Lanjutan 5 Contoh Soal Barisan dan Deret

21.Jika jumlahnsuku pertama suatu barisanadalahSn=n3+2n,maka suku keempatadalah....A.33D.63B.39C.49E.72Jawab:Diketahui jumlah dari suatu barisan bilanganadalahSn=n3+2n,makaUn=SnSn1U4=(43+2(4))(33+2(3))=(64+8)(27+6)=7233=39

22.Dari suatu deret diketahuiSn=3n215nUn=0saatn=....A.1D.4B.2C.3E.5Jawab:Perhatikan hal yang diketahui di atasUn=SnSn10=(3n215n)(3(n1)215(n1))0=3(n2(n1)2)+15(n1n)0=3(2n1)(1)+15(1)0=6n3150=6n183=n.

23.Diketahui sebuah deretUn=2an+b+4danSn=3bn2+an,maka nilaiadanbadalah....A.12dan4B.12dan4C.12dan4D.12dan4E.4dan12Jawab:Diketahui bahwaUn=2an+b+4danSn=3bn2+an,makaUn=SnSn1U2=S2S12a(2)+b+4=(3b.22+a.2)(3b.12+a.1)4a+b+4=9b+a3a8b=4........(1)Dan jugaU1=S12a(1)+b+4=3b.12+a.12a+b+4=3b+aa2b=43a6b=12........(2)Persamaan (2) disubstitusikan ke (1)3a8b=43a6b2b=4(12)2b=42b=4+12=8b=4........(3)Selanjutnya dikembalikan ke (1), maka3a8b=43a8(4)=43a+32=43a=432=36a=12.

24.Jumlahnsuku pertam sebuah barisanadalahSn=16(4n363n2n),suku kenakan mempunyai nilai terkecil untukn=....A.3D.6B.4E.7C.5Jawab:Dengan menggunakan rumusUn=SnSn1denganU1=S1,makaakan didapatkan nilaiU1=10,U2=27,U3=40,U4=49U5=54,U6=55,U7=52Kesemuanya membentuk barisan aritmetikatingkat ke-2.Berikut ilustrasinya102740495455521713951+3+4+4+4+4+4.

25.Jika suku pertama dan kedua sebuah deretgeometri masing-masing adalaha4danaxserta suku kedelapan ialaha52,maka nilaixadalah....A.32D.8B.16C.12E.4Jawab:U8=ar7=U1r7=a52U8=a4r7=a52r7=a52a4=a52+4=a56r=a.567=a8Maka nilaixnya adalahU2=U1r=ax(a4)(a8)=a4+8=axx=4.

Tidak ada komentar:

Posting Komentar

Informasi