$\color{blue}\textrm{A. Pendahuluan}$
Mengingat kembali definisi limit yang telah dipelajari sebelumnya di kelas XI, yaitu limit fungsi aljabar $f(x)$ yang didefinisikan dengan:
$\begin{aligned}\underset{x\rightarrow a }{\textrm{lim}}\: f(x)=L&\: \: \textbf{adalah}\, \: \textrm{Jika}\: \: x\: \: \textrm{mendekati}\: \: a\\ &\textrm{dengan tidak sama dengan}\: \: a,\\ &\textrm{maka nilai}\: \: f(x)\: \: \textrm{mendekati}\: \: L \end{aligned}$.
Perhatikan definisi di atas istilah $x\: \: \textrm{mendekati}\: \: a$ dituliskan dengan simbol $(x\rightarrow a)$. Suatu nilai limit dianggap ada jika nilai $f(x)$ mendekati $a$ dari arah kiri sama dengan nilai $f(x)$ mendekati $a$ dari arah kanan dengan nilai yang sama misalnya $L$. Jika disimbolkan pernyataan ini menjadi berikut
$\begin{aligned}\underset{x\rightarrow \color{blue}a^{-} }{\textrm{lim}}\: f(x)=\underset{x\rightarrow \color{blue}a^{+} }{\textrm{lim}}\: f(x)=\underset{x\rightarrow \color{blue}a }{\textrm{lim}}\: f(x)=L&\: \: \ \end{aligned}$.
$\begin{aligned}\textrm{Perlu di}&\textrm{perhatikan bahwa didekati dari}\\ \bullet \: \: \textbf{kiri}\: &\textrm{disimbolkan dengan}\: \: \underset{x\rightarrow \color{blue}a^{-} }{\textrm{lim}}\: f(x),\: \: \textrm{dan}\\ \bullet \: \: \, \textbf{kan}&\textbf{an}\: \: \textrm{disimbolkan dengan}\: \: \underset{x\rightarrow \color{blue}a^{+} }{\textrm{lim}}\: f(x) \end{aligned}$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah nilai limit dari}\: \: f(x)=\displaystyle \frac{x^{2}-4}{x-2}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Perhatikanlah ketika fungsi} \: \: \displaystyle \frac{x^{2}-4}{x-2}\\ &\textrm{di sekitar}\: \: x=2\: \: \textrm{sebagaimana dalam tabel}\\ &\textrm{berikut} \end{aligned}\end{array}$.
$\begin{aligned}.\qquad&\textrm{Jadi, nilai}\: \: \underset{x\rightarrow \color{blue}2}{\textrm{lim}} \: \displaystyle \frac{x^{2}-4}{x-2}=2 \: \: \textrm{atau dapat dikatakan}\\ &\textrm{nilai} \: \: \underset{x\rightarrow \color{blue}2}{\textrm{lim}} \: \displaystyle \frac{x^{2}-4}{x-2}\: \: \textbf{ada}\\ &\textrm{meskipun nilai substitusi langsung}\: \: x=2\: \: \textrm{yaitu}\\ &f(0)=\displaystyle \frac{0^{2}-0}{0-0}=\frac{0}{0}\: \: \textrm{berupa bentuk tak}\\ &\textrm{tentu. Berikut ilustrasinya} \end{aligned}$
$\begin{array}{ll}\\ 2.&\textrm{Selidikilah limit fungsi berikut apakah}\\ &\textrm{memiliki harga limit}\\ &\underset{x\rightarrow \color{red}5}{\textrm{lim}} \:f(x),\: \: \textrm{untuk}\: \: f(x)=\begin{cases} x &\textrm{saat}\: \: x<5 \\ 5-x &\textrm{saat}\: \: x\geq 5 \end{cases}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Perhatikanlah ketika didekati dari kiri}\\\ &\textrm{yaitu}\: \: x\rightarrow \color{red}5^{-},\: \: \color{black}\textrm{maka}\: \: \underset{x\rightarrow \color{red}5^{-}}{\textrm{lim}} \:f(x)=x\\ & \textrm{atau}\: \: \underset{x\rightarrow \color{red}5^{-}}{\textrm{lim}} \:f(x)=5\\ &\textrm{boleh juga dituliskan dengan}\\ &\underset{x\rightarrow \color{red}5^{-}}{\textrm{lim}} \:f(x)=x=5.\: \: \textrm{Sedangkan ketika}\\ &\textrm{didekati dari arah kanan yaitu}\: \: x\rightarrow \color{red}5^{+},\\ &\textrm{maka}\: \: \underset{x\rightarrow \color{red}5^{+}}{\textrm{lim}} \:f(x)=\underset{x\rightarrow \color{red}5^{+}}{\textrm{lim}} \: (5-x)=5-5=0.\\ &\textrm{Karena nilai}\: \: \underset{x\rightarrow \color{red}5^{-}}{\textrm{lim}} \:f(x)\neq \underset{x\rightarrow \color{red}5^{+}}{\textrm{lim}} \:f(x),\: \: \textrm{maka}\\ &\textrm{nilai atau harga}\: \: \underset{x\rightarrow \color{red}5}{\textrm{lim}} \:f(x)\: \: \textbf{tidak ada}\\ &\textrm{Berikut ilustrasi gambarnya} \end{aligned}\end{array}$.
$\begin{array}{ll}\\ 3.&\textrm{Selidikilah limit fungsi berikut apakah}\\ &\textrm{memiliki harga limit}\\ &\underset{x\rightarrow \color{red}0}{\textrm{lim}} \:f(x),\: \: \textrm{untuk}\: \: f(x)=\cos x\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Perhatikanlah ketika didekati dari kiri}\\\ &\textrm{yaitu}\: \: x\rightarrow \color{red}0^{-},\: \: \color{black}\textrm{maka}\: \: \underset{x\rightarrow \color{red}0^{-}}{\textrm{lim}} \: \cos x\\ &\begin{array}{|c|c|c|c|c|c|c|}\hline x&-0,5&-0,4&-0,3&-0,2&-0,1&0\\\hline \cos x&...&...&0,999986&0,999994&0,9999985&1\\\hline \end{array}\\ &\textrm{Sedangkan ketika}\\ &\textrm{didekati dari arah kanan yaitu}\: \: x\rightarrow \color{red}0^{+},\\ &\textrm{maka}\: \: \underset{x\rightarrow \color{red}0^{+}}{\textrm{lim}} \:\cos x\\ &\begin{array}{|c|c|c|c|c|c|c|}\hline x&0&0,1&0,2&0,3&0,4&0,5\\\hline \cos x&1&0,9999985&0,999994&0,999986&...&...\\\hline \end{array}\\ &\textrm{Karena nilai}\: \: \underset{x\rightarrow \color{red}0^{-}}{\textrm{lim}} \:f(x)= \underset{x\rightarrow \color{red}0^{+}}{\textrm{lim}} \:f(x)=1,\: \: \textrm{maka}\\ &\textrm{nilai}\: \: \underset{x\rightarrow \color{red}0}{\textrm{lim}} \:\cos x\: \: \textbf{ ada}\\ &\textrm{Berikut ilustrasi gambarnya} \end{aligned} \end{array}$.
$\color{blue}\textrm{B. Sifat-Sifat Limit Fungsi}$
$\begin{aligned}&\textrm{Misalkan}\: \: f\: \: \textrm{dan}\: \: g\: \: \textrm{adalah fungsi-fungsi yang}\\ &\textrm{mempunyai nilai limit di titik sekitar}\: \: x=a\\ &\textrm{atau}\: \: (x\rightarrow a)\: \: \textrm{dan}\: \: c\: \: \textrm{adalah suatu konstanta}\\ &\textrm{serta}\: \: n\: \: \textrm{adalah suatu bilangan bulat positif},\\ &\textrm{maka berlaku sifat-sifat berikut}:\\ &\begin{array}{ll}\\ 1.&\underset{x\rightarrow a }{\textrm{lim}}\: \displaystyle c=c\\ 2.&\underset{x\rightarrow a }{\textrm{lim}}\: \displaystyle x^{n}=a^{n}\\ 3.&\underset{x\rightarrow a }{\textrm{lim}}\: c.f(x)=c.\underset{x\rightarrow a }{\textrm{lim}}\: f(x)\\ 4.&\underset{x\rightarrow a}{\textrm{lim}}\: \left ( f(x)\pm g(x) \right )=\underset{x\rightarrow a }{\textrm{lim}}\: f(x)\pm \underset{x\rightarrow a }{\textrm{lim}}\: g(x)\\ 5.&\underset{x\rightarrow a }{\textrm{lim}}\: \left ( f(x)\times g(x) \right )=\underset{x\rightarrow a }{\textrm{lim}}\: f(x)\times \underset{x\rightarrow a }{\textrm{lim}}\: g(x)\\ 6.&\underset{x\rightarrow a }{\textrm{lim}}\: \displaystyle \frac{f(x)}{g(x)}=\displaystyle \frac{\underset{x\rightarrow a }{\textrm{lim}}\: f(x)}{\underset{x\rightarrow a }{\textrm{lim}}\: g(x)}\\ 7.&\underset{x\rightarrow a }{\textrm{lim}}\: \left (f(x) \right )^{n}= \left [\underset{x\rightarrow a }{\textrm{lim}}\: f(x)) \right ]^{n}\\ 8.&\underset{x\rightarrow a }{\textrm{lim}}\: \sqrt[n]{f(x)}=\sqrt[n]{\underset{x\rightarrow \infty}{\textrm{lim}}\: f(x)},\quad \textrm{dengan}\: \: \underset{x\rightarrow a }{\textrm{lim}}\: f(x)\geq 0\\ &\qquad\qquad\qquad\qquad\qquad\qquad\quad \textrm{dan}\: \: n\: \: \textrm{genap} \end{array} \end{aligned}$
Tidak ada komentar:
Posting Komentar
Informasi