,\: \textrm{tunjukkan bahwa}\\ &\quad a^{4}+b^{4}+c^{4}+abc\geq a^{3}+b^{3}+c^{3}\\\\ &\textbf{Bukti}\\ &\textrm{Dengan}\: \: \textbf{Ketaksamaan Schur}\: \textrm{saat}\: \: \color{red}r=2\\ &\textrm{kita memiliki}\\ &a^{2}(a-b)(a-c)+b^{2}(b-a)(b-c)+c^{2}(c-a)(c-b)\geq 0\\ &\Leftrightarrow a^{4}+b^{4}+c^{4}+abc(a+b+c)-a^{3}(b+c)-b^{3}(a+c)-c^{3}(a+b)\geq 0\\ &\Leftrightarrow a^{4}+b^{4}+c^{4}+abc(a+b+c)\geq a^{3}(b+c)+b^{3}(a+c)+c^{3}(a+b)\\ &\Leftrightarrow a^{4}+b^{4}+c^{4}+abc(a+b+c)\geq (a^{3}+b^{3}+c^{3})(a+b+c)-(a^{4}+b^{4}+c^{4})\\ &\Leftrightarrow 2(a^{4}+b^{4}+c^{4})+abc(a+b+c)\geq (a^{3}+b^{3}+c^{3})(a+b+c)\\ &\Leftrightarrow 2(a^{4}+b^{4}+c^{4})+abc(2)\geq (a^{3}+b^{3}+c^{3})(2)\\ &\Leftrightarrow a^{4}+b^{4}+c^{4}+abc\geq a^{3}+b^{3}+c^{3}\qquad \blacksquare \\\\ &\color{blue}\textrm{Bentuk di atas kadang dituliskan dengan bentuk}\\ &\color{blue}\textrm{berikut}:\\ &\begin{aligned}&\textrm{Dengan}\: \: \textbf{Ketaksamaan Schur}\: \textrm{saat}\: \: \color{red}r=2\\ &\textrm{kita memiliki}\\ &\displaystyle \sum_{\textrm{siklik}}^{.}a^{2}(a-b)(a-c)\geq 0\\ &\Leftrightarrow \displaystyle \sum_{\textrm{siklik}}^{.}a^{4}+abc\displaystyle \sum_{\textrm{siklik}}^{.}a-\displaystyle \sum_{\textrm{siklik}}^{.}a^{3}(b+c)\geq 0\\ &\Leftrightarrow \displaystyle \sum_{\textrm{siklik}}^{.}a^{4}+abc\displaystyle \sum_{\textrm{siklik}}^{.}a\geq \displaystyle \sum_{\textrm{siklik}}^{.}a^{3}(b+c)\\ &\Leftrightarrow \displaystyle \sum_{\textrm{siklik}}^{.}a^{4}+abc\displaystyle \sum_{\textrm{siklik}}^{.}a\geq \left ( \displaystyle \sum_{\textrm{siklik}}^{.}a^{3} \right )\left ( \displaystyle \sum_{\textrm{siklik}}^{.}a \right )-\left ( \displaystyle \sum_{\textrm{siklik}}^{.}a^{4} \right )\\ &\Leftrightarrow 2\displaystyle \sum_{\textrm{siklik}}^{.}a^{4}+abc\displaystyle \sum_{\textrm{siklik}}^{.}a\geq \left ( \displaystyle \sum_{\textrm{siklik}}^{.}a^{3} \right )\left ( \displaystyle \sum_{\textrm{siklik}}^{.}a \right )\\ &\Leftrightarrow \displaystyle \sum_{\textrm{siklik}}^{.}a^{4}+abc\geq \left ( \displaystyle \sum_{\textrm{siklik}}^{.}a^{3} \right )\qquad \blacksquare \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 6.&(\textbf{APMO 2004})\\ &\textrm{Misalkan}\: \: x,y,x\: \: \textrm{bilangan real positif dengan}\\ &\textrm{tunjukkan bahwa}\\ &\quad (x^{2}+2)(y^{2}+2)(z^{2}+2)\geq 9(xy+yz+zx)\\\\ &\textbf{Bukti}\\ &\textrm{Dengan menjabarkan akan didapatkan}\\ &x^{2}y^{2}z^{2}+2\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}y^{2}+4\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}+8\geq 9\displaystyle \sum_{\textrm{siklik}}^{.}xy\\ &\textrm{Perhatikan bahwa}\\ &\bullet \quad\color{red}2\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}y^{2}-4\displaystyle \sum_{\textrm{siklik}}^{.}xy+6=2\displaystyle \sum_{\textrm{siklik}}^{.}(xy-1)^{2}\geq 0\\ &\bullet \quad \color{red}\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}\geq \displaystyle \sum_{\textrm{siklik}}^{.}xy\: \: \color{black}\textrm{atau}\: \: \color{red}x^{2}+y^{2}+z^{2}\geq xy+xz+yz\\ &\textrm{Kita cukup membuktikan bahwa}\\ & x^{2}y^{2}z^{2}+\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}+2\geq 2\displaystyle \sum_{\textrm{siklik}}^{.}xy\\ &\Leftrightarrow x^{2}y^{2}z^{2}+2\geq \displaystyle \sum_{\textrm{siklik}}^{.}xy\\ &\begin{aligned}&\textrm{Untuk}\: \: a,b,c\: \: \textrm{bilangan real positif},\\ &\textbf{Ketaksamaan Schur}\: \textrm{saat}\: \: \color{red}r=1\\ &\textrm{memberikan}\\ &\displaystyle \sum_{\textrm{siklik}}^{.}a^{3}+3abc\geq \displaystyle \sum_{\textrm{siklik}}^{.}a^{2}b+\displaystyle \sum_{\textrm{siklik}}^{.}ab^{2}\\ &\qquad\qquad\qquad =ab(a+b)+bc(b+c)+ca(c+a)\\ &\textrm{Dengan}\: \: \textbf{Ketaksamaan AM-GM}\: \: \textrm{didapakan}\\ &\displaystyle \sum_{\textrm{siklik}}^{.}a^{3}+3abc\geq 2\displaystyle \sum_{\textrm{siklik}}^{.}(ab)^{\frac{3}{2}}\\ &\textrm{Pilih}\: \: a=x^{\frac{2}{3}},\: b=y^{\frac{2}{3}},\: c=z^{\frac{2}{3}},\: \textrm{maka didapatkan}\\ &(x^{\frac{2}{3}})^{3}+(y^{\frac{2}{3}})^{3}+(z^{\frac{2}{3}})^{3}+3(xyz)^{\frac{2}{3}}\geq 2(xy+yz+zx)\\ &\textrm{Selanjutnya kita selesaikan ini}\: ,\: x^{2}y^{2}z^{2}+2\geq \displaystyle \sum_{\textrm{siklik}}^{.}xy\\ &\Leftrightarrow x^{2}y^{2}z^{2}+2 \geq 3(xyz)^{\frac{2}{3}}\\ &\textrm{Misalkan}\: \: (xyz)^{\frac{2}{3}}=t,\: \textrm{maka}\\ &t^{3}+2\geq 3t\Leftrightarrow t^{3}-3t+2\geq 0\\ &(t-1)^{2}(t+2)\geq 0\: \: \textrm{adalah hal benar} \end{aligned} \end{array}$.
DAFTAR PUSTAKA
- Tung. K.Y. 2013. Ayo Raih Medali Emas Olimpiade Matematika SMA. Yogyakarta: ANDI.
- Venkatachala, B.J. 2009. Inequalities An Approach Through Problems (2nd). India: SPRINGER.
- Young, B. 2009. Seri Buku Olimpiade Matematika Strategi Menyelesaikan Soal-Soal Olimpiade Matematika: Ketaksamaan (Inequality). Bandung: PAKAR RAYA.