DAFTAR PUSTAKA
- Bambang, S. 2012. Materi, Soal dan Penyelesaian Olimpiade Matematika Tingkat SMA/MA. Jakarta: BINA PRESTASI INSANI
DAFTAR PUSTAKA
DAFTAR PUSTAKA
DAFTAR PUSTAKA
1. Identitas Trigonometri dalam Segitiga
Perhatikan segitiga sembarang berikut
2. Segitiga dan Pertidaksamaan Segitiga
Pada sebuah segitiga pengklasifikasiannya dapat berdasarkan berdasarkan panjang sisinya ataupun jenis sudut-sudutnya. Berikut untuk klasifikasi berdasarkan panjang sisinya
Dan berdasarkan jenis sudutnya sebuah segitiga dapat dikategorikan dengan
Adapun berkaitan dengan segmen garis yang akan menjadi penyusun sebuah segitiga, maka sebuah segitiga hanya bisa dibuat dari ketiga segmen garis yang mana segemen garis yang terpanjang akan selalu lebih pendek dari pada jumlah panjang kedua segmen garis yang lainnya atau segmen garis yang terpendek akan selalu lebih panjang dari pada selisih panjang dari kedua segemn garis yang lainnya. Sifat tersebut lazim dinamkan dengan ketidaksamaan dalam segitiga.
3. Ketaksamaan (Inequality)
Di sini yang akan dibahas adalah beberapa ketaksamaan secara umum yang tentunya sebagian berlaku pada segitiga untuk membantu para siswa dijenjang SMP atau SMA atau sederajat juga menjadi pengingat buat penulis sendiri, karena materi ini hampir menuntut daya nalar yang lebih dengan prasyarat telah terbiasa dengan soal-soal semisal aljabar dan trigonometri.
3. 1 Ketaksamaan QM-AM-GM-HM
Dalam setiap soal yang melibatkan ketaksamaan biasanya muncul dalam soal berkategori KSN (Kompetisi Sains Nasional) baik tingkat kabupaten, provinsi bahkan nasional maupun juga KSM (Kompetisi Sains Madrasah) dengan jenjang yang sama serta soal-soal dengan kategori kompetisi yang semisal. Model penyelesaian yang digunakan hampir sering akan melibatkan penggunaan ketaksamaan metode ini, yaitu QM-AM-GM-HM. Pada beberapa contoh soal di bawah dapat Anda cermati tentang penggunaan penyelesaian cara ini demikian pula pada halaman-halaman berikutnya pada blog ini akan dibahas beberapa soal dan diselesaikan dengan cara ini.
Dengan kata lain QM adalah rataan kuadratik, AM adalah rataan aritmetik, dan GM adalah rataan geometri, serta HM rataan harmoni dan besarnya
Anda juga bisa klik di sini untuk QM, AM, GM, dan HM.
Demikian seterusnya.
Catatan:
Kotak persegi kecil hitam diletakkan diakhir pembuktian menunjukkan pembuktian telah dianggap cukup dan memenuhi
DAFTAR PUSTAKA
D. 6 Lingkaran dalam segitiga
Perhatikanlah gambar berikut
D. 7 Lingkaran singgung segitiga
Sebagai ilustrasinya adalah gambar berikut
A. Heron's Formula
Bukti Luas Segitiga dengan sisi a, b, dan c
Berikut akan dipaparkan buktinya
Rumus di atas lebih dikenal dengan istilah rumus Heron lihat Heron's formula di sini.
Sumber tulisan lagi di antara silahkan kunjungi di sini.
B. Luas segitiga
Luas segitiga juga bisa kita dapatkan dengan dengan simulasi berikut
Jika jarak titik A ke C adalah 8 cm,
maka jarak titik A ke D adalah ... cm
Jika jarak K ke Q adalah 9 cm,
maka jarak titik K ke L adalah ... cm
Jawab : b
Pembahasan juga diserahkan kepada pembaca yang budiman