Lanjutan Materi Barisan dan Deret

 E. Barisan Geometri

Perhatikan susunan bilangan-bilangan berikut 

1,12,14,18,116,.

dengan rincian

1u1,12u2,14u3,18u4,116u5,.

Dari pola di atas kita dapat tuliskan menjadi

1,12,12×12,12×14,12×18,.

Dari pola yang tersusun di atas terdapat hal yang menarik yaitu:

u2u1=u3u2=u4u3==unun1=12.

Selanjutnya perhatikan

u1=a=1u2=u1×12=1×12u2=a.ru3=u2×12=1×12×12=1×14u3=a.r2u4=u3×12=1×12×12×12=1×18u4=a.r3...=...un=a.rn1.

Selanjutnya pembanding yang selalu tetap dinamakan rasio atau disingkat dengan huruf  r.

F. Deret Geometri

Perhatikan bahwa pada barisan suku-suku barisan geometri jika dijumlahkan akn terbentuk deret geometri atau deret ukur

Misalkan

Sn=a+ar+ar2+ar3+ar4++arn1.

Untuk mencari besar Sn adalah dengan mensiasatinya yaitu mengalikan  r  ke  Sn sehingga menjadi bentuk

rSn=ar+ar2+ar3+ar4+ar5++arn.

Selanjutnya kita kondisikan sebagai berikut

SnrSn=(a+ar+ar2+ar3+ar4+...+arn2+arn1)(ar+ar2+ar3+ar4+ar5+...+arn1+arn)(1r)Sn=aarn=a(1rn)Sn=a(1rn)1r.

Sebagai rangkuman dari materi barisan dan deret geometri ini, perhatikan tabel berikut

NoBarisan GeometriDeret Geometri (Ukur)Syarat1U1,U2,U3,U4,...SelanjutnyaU1,U2,U3,disebut suku-sukudanU1=a=suku pertamaU1+U2+U3+U4+...SelanjutnyaU1,U2,U3,disebut suku-sukudanU1=a=suku pertamaRasio=r=U2U1=U3U2=U4U3==UnU(n1)2Un=a.r(n1)Un=a.r(n1)Ut=a.Un=Suku tengah.

NoBarisanGeometriDeret Geometri (Ukur)Syarat3Sn=a(rn1)r1atauSn=a(1rn)1rsisipankbilanganmisalU1Umingin disisipkankbilanganRasio baru=r=UmU1k+1.

NoBarisanGeometriDeret Geometri (Ukur)SyaratDeret tak HinggaDeret tak HinggaHubungan4KonvergenDivergensuku dan jumlahS=a1r,|r|<1r1ataur1U1=S1=aUn=SnS(n1).

CONTOH SOAL.

1.Tentukan suku ke12dari barisanberikut4,1,14,116,Jawab:Diketahui bahwa{u1=a=4r=u2u1=u3u2==14Untuk mencari suku ke12,makau12=a.r(121)=ar11=4.(14)11=41.411=4111=410=1410.

2.Tentukan jumlah 12 suku pertamadari4+1+14+116++1410Jawab:Diketahui bahwaSn=a(1rn)1rS12=4(1(14)12)114=4(1(14)12)34=163(1(14)12).

3.Suatu deret geometri dengan jumlahSn=3.2n1,maka suku ke2022dari deret tersebut adalah....Jawab:Diketahui bahwaSn=3.2n1,makau2022=S2022S2021Sehinggau2022=S2022S2021=(3.220221)(3.220211)=3.220223.22021=3.22021(21)=2.32021.

4.Diketahui deret geometri denganu4u6=kdanu2×u8=1k,maka suku pertamaderet geometri ini adalah....Jawab:Diketahui bahwa{u4u6=ku2×u8=1kSelanjutnyau6u4=ar5ar3=r2=1kdanu2×u8=ar×ar7=a2r8=(ar4)2=1k(u5)2=1ku5=1ksehinggau5=ar4=a(r2)21k=a(1k)2a=k2×1k=k×k×k12=k×k.12=kk.

DAFTAR PUSTAKA

  1. Waji, J., Linggih, S., Syahrudin,Y.R. 1981. Ringkasan Materi IPA. Bandung: GANECA EXACT.






Tidak ada komentar:

Posting Komentar

Informasi