Lanjutan 2 Fungsi Eksponen

 C. 2. 2  Merasionalkan penyebut

Jika suatu pecahan penyebutnya mengandung bilangan irasional atau bentuk akar, maka penyebut ini dapat dibuat menjadi bilangan rasional. Perhatikanlah langkah berikut
$\color{blue}\begin{aligned}1.\quad&\displaystyle \frac{a}{\sqrt{b}}=\frac{a}{\sqrt{b}}\times \frac{\sqrt{b}}{\sqrt{b}}=\frac{a\sqrt{b}}{\left ( \sqrt{b^{2}} \right )}=\frac{a}{b}\sqrt{b}\\ 2.\quad&\displaystyle \frac{a}{\sqrt[3]{b}}=\frac{a}{\sqrt[3]{b}}\times \frac{\sqrt[3]{b^{2}}}{\sqrt[3]{b^{2}}}=\frac{a\sqrt[3]{b^{2}}}{\left ( \sqrt[3]{b^{3}} \right )}=\frac{a}{b}\sqrt[3]{b^{2}}\\ 3.\quad&\displaystyle \frac{a}{\sqrt[5]{b^{3}}}=\displaystyle \frac{a}{\sqrt[5]{b^{3}}}\times \frac{\sqrt[5]{b^{2}}}{\sqrt[5]{b^{2}}}=\frac{a\sqrt[5]{b^{2}}}{\sqrt[5]{b^{5}}}=\frac{a}{b}\sqrt[5]{b^{2}} \end{aligned}$

Merasionalkan di atas adalah contoh bebrapa contoh model merasionalkan jika berjenis tunggal tetapi jika nanti jenisnya lebih dari itu, maka perhatikanlah simulasi contoh berikut
$\color{blue}\begin{aligned}&\\ 1.\quad&\displaystyle \frac{c}{a+\sqrt{b}}=\frac{c}{a+\sqrt{b}}.\frac{a-\sqrt{b}}{a-\sqrt{b}}=\frac{c\left ( a-\sqrt{b} \right )}{a^{2}-b}\\ 2.\quad&\displaystyle \frac{c}{a-\sqrt{b}}=\frac{c}{a-\sqrt{b}}.\frac{a+\sqrt{b}}{a+\sqrt{b}}=\frac{c\left ( a+\sqrt{b} \right )}{a^{2}-b}\\ 3.\quad&\displaystyle \frac{c}{\sqrt{a}+\sqrt{b}}=\frac{c}{\sqrt{a}+\sqrt{b}}.\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\frac{c\left ( \sqrt{a}-\sqrt{b} \right )}{a-b}\\ \end{aligned}$

Perhatikanlah simulasi contoh di atas, bentuk $a+\sqrt{b}$ memiliki bentuk sekawan (irasional juga) $a-\sqrt{b}$, demikian juga bentuk $\sqrt{a}+\sqrt{b}$ memiliki sekawan $\sqrt{a}-\sqrt{b}$. Disamping itu ada bentuk khusus yatu bentuk  $\sqrt[3]{a}+\sqrt[3]{b}$ memiliki bentuk sekawan $\sqrt[3]{a^{2}}-\sqrt[3]{ab}+\sqrt[3]{b^{2}}$.

$\LARGE\colorbox{yellow}{ CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Rasionalkanlah penyebut pecahan berikut}\\ &\textrm{dan serderhankanlah hasilnya}\\ &\textrm{a}.\quad \displaystyle \frac{2}{\sqrt{5}}\qquad\qquad \textrm{d}.\quad \displaystyle \frac{\sqrt{2}}{\sqrt{5}}\\ &\textrm{b}.\quad \displaystyle \frac{2}{5\sqrt{2}}\: \: \: \quad\quad\quad \textrm{e}.\quad \displaystyle \frac{p}{\sqrt{q}}\\ &\textrm{c}.\quad \displaystyle \frac{6}{3\sqrt{5}}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\displaystyle \frac{2}{\sqrt{5}}=\displaystyle \frac{2}{\sqrt{5}}\times \frac{\sqrt{5}}{\sqrt{5}}=\displaystyle \frac{2\sqrt{5}}{\sqrt{25}}=\displaystyle \frac{2}{5}\sqrt{5}\\ \textrm{b}.\quad&\displaystyle \frac{2}{5\sqrt{2}}=\displaystyle \frac{2}{5\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}}=\displaystyle \frac{2\sqrt{2}}{5\sqrt{4}}=\frac{2\sqrt{2}}{5.2}=\displaystyle \frac{1}{5}\sqrt{2} \\ \textrm{c}.\quad&\displaystyle \frac{6}{3\sqrt{5}}=\displaystyle \frac{6}{3\sqrt{5}}\times \frac{\sqrt{5}}{\sqrt{5}}=\displaystyle \frac{6\sqrt{5}}{3\sqrt{25}}=\frac{6\sqrt{5}}{3.5}=\displaystyle \frac{2}{5}\sqrt{5}\\ \textrm{d}.\quad &\displaystyle \frac{\sqrt{2}}{\sqrt{5}}=\displaystyle \frac{\sqrt{2}}{\sqrt{5}}\times \frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{10}}{\sqrt{25}}=\frac{\sqrt{10}}{5} =\displaystyle \frac{1}{5}\sqrt{10}\\ \textrm{e}.\quad &\displaystyle \frac{p}{\sqrt{q}}=\displaystyle \frac{p}{\sqrt{q}}\times \frac{\sqrt{q}}{\sqrt{q}}=\displaystyle \frac{p\sqrt{q}}{\sqrt{q^{2}}}=\frac{p\sqrt{q}}{q}=\displaystyle \frac{p}{q}\sqrt{q} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Rasionalkanlah penyebut pecahan berikut}\\ &\textrm{dan serderhankanlah hasilnya}\\ &\textrm{a}.\quad \displaystyle \frac{3}{6-\sqrt{5}}\qquad\qquad \textrm{f}.\quad \displaystyle \frac{3}{\sqrt{6}+\sqrt{5}}\\ &\textrm{b}.\quad \displaystyle \frac{3}{6+\sqrt{5}}\quad \quad\quad\quad \textrm{g}.\quad \frac{\sqrt{3}}{\sqrt{6}-\sqrt{5}}\\ &\textrm{c}.\quad \displaystyle \frac{\sqrt{3}}{6-\sqrt{5}}\qquad\qquad\textrm{h}.\quad \frac{\sqrt{3}}{\sqrt{6}+\sqrt{5}}\\ &\textrm{d}.\quad \displaystyle \frac{\sqrt{3}}{6+\sqrt{5}}\qquad\qquad\textrm{i}.\quad \frac{\sqrt{3}}{\sqrt{6-2\sqrt{5}}}\\ &\textrm{e}.\quad \displaystyle \frac{3}{\sqrt{6}-\sqrt{5}}\: \qquad\quad\textrm{j}.\quad \frac{\sqrt{3}}{\sqrt{6+2\sqrt{5}}}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\displaystyle \frac{3}{6-\sqrt{5}}=\displaystyle \frac{3}{6-\sqrt{5}}\times \frac{6+\sqrt{5}}{6+\sqrt{5}}=\displaystyle \frac{3\left ( 6+\sqrt{5} \right )}{6^{2}-\sqrt{5}^{2}}\\ &=\displaystyle \frac{18+3\sqrt{5}}{36-5}=\frac{18+3\sqrt{5}}{31}=\displaystyle \frac{1}{31}\left ( 18+3\sqrt{5} \right )\\ \textrm{b}.\quad & \displaystyle \frac{3}{6+\sqrt{5}}=\displaystyle \frac{3}{6+\sqrt{5}}\times \frac{6-\sqrt{5}}{6-\sqrt{5}}=\displaystyle \frac{3\left ( 6-\sqrt{5} \right )}{6^{2}-\sqrt{5}^{2}}\\ &=\displaystyle \frac{18-3\sqrt{5}}{36-5}=\frac{18-3\sqrt{5}}{31}=\displaystyle \frac{1}{31}\left ( 18-3\sqrt{5} \right )\\ \textrm{c}.\quad &\displaystyle \frac{\sqrt{3}}{6-\sqrt{5}}=\displaystyle \frac{\sqrt{3}}{6-\sqrt{5}}\times \frac{6+\sqrt{5}}{6+\sqrt{5}}=\displaystyle \frac{\sqrt{3}\left ( 6+\sqrt{5} \right )}{6^{2}-\sqrt{5}^{2}}\\ &=\displaystyle \frac{6\sqrt{3}+\sqrt{15}}{36-5}=\frac{6\sqrt{3}+\sqrt{15}}{31}=\displaystyle \frac{1}{31}\left ( 6\sqrt{3}+\sqrt{15} \right )\\ \textrm{d}.\quad &\displaystyle \frac{\sqrt{3}}{6+\sqrt{5}}=\displaystyle \frac{\sqrt{3}}{6+\sqrt{5}}\times \frac{6-\sqrt{5}}{6-\sqrt{5}}=\displaystyle \frac{\sqrt{3}\left ( 6-\sqrt{5} \right )}{6^{2}-\sqrt{5}^{2}}\\ &=\displaystyle \frac{6\sqrt{3}-\sqrt{15}}{36-5}=\frac{6\sqrt{3}-\sqrt{15}}{31}=\displaystyle \frac{1}{31}\left ( 6\sqrt{3}-\sqrt{15} \right )\\ \textrm{e}.\quad &\displaystyle \frac{3}{\sqrt{6}-\sqrt{5}}=\displaystyle \frac{3}{\sqrt{6}-\sqrt{5}}\times \frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}=\displaystyle \frac{3\left ( \sqrt{6}+\sqrt{5} \right )}{\sqrt{6}^{2}-\sqrt{5}^{2}}\\ &=\displaystyle \frac{3\left ( \sqrt{6}+\sqrt{5} \right )}{6-5}=\frac{3\left ( \sqrt{6}+\sqrt{5} \right )}{1}=3\left ( \sqrt{6}+\sqrt{5} \right ) \\ \textrm{f}.\quad &\displaystyle \frac{3}{\sqrt{6}+\sqrt{5}}=\displaystyle \frac{3}{\sqrt{6}+\sqrt{5}}\times \frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}-\sqrt{5}}=\displaystyle \frac{3\left ( \sqrt{6}-\sqrt{5} \right )}{\sqrt{6}^{2}-\sqrt{5}^{2}}\\ &=\displaystyle \frac{3\left ( \sqrt{6}-\sqrt{5} \right )}{6-5}=\frac{3\left ( \sqrt{6}-\sqrt{5} \right )}{1}=3\left ( \sqrt{6}-\sqrt{5} \right )\\ \textrm{g}.\quad &\displaystyle \frac{\sqrt{3}}{\sqrt{6}-\sqrt{5}}=\displaystyle \frac{\sqrt{3}}{\sqrt{6}-\sqrt{5}}\times \frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}=\displaystyle \frac{\sqrt{3}\left ( \sqrt{6}+\sqrt{5} \right )}{\sqrt{6}^{2}-\sqrt{5}^{2}}\\ &=\displaystyle \frac{\sqrt{18}+\sqrt{15}}{6-5}=\frac{\sqrt{9.2}+\sqrt{15}}{1}=\left ( 3\sqrt{2}+\sqrt{15} \right )\\ \textrm{h}.\quad &\displaystyle \frac{\sqrt{3}}{\sqrt{6}+\sqrt{5}}=\displaystyle \frac{\sqrt{3}}{\sqrt{6}+\sqrt{5}}\times \frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}-\sqrt{5}}=\displaystyle \frac{\sqrt{3}\left ( \sqrt{6}-\sqrt{5} \right )}{\sqrt{6}^{2}-\sqrt{5}^{2}}\\ &=\displaystyle \frac{\sqrt{18}-\sqrt{15}}{6-5}=\frac{\sqrt{9.2}-\sqrt{15}}{1}=\left ( 3\sqrt{2}-\sqrt{15} \right )\\ \textrm{i}.\quad &\frac{\sqrt{3}}{\sqrt{6-2\sqrt{5}}}=\frac{\sqrt{3}}{\sqrt{5+1-2\sqrt{5.1}}}=\displaystyle \frac{\sqrt{3}}{\sqrt{5}-\sqrt{1}}=\frac{\sqrt{3}}{\sqrt{5}-1}\\ &=\frac{\sqrt{3}}{\sqrt{5}-1}\times \frac{\sqrt{5}+1}{\sqrt{5}+1}=\displaystyle \frac{\sqrt{3.5}+\sqrt{3.1}}{\sqrt{5}^{2}-1^{2}}=\frac{\sqrt{15}+\sqrt{3}}{5-1}\\ &=\displaystyle \frac{1}{4}\left ( \sqrt{15}+\sqrt{3} \right )\\ \textrm{j}.\quad &\frac{\sqrt{3}}{\sqrt{6+2\sqrt{5}}}=\frac{\sqrt{3}}{\sqrt{5+1+2\sqrt{5.1}}}=\displaystyle \frac{\sqrt{3}}{\sqrt{5}+\sqrt{1}}=\frac{\sqrt{3}}{\sqrt{5}+1}\\ &=\frac{\sqrt{3}}{\sqrt{5}+1}\times \frac{\sqrt{5}-1}{\sqrt{5}-1}=\displaystyle \frac{\sqrt{3.5}-\sqrt{3.1}}{\sqrt{5}^{2}-1^{2}}=\frac{\sqrt{15}-\sqrt{3}}{5-1}\\ &=\displaystyle \frac{1}{4}\left ( \sqrt{15}-\sqrt{3} \right ) \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 3&\textrm{Rasionalkan penyebut dan sederhanakanlah}\\ &\textrm{a}.\quad \displaystyle \frac{1}{\sqrt{2}+\sqrt{5}+\sqrt{7}}\\ &\textrm{b}.\quad\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\displaystyle \frac{1}{\sqrt{2}+\sqrt{5}+\sqrt{7}}\\ &=\displaystyle \frac{1}{\sqrt{2}+\sqrt{5}+\sqrt{7}}\times \displaystyle \frac{\sqrt{2}+\sqrt{5}-\sqrt{7}}{\sqrt{2}+\sqrt{5}-\sqrt{7}}\\ &=\displaystyle \frac{\sqrt{2}+\sqrt{5}-\sqrt{7}}{\left (\sqrt{2}+\sqrt{5} \right )^{2}-\left (\sqrt{7} \right )^{2}}\\ &=\displaystyle \frac{\sqrt{2}+\sqrt{5}-\sqrt{7}}{(2+2\sqrt{10}+5)-7}=\displaystyle \frac{\sqrt{2}+\sqrt{5}-\sqrt{7}}{2\sqrt{10}}\\ &=\displaystyle \frac{\sqrt{2}+\sqrt{5}-\sqrt{7}}{2\sqrt{10}}\times \displaystyle \frac{\sqrt{10}}{\sqrt{10}}=\displaystyle \frac{\sqrt{20}+\sqrt{50}-\sqrt{70}}{2\times 10}\\ &=\color{blue}\displaystyle \frac{2\sqrt{5}+5\sqrt{2}+\sqrt{70}}{20} \end{aligned}\\ &\begin{aligned}\textrm{b}.\quad&\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}\\ &=\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}\times \frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\\ &=\displaystyle \frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{\left (\sqrt{2}+\sqrt{3} \right )^{2}-\left (\sqrt{5} \right )^{2}}\\ &=\displaystyle \frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{(2+2\sqrt{6}+3)-5}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{2\sqrt{6}}\\ &=\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{2\sqrt{6}}\times \frac{\sqrt{6}}{\sqrt{6}}\\ &=\displaystyle \frac{\sqrt{12}+\sqrt{18}+\sqrt{30}}{2\times 6}\\ &=\color{blue}\displaystyle \frac{2\sqrt{3}+3\sqrt{2}+\sqrt{30}}{12} \end{aligned} \end{array}$

Tidak ada komentar:

Posting Komentar

Informasi