Lanjutan 2 Materi Geometri Ruang (Dimensi Tiga)

 B. 3. Kedudukan Titik terhadap Bidang.

Perhatikan kubus ABCD.EFGH berikut

Pandang titik A terhadap bidang EFGH. Tampak bahwa titik A terletak tidak pada bidang EFGH termasuk juga titik-titik yang lain yang tidak terletak pada bidang EFGH tersebut yaitu: titik B, C, dan D. Walaupun demikian pada kubus ABCD.EFGH tersebut terdapat beberapa titik yang terletak pada bidang EFGH, yaitu: titik E, F, G, G, dan P. Selanjutnya hubungan kedudukan suatu titik terhadap bidang dapat kita tuliskan sebagaimana dalam tabel berikut:

NoKedudukanKeterangan1.pada bidangtitik terletak pada bidang2.di luar bidangtitik berada di luar bidang

Sebagai tambahan penjelasan perhatikan pula gambar limas D.ABC berikut


Pada limas D.ABC di atas terlihat jelas bagwa titik D terletak di luar bidan ABC, tetapi titik A atau titik B ataupun titik C, semuanya terletak pada bidang ABC pada bangun limas D.ABC di atas.

Selanjutnya dalam penentuan jarak antar titik dengan suatu bidang adalah panjang ruas garis secara tegak lurus yang menghungkan titik tersebut dengan bidang yang dimaksud.

Sebagai ilustrasi adalah gambar berikut

Pada ilsutrasi gambar di atas jarak titik A ke bidang V adalah sepanjang ruas garis AB yang mana ruas garis AB tegak lurus dengan bidang V.

CONTOH SOAL.

7.Diketahui kubus ABCD.EFGH dengan rusuk 8 cm.Tentukanlah jarak titik C ke bidang BDGJawab:Perhatikanlah ilustrasi.

Jika gambarnya dipartisi lagi di bagian segitiga GCG' maka akan tampak seperti ilustrasi berikut
.Jelasbahwa{GC=8cm(dari soal)BD=AC=82cm(diagonal sisi kubus)CG=12AC=42cmmakadengan rumus Pythagoras dapatpanjangGG,yaitu:(GG)2=(GC)2+CG2GG=(GC)2+CG2=(42)2+82=32+64=96=16.6=46cmPerhatikanGCGDengan perbandingan luasGCG=GCG12×CC×GG=12×CG×CG12×CC×(46)=12×(42)×8CC=12×(42)×812×(46)=83=83×33=833cm.

8.Diketahui rusuk kubus ABCD.EFGH adalah 6 cmTentukanlah jarak titik E ke bidang BDGJawab:Perhatikanlah ilustrasi berikut ini.
.Jelasbahwa{AB=BC=CG=QQ=6cm(dari soal)AC=EG=62cm(diagonal sisi kubus)EQ=QG=12(sisi)6=36cmPerhatikanEQGDengan perbandingan luasEQG=EQG12×QG×EE=12×QQ×EG12×(36)×EE=12×6×62EE=12×(62)×612×(36)=43cm









Tidak ada komentar:

Posting Komentar

Informasi