Tampilkan postingan dengan label Polynomial. Tampilkan semua postingan
Tampilkan postingan dengan label Polynomial. Tampilkan semua postingan

Contoh Soal Polinom (Bagian 4)

$\begin{array}{ll}\\ 16.&\textrm{Jika}\: \: (m-2)\: \: \textrm{adalah faktor dari}\: \: 2m^{3}+3tm+4,\\ &\textrm{maka nilai}\: \: t\: \: \textrm{adalah}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle \frac{10}{3}&&\textrm{d}.\quad -\displaystyle \frac{3}{10}\\\\ \textrm{b}.\quad \displaystyle \frac{1}{3}&\textrm{c}.\quad \displaystyle \frac{3}{10}&\textrm{e}.\quad \color{red}-\displaystyle \frac{10}{3} \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}f(m)&=2m^{3}+3tm+4\\ f(2)&=2(2)^{3}+3t(2)+4\\ 0&=16+6t+4\\ -6t&=20\\ t&=\color{red}-\displaystyle \frac{10}{3} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 17.&\textrm{(KSM MA Kab/Kota 2015)Nilai terkecil}\: \: n\\ & \textrm{yang mengkin sehingga}\: \: n.(n+1).(n+2)\\\ & \textrm{habis dibagi 24 adalah}....\\ &\begin{array}{l}\\ \textrm{a}.\quad 1\\ \textrm{b}.\quad \color{red}2\\ \textrm{c}.\quad 3\\ \textrm{d}.\quad 4 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}k&=\displaystyle \frac{n.(n+1).(n+2)}{24}\\ &=\displaystyle \frac{n.(n+1).(n+2)}{2.(2+1).(2+2)}\\ &\textrm{maka}\: \: n=\color{red}2 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 18.&\textrm{Jika polinom}\: \: f(x)\: \: \textrm{dibagi oleh}\\ &(x-a)(x-b)\: \: \textrm{dan}\: \: a\neq b\: ,\: \textrm{maka}\\ &\textrm{sisa pembagiannya adalah}\: ....\\ &\begin{array}{lllllll}\\ &\textrm{a}.\quad \displaystyle \displaystyle \frac{x-a}{a-b}f(a)+\frac{x-a}{b-a}f(b)\\\\ &\textrm{b}.\quad \displaystyle \displaystyle \frac{x-a}{a-b}f(b)+\frac{x-a}{b-a}f(a)\\\\ &\textrm{c}.\quad \displaystyle \displaystyle \color{red}\frac{x-b}{a-b}f(a)+\frac{x-a}{b-a}f(b)\\\\ &\textrm{d}.\quad \displaystyle \displaystyle \frac{x-b}{a-b}f(b)+\frac{x-a}{b-a}f(a)\\\\ &\textrm{e}.\quad \displaystyle \displaystyle \frac{x-a}{b-a}f(b)+\frac{x-a}{b-a}f(a)\\ \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Misal sisa pembagiannya}:\: \color{red}s(x)=px+q\\ &\textrm{Saat}\: \: f(x)\: \: \textrm{dibagi}\: \: (x-a)(x-b)\: \: \textrm{berarti}\\ &\bullet \quad x=a\Rightarrow s(a)=f(a)=ap+q\: ....(1)\\ &\bullet \quad x=b\Rightarrow s(b)=f(b)=bp+q\: ......(2)\\ &\textrm{Persamaan}\: \: (1)\: \: \textrm{dan}\: \: (2)\: \: \textrm{dieliminasi}\\ &\color{blue}\begin{array}{llllllll}\\ ap&+&q&=&f(a)\\ bp&+&q&=&f(b)&-\\\hline ap&-&bp&=&f(a)-f(b)\\ &&p&=&\color{purple}\displaystyle \frac{f(a)-f(b)}{a-b}& \end{array}\\ &\textrm{Dari persamaan}\: \: (1),\\ &f(a)=ap+q\\ &f(a)=a\left ( \displaystyle \frac{f(a)-f(b)}{a-b} \right )+q\\ &q=a\left ( \displaystyle \frac{f(a)-f(b)}{a-b} \right )+f(a)\\ &q=a\left ( \displaystyle \frac{f(a)-f(b)}{a-b} \right )+f(a)\left ( \displaystyle \frac{a-b}{a-b} \right )\\ &q=\displaystyle \frac{-bf(a)-af(b)}{a-b}\\ &\textrm{Sehingga}\\ &s(x)=px+q\\ &\qquad =\left ( \displaystyle \frac{f(a)-f(b)}{a-b} \right )x+\left ( \displaystyle \frac{-bf(a)-af(b)}{a-b} \right )\\ &\qquad =\displaystyle \frac{f(a)x-f(b)x-bf(a)+af(b)}{a-b}\\ &\qquad =\displaystyle \frac{(x-b)f(a)+(a-x)f(b)}{a-b}\\ &\qquad =\displaystyle \frac{x-b}{a-b}f(a)+\frac{a-x}{a-b}f(b)\\ &\qquad =\color{red}\displaystyle \frac{x-b}{a-b}f(a)+\frac{x-a}{b-a}f(b) \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 19.&\textrm{Diketahui}\: \: f(x)\: \: \textrm{dibagi oleh}\: \: x-2\: \: \textrm{bersisa 5},\\ &\textrm{dan dibagi}\: \: x-3\: \: \textrm{bersisa 7. Jia}\: \: f(x)\: \: \\ &\textrm{dibagi oleh}\: \: x^{2}-5x+6\: \: \textrm{akan memiliki sisa}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle x-2&&\textrm{d}.\quad \color{red}\displaystyle 2x+1\\ \textrm{b}.\quad \displaystyle 2x-4&\textrm{c}.\quad \displaystyle x+2&\textrm{e}.\quad 2x+3 \end{array}\\\\ &\textrm{Jawab}:\\ &\color{blue}\textbf{Alternatif 1}\\ &\begin{aligned}f(x)&=(x-2).h(x)+5\\ f(x)&=(x-3).h(x)+7\\ f(x)&=(x^{2}-5x+6).H(x)+s(x)\\ f(x)&=(x-2)(x-3).H(x)+px+q\\ f(2)&=(2-2)(2-3).H(x)+2p+q=5\\ &\Rightarrow \color{blue}0+2p+q=5\: \color{black}.................(1)\\ f(3)&=(3-2)(3-3).H(x)+3p+q=7\\ &\Rightarrow \color{blue}0+3p+q=7\: \color{black}.................(2)\\ \textrm{Dari}&\: \textrm{persamaan}\: \: (1)\: \: \textrm{dan}\: \: (2)\\ \color{red}\textrm{saat}\: &\color{red}\textrm{persamaan (1) dikurangi persamaan (2)}\\ &\qquad -p=-2\\ &\qquad\: \: \: \: \: \: p=2\\ &\textrm{maka}, \: \: \: q=1\\ &\textrm{Sehingga},\: \: \\ &s(x)=px+q=\color{red}2x+1\end{aligned}\\ &\color{blue}\textbf{Alternatif 2}\\ &\begin{aligned}&f(x)\: \: \textrm{dibagi}\: \: (x-2)\: \: \textrm{sisa}\: \: 5\: \Rightarrow f(2)=5\\ &f(x)\: \: \textrm{dibagi}\: \: (x-3)\: \: \textrm{sisa}\: \: 7\: \Rightarrow f(3)=7\\ &\textrm{maka},\\ &s(x)=\color{red}\displaystyle \frac{x-b}{a-b}f(a)+\frac{x-a}{b-a}f(b)\\ &\qquad =\color{red}\displaystyle \frac{x-3}{2-3}\color{black}(5)\color{red}+\frac{x-2}{3-2}\color{black}(7)\\ &\qquad =\displaystyle \frac{5x-15}{-1}+\frac{7x-14}{1}\\ &\qquad =15-5x+7x-14\\ &\qquad =\color{red}2x+1 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 20.&\textrm{Polinom}\: \: f(x)\: \: \textrm{dibagi oleh}\: \: (2x-4)\: \: \textrm{bersisa 6},\\ &\textrm{dibagi oleh}\: \: (x+4)\: \: \textrm{bersisa 24}.\\ &\textrm{Dan polinom}\: \: g(x)\: \: \textrm{dibagi oleh}\: \: (2x-4)\: \: \textrm{bersisa 5},\\ & \textrm{dibagi oleh}\: \: (x+4)\: \: \textrm{bersisa 2}.\\ &\textrm{Jika}\: \: h(x)=f(x).g(x),\: \: \textrm{maka}\: \: h(x)\\ &\textrm{dibagi}\: \: (2x^{2}+4x-16)\: \: \textrm{akan sisa}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad -3x+24&&\textrm{d}.\quad -6x+36\\ \textrm{b}.\quad \color{red}-3x+36&\textrm{c}.\quad 6x+24&\textrm{e}.\quad 12x+3 \end{array}\\\\ &\textrm{Jawab}:\\ &\color{blue}\textrm{Langkah pertama}\\ &\begin{aligned}f(x)&=(2x-4).h(x)_{1}+6\\ f(x)&=(x+4).h(x)_{2}+24\\ f(x)&=(2x-4)(x+4).H_{1}(x)+p_{1}x+q_{1}\\ &\textrm{Gunakanlah cara sebagai mana}\\ &\textrm{contoh soal No. 12 di atas yang}\\ \color{magenta}\textrm{Alte}&\color{magenta}\textrm{natif 2}\\ \textrm{mak}&\textrm{a}\quad p_{1}x+q_{1}=-3x+12 \end{aligned} \\ &\color{blue}\textrm{Langkah kedua}\\ &\begin{aligned}g(x)&=(2x-4).h(x)_{3}+5\\ g(x)&=(x+4).h(x)_{4}+2\\ g(x)&=(2x-4)(x+4).H_{2}(x)+p_{2}x+q_{2}\\ &\textrm{Gunakanlah cara sebagai mana}\\ &\textrm{contoh soal No. 12 di atas yang}\\ \color{magenta}\textrm{Alte}&\color{magenta}\textrm{natif 2}\\ \textrm{mak}&\textrm{a}\quad p_{2}x+q_{2}=\displaystyle \frac{1}{2}x+4 \end{aligned} \\ &\color{blue}\textrm{Langkah ketiga}\\ &\begin{aligned}&h(x)=\color{red}f(x)\times g(x)\\ &=\left ( (2x-4)(x+4)H_{1}(x)+(-3x+12) \right )\\ &\qquad\qquad\qquad \times \left ( (2x-4)(x+4)H_{2}(x)+\displaystyle \frac{1}{2}x+4 \right )\\ &\textrm{maka}\\ &\bullet \quad h(2)=\left ( 0+(-3.2+12) \right )\left ( 0+\displaystyle \frac{1}{2}.2+4 \right )=6.5=30\\ &\bullet \quad h(-4)=\left ( 0+(-3.-4+12) \right )\left ( 0+\displaystyle \frac{1}{2}.-4+4 \right )=24.2=48\\ &\textrm{Dengan pembagi}\: \: 2x^{2}+x-16,\: \textrm{maka sisanya}:\: s_{3}(x)=p_{3}x+q_{3}\\ &\textrm{saat}\: \: x=2\qquad \Rightarrow 2p+q=30\\ &\textrm{saat}\: \: x=-4\: \: \Rightarrow -4p+q=48\\ &\textrm{selanjutnya dengan eliminasi-substitusi diperoleh}\: \: p=-3,\: q=36\\ &\textrm{sehingga}\: \: s(x)=px+q=\color{red}-3x+36 \end{aligned} \end{array}$




Contoh Soal Polinom (Bagian 3)

$\begin{array}{ll}\\ 11.&\textrm{Jika polinom}\: \: 2x^{3}+7x^{2}+ax-3\\  &\textrm{mempunyai faktor}\: \: 2x-1,\: \textrm{maka}\\ &\textrm{faktor linear lainnya adalah}\: ....\\ &\begin{array}{lll}\\ \textrm{a}.\quad (x-3)\: \: \textrm{dan}\: \: (x+1)&&\\ \textrm{b}.\quad  \color{red}(x+3)\: \: \textrm{dan}\: \: (x+1)&&\\ \textrm{c}.\quad  (x+3)\: \: \textrm{dan}\: \: (x-1)\\ \textrm{d}.\quad  (x-3)\: \: \textrm{dan}\: \: (x-1)\\ \textrm{e}.\quad  (x+2)\: \: \textrm{dan}\: \: (x-6) \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{array}{|l|}\hline  \begin{aligned} &\textrm{Perhatikan uraian berikut}\\ &\displaystyle \frac{2x^{3}+7x^{2}+2x-3}{(2x-1)}\\ \end{aligned}\\\\ \begin{array}{l|lll}\: \: \: \textbf{pembagi}&\quad \color{red}x^{2}+4x+3\quad \color{blue}\textbf{hasil}&\color{blue}\textbf{bagi}\\ \hline \quad 2x-1&2x^{3}+7x^{2}+2x-3&\\ &2x^{3}-x^{2}&-\\\hline &\: \: \:   \qquad 8x^{2}+2x-3&\\ &\: \: \:  \qquad 8x^{2}-4x&- \\\hline &\: \: \qquad\qquad\quad 6x-3\\ &\: \: \qquad\qquad\quad 6x-3&-\\\hline \qquad\textbf{Sisa}&\qquad\qquad\qquad 0& (\textbf{habis}) \end{array}\\\\ \begin{aligned}\therefore \qquad f(x)&=2x^{3}+7x^{2}+2x-3\\ &=(2x-1)(x^{2}+4x+3)\\ &=(2x-1)\color{red}(x+1)(x+3) \end{aligned}\\\hline \end{array} \end{array}$.

$\begin{array}{ll}\\ 12.&\textrm{Diketahui}\: \: g(x)=2x^{3}+ax^{2}+bx+6\\  &h(x)=x^{2}+x-6\: \: \textrm{adalah faktor dari}\\ &g(x)\: ,\: \textrm{Nilai}\: \: a\: \: \textrm{yang memenuhi adalah}\: ....\\ &\begin{array}{lll}\\ \textrm{a}.\quad -3&&\textrm{d}.\quad 2\\ \textrm{b}.\quad  -1&\textrm{c}.\quad  1&\textrm{e}.\quad \color{red}5 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\: \: g(x)=2x^{3}+ax^{2}+bx+6\\ &\textrm{dengan pembagi}\: \: h(x)=x^{2}+x-6\\ &\Leftrightarrow \: \: h(x)=(x+3)(x-2)\\ &\textrm{Hal ini artinya}\\ &g(-3)=2(-3)^{3}+a(-3)^{2}+b(-3)+6\\ &\: \: \: \qquad =-54+9a-3b+6=0\: ....(1)\\ &g(2)=2(2)^{3}+a(2)^{2}+b(2)+6\\ &\: \: \: \: \quad =16+4a+2b+6=0\: ..........(2)\\ &\textrm{Dengan mengeliminasi persamaan}\\ &(1)\: \: \textrm{dengan persamaan}\: \: (2),\: \textrm{maka}\\ & \end{aligned}\\ &\begin{array}{llllll} g(-3)&=&9a-3b&=&48\\ g(2)&=&4a+2b&=&-22&\\\hline (x2)&&18a-6b&=&96\\ (x3)&&12a+6b&=&-66&+\\\hline &&6a&=&30\\ &&\quad\qquad a&=&5 \end{array} \end{array}$.

$\begin{array}{ll}\\ 13.&\textrm{Jika}\: \: f(x)=(x-1)(x+1)(x-2)\\ &\textrm{maka berikut yang bukan faktor}\\ &f(-x)\: \: \textrm{adalah}\: ....\\ &\begin{array}{lll}\\ \textrm{a}.\quad (x-1)&&\textrm{d}.\quad (x+2)\\ \textrm{b}.\quad  (x+1)&\textrm{c}.\quad  \color{red}(x-2)&\textrm{e}.\quad (1-x) \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\: \: f(x)=(x-1)(x+1)(x-2)\\ &\Leftrightarrow f(-x)=(-x-1)(-x+1)(-x-2)\\ &\Leftrightarrow f(-x)=(x+1)(-x+1)(x+2)\\ &\textrm{atau}\\ &\Leftrightarrow f(-x)=(-x-1)(x-1)(x+2)\\ &\textrm{atau}\\ &\Leftrightarrow f(-x)=(x+1)(x-1)(-x-2)\\ &\textrm{Perhatikan bahwa faktor}\\ &(x-2)\: \: \textrm{tidak akan pernah ada} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 14.&\textrm{Jika}\: \: n\: \: \textrm{merupakan bilangan bulat }\\ &\textrm{positif, pernyataan berikut ini}\\ &\textrm{yang benar adalah}\: ....\\ &\begin{array}{lll}\\ \textrm{a}.\quad x^{n}+1\: \: \textrm{habis dibagi}\: \: (x+1)&&\\ \textrm{b}.\quad  x^{n}+1\: \: \textrm{habis dibagi}\: \: (x-1)&&\\ \textrm{c}.\quad  x^{n}-1\: \: \textrm{habis dibagi}\: \: (x+1)\\ \textrm{d}.\quad  \color{red}x^{n}-1\: \: \textrm{habis dibagi}\: \: (x-1)\\ \textrm{e}.\quad  x^{n}+1\: \: \textrm{habis dibagi}\: \: (x+2) \end{array}\\\\ &\textrm{Jawab}:\\ &\color{blue}\textrm{Alternatif 1}\\ &\begin{aligned}&\textrm{Perhatikan bahwa}\\ &\bullet \quad x^{n}+1=(x+1)(x^{n-1}+1)-x(x^{n-2}+1)\\ &\bullet \quad x^{n}-1=\color{red}(x-1)\color{black}(x^{n-1}+x^{n-2}+\cdots +x+1) \end{aligned}\\ &\color{blue}\textrm{Alternatif 2}\\ &\begin{aligned}&\begin{array}{|c|c|l|}\hline \textrm{Polinom}&\textrm{Pembagi}&\textrm{Hasil dengan}\: \: n\: \: \textrm{positif}\\\hline x^{n}+1&x+1&f(-1)=(-1)^{n}+1=....\\\hline x^{n}+1&x-1&f(1)=(1)^{n}+1=2\\\hline x^{n}-1&x+1&f(-1)=(-1)^{n}-1=-2\\\hline x^{n}-1&\color{red}x-1&\color{red}f(1)=(1)^{n}-1=0\\\hline x^{n}+1&x+2&f(-2)=(-2)^{n}+1\neq 0\\\hline \end{array}\\ &\textrm{Sebagai catatan bahwa saat}\: \: \: \displaystyle \frac{x^{n}+1}{x+1}=....\\ &\bullet \quad\textrm{ketika}\: \: n=\textrm{ganjil, maka}\: \displaystyle \frac{x^{n}+1}{x+1}=0,\: \textrm{tetapi}\\ &\bullet \quad \textrm{ketika}\: \: n=\textrm{genap, maka}\: \displaystyle \frac{x^{n}+1}{x+1}\neq 0 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 15.&\textrm{Jika salah satu akar dari polinom}\\ &\: \: x^{3}+4x^{2}+x-6=0\: \: \textrm{adalah}\: \: x=1,\\  &\textrm{maka akar-akar yang lain adalah}\: ....\\ &\begin{array}{lll}\\ \textrm{a}.\quad 2\: \: \textrm{dan}\: \: 3&&\\ \textrm{b}.\quad  -3\: \: \textrm{dan}\: \: 2&&\\ \textrm{c}.\quad  -2\: \: \textrm{dan}\: \: 3\\ \textrm{d}.\quad  \color{red}-3\: \: \textrm{dan}\: \: -2\\ \textrm{e}.\quad  1\: \: \textrm{dan}\: \: \displaystyle \frac{3}{2} \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{array}{|l|}\hline  \begin{aligned} &\textrm{Perhatikan uraian berikut}\\ &\displaystyle \frac{x^{3}+4x^{2}+x-6}{(x-1)}\\ \end{aligned}\\\\ \begin{array}{l|lll}\: \: \: \textbf{pembagi}&\quad \color{red}x^{2}+5x+6\quad \color{blue}\textbf{hasil}&\color{blue}\textbf{bagi}\\ \hline \quad x-1&x^{3}+4x^{2}+x-6&\\ &x^{3}-x^{2}&-\\\hline &\: \: \:   \qquad 5x^{2}+x-6&\\ &\: \: \:  \qquad 5x^{2}-5x&- \\\hline &\: \: \qquad\qquad\quad 6x-6\\ &\: \: \qquad\qquad\quad 6x-6&-\\\hline \qquad\textbf{Sisa}&\qquad\qquad\qquad 0& (\textbf{habis}) \end{array}\\\\ \begin{aligned}\therefore \qquad f(x)&=x^{3}+4x^{2}+x-6\\ &=(x-1)(x^{2}+5x+6)\\ &=(x-1)\color{red}(x+2)(x+3) \end{aligned}\\\hline \end{array} \end{array}$







Contoh Soal Polinom (Bagian 2)

 $\begin{array}{ll}\\ 6.&\textrm{Diketahui bahwa}\\ &\displaystyle \frac{f(x)}{x-2}=h(x)+\displaystyle \frac{3}{x-2}\\ &\textrm{dan}\: \: \displaystyle \frac{f(x)}{x-1}=h(x)+\displaystyle \frac{2}{x-1}\: ,\\ &\textrm{jika}\: \: \displaystyle \frac{f(x)}{(x-2)(x-1)}=h(x)+\displaystyle \frac{s(x)}{(x-2)(x-1)},\\ &\textrm{maka}\: \: s(x)=....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}x+1&&\textrm{d}.\quad 2x-1\\ \textrm{b}.\quad x+2&\textrm{c}.\quad 2x+1&\textrm{e}.\quad x-2\\ \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\displaystyle \frac{f(x)}{x-2}=h(x)+\displaystyle \frac{3}{x-2}\\ &\Rightarrow f(x)=(x-2).h(x)+3\Rightarrow f(2)=3\\ &\displaystyle \frac{f(x)}{x-1}=h(x)+\displaystyle \frac{2}{x-1}\\ &\Rightarrow f(x)=(x-1).h(x)+2\Rightarrow f(1)=2\\ &\displaystyle \frac{f(x)}{(x-2)(x-1)}=h(x)+\displaystyle \frac{s(x)}{(x-2)(x-1)}\\ &\textrm{maka}\: \: \: f(x)=(x-2)(x-1).h(x)+s(x)\\ &f(x)=(x-2)(x-1).h(x)+px+q\\ &f(2)=2p+q=3\\ &f(1)=p+q=2,\\ &\textrm{sehingga dengan }\: \textrm{eliminasi akan diperoleh}\\ p&=1\quad \textrm{dan}\\ &q=1\\ &\textrm{Jadi},\quad px+q=\color{red}x+1 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 7.&\textrm{Jika}\: \: x^{4}+2mx-n\: \: \textrm{dibagi}\: \: x^{2}-1\\ &\textrm{bersisa}\: \: 2x-1\: ,\textrm{maka nilai}\: \: m\\ &\textrm{dan}\: \: n\: \: \textrm{adalah}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad m=-1\: \: \textrm{dan}\: \: n=2\\ \textrm{b}.\quad m=1\: \: \textrm{dan}\: \: n=-2\\ \textrm{c}.\quad \color{red}m=1\: \: \textrm{dan}\: \: \color{red}n=2\\ \textrm{d}.\quad m=-1\: \: \textrm{dan}\: \: n=-2\\ \textrm{e}.\quad m=-2\: \: \textrm{dan}\: \: n=1\\ \end{array}\\\\ &\textrm{Jawab}:\\ &\textrm{dengan Horner-Kino didapatkan} \end{array}$

$.\qquad\begin{cases} \textrm{Suku banyak}: & f(x)=x^{4}+2mx-n \\ \textrm{Pembagai}: & p(x)=(x-1)(x+1)=x^{2}-1 \\ &: 1\: \: \textrm{dari}\: -\frac{-1}{1},\: \: \textrm{sedang}\: \: 0=-\left ( \frac{0}{1} \right )\\ \textrm{Hasil bagi}:&h(x)=x^{2}+1\\ \textrm{Sisa bagi}:&s(x)=2mx+(1-n)=2x-1 \end{cases}$
$.\qquad \begin{aligned}&\textrm{Sehingga},\\ &\bullet \quad 2m=2\Rightarrow m=\color{red}1\\ &\bullet \quad 1-n=-1\Rightarrow n=\color{red}2 \end{aligned}$

$\begin{array}{ll}\\ 8.&\textrm{Jika}\: \: f(x)=x^{4}-kx^{2}+5\: \: \textrm{habis dibagi}\\ &(x-1)\: \: \textrm{maka}\: \: f(x)\: \: \textrm{juga habis dibagi oleh}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}x+1&&\textrm{d}.\quad x+5\\ \textrm{b}.\quad 2x+1&\textrm{c}.\quad 3x+1&\textrm{e}.\quad 2x+5 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}f(x)&=x^{4}-kx^{2}+5\\ f(1)&=(1)^{4}-k(1)^{2}+5\\ 0&=1-k+5\\ k&=6\\ f(x)&=x^{4}-6x^{2}+5\\ &=(x^{2}-1)(x^{2}-5)\\ &=(x-1)\color{red}(x+1)\color{black}(x^{2}-5) \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 9.&\textrm{Jika}\: \: x^{3}-12x+k\: \: \textrm{habis dibagi oleh}\\  &(x-2)\: \: \textrm{maka polinom tersebut juga }\\ &\textrm{akan dibagi habis oleh}\: ....\\ &\begin{array}{lll}\\ \textrm{a}.\quad x-1&&\textrm{d}.\quad x+2\\ \textrm{b}.\quad x-3&\textrm{c}.\quad x+1&\textrm{e}.\quad \color{red}x+4 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{Misal}&\: \: f(x)=\color{blue}x^{3}-12x+k\\ \textrm{Saat}\: &f(2)=0\: \: (f(x)\: \: \textrm{habis dibagi}\: \: (x-2))\\ f(2)&=2^{3}-12.2+k=0\Leftrightarrow k=16\\ \textrm{Sehin}&\textrm{gga}\: \: f(x)=x^{3}-12x+16\\ \textrm{Deng}&\textrm{an teorema faktor, yang mungkin}\\ \textrm{adala}&\textrm{h}\: \: 16=\pm 1,\pm 2,\pm 4,\pm 8,\pm 16\\ \textrm{Deng}&\textrm{an substitusi akan diperoleh}\\ f(-4)&=(-4)^{3}-12(-4)+16=0\\ \textrm{maka}&\: \: \color{red}x+4\: \: \color{black}\textrm{termasuk faktornya juga} \end{aligned} \end{array}$.

$.\: \qquad\begin{array}{|l|}\hline \textbf{Catatan}:\\\\ \begin{aligned} &\textrm{Perhatikan uraian berikut}\\ &\displaystyle \frac{x^{3}-12x+16}{(x-2)\color{red}(x+4)}\\ &=\displaystyle \frac{x^{3}-12x+16}{x^{2}+2x-8}\\ \end{aligned}\\\\ \begin{array}{l|lll}\: \: \: \textbf{pembagi}&\quad \color{red}x-2\qquad \color{blue}\textbf{hasil}&\color{blue}\textbf{bagi}\\ \hline x^{2}+2x-8&x^{3}-12x+16&\\ &x^{3}+2x^{2}-8x&-\\\hline &-2x^{2}-4x+16&\\ &-2x^{2}-4x+16&-\\\hline \qquad\textbf{Sisa}&\qquad\qquad 0& (\textbf{habis}) \end{array}\\\\ \begin{aligned}\therefore \qquad f(x)&=x^{3}-12x+16\\ &=(x-2)^{2}\color{red}(x+4) \end{aligned}\\\hline \end{array}$.

$\begin{array}{ll}\\ 10.&\textrm{Jika}\: \: (x-2)\: \: \textrm{adalah faktor dari}\\  &f(x)=2x^{3}+ax^{2}+7x+6,\\ &\textrm{maka akar lainnya adalah}\: ....\\ &\begin{array}{lll}\\ \textrm{a}.\quad x+3&&\textrm{d}.\quad 2x-3\\ \textrm{b}.\quad \color{red}x-3&\textrm{c}.\quad x-1&\textrm{e}.\quad 2x+3 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{Misal}&\: \: f(x)=\color{blue}2x^{3}+ax^{2}+7x+6\\ \textrm{Saat}\: &f(2)=0\: \: (f(x)\: \: \textrm{habis dibagi}\: \: (x-2))\\ f(2)&=2.2^{3}+a.2^{2}+7.2+6=0\Leftrightarrow a=-9\\ \textrm{Sehin}&\textrm{gga}\: \: f(x)=2x^{3}-9x^{2}+7x+6\\ \textrm{Deng}&\textrm{an teorema faktor, yang mungkin}\\ \textrm{adala}&\textrm{h}\: \: \displaystyle \frac{6}{2}=\pm 1,\pm 2,\pm 3\\ \textrm{Deng}&\textrm{an substitusi akan diperoleh}\\ f(3)&=2(3)^{3}-9(3)+7.3+6=0\\ \textrm{maka}&\: \: \color{red}x-3\: \: \color{black}\textrm{termasuk faktornya juga} \end{aligned} \end{array}$.

$.\: \qquad\begin{array}{|l|}\hline \textbf{Catatan}:\\\\ \begin{aligned} &\textrm{Perhatikan uraian berikut}\\ &\displaystyle \frac{2x^{3}-9x^{2}+7x+6}{(x-2)\color{red}(x-3)}\\ &=\displaystyle \frac{2x^{3}-9x^{2}+7x+6}{x^{2}-5x+6}\\ \end{aligned}\\\\ \begin{array}{l|lll}\: \: \: \textbf{pembagi}&\quad \color{red}2x+1\qquad \color{blue}\textbf{hasil}&\color{blue}\textbf{bagi}\\ \hline x^{2}-5x+6&2x^{3}-9x^{2}+7x+6&\\ &2x^{3}-10x^{2}+12x&-\\\hline &\: \: \: \: \: \qquad x^{2}-5x+6&\\ &\: \: \: \: \: \qquad x^{2}-5x+6&-\\\hline \qquad\textbf{Sisa}&\qquad\qquad 0& (\textbf{habis}) \end{array}\\\\ \begin{aligned}\therefore \qquad f(x)&=2x^{3}-9x^{2}+7x+6\\ &=\color{red}(2x+1)\color{black}(x-2)\color{red}(x-3) \end{aligned}\\\hline \end{array}$.





Contoh Soal Polinom (Bagian 1)

 $\begin{array}{ll}\\ 1.&\textrm{Jika}\: \: g(x)=2x^{3}+x^{2}-x+1,\\ &\textrm{maka}\: \: g(1)=....\: \: \\ &\begin{array}{lll}\\ \textrm{a}.\quad -2&&\textrm{d}.\quad 2\\ \textrm{b}.\quad -1&\textrm{c}.\quad 1&\textrm{e}.\quad \color{red}3 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}g(x)&=2x^{3}+x^{2}-x+1\\ g(1)&=2(1)^{3}+(1)^{2}-(1)+1\\ &=2+1-1+1\\ &=\color{red}3 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Jika}\: \: p(y)=5y^{4}+2r^{2}y^{3}+y^{2}+1\: \: \textrm{dan}\\ & q(y)=4y^{5}+3ry^{2}-3y-1\: \: \\ &\textrm{serta}\: \: p(-1)=q(-1),\: \: \textrm{maka nilai}\: \: r\\ & \textrm{sama dengan}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle \frac{3}{2}\: \: \textrm{dan}\: \: 3&&\textrm{d}.\quad -\displaystyle \frac{3}{2}\\ \textrm{b}.\quad \displaystyle -\frac{3}{2}\: \: \textrm{dan}\: \: 3&\textrm{c}.\quad \color{red}\displaystyle \frac{3}{2}\: \: \textrm{dan}\: \: -3&\textrm{e}.\quad 3 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}p(-1)&=q(-1)\\ 5(-1)^{4}+2r^{2}(-1)^{3}+(-1)^{2}+1&=4(-1)^{5}+3r(-1)^{2}-3(-1)-1\\ 5-2r^{2}+1+1&=-4+3r+3-1\\ 9-3r-2r^{2}&=0\\ \displaystyle \frac{(-6-2r)(-3+2r)}{2}&=0,\qquad \textrm{ingat pemfaktoran}\\ (-3-r)(-3+2r)&=0\\ r=-3\quad \vee \quad r&=\displaystyle \frac{3}{2} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Diketahui}\: \: f(x)\: \: \textrm{berderajat}\: \: n.\\ &\textrm{Jika pembaginya berbentuk}\: \: \left ( ax^{2}+bx+c \right ),\\ &\textrm{dengan}\: \: a\neq 0,\: \: \textrm{maka hasil baginya berderajat}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad n-1&&\textrm{d}.\quad 3\\ \textrm{b}.\quad \color{red}n-2&\textrm{c}.\quad n-3&\textrm{e}.\quad 2 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Suku banyak (polinom)}\\ &=\textrm{pembagi}\times \textrm{hasil bagi}+\textrm{sisa}\\ &x^{n}+...=\left ( ax^{2}+bx+c \right )\times \color{red}\left ( x^{n-2}+... \right )\color{black}+\left (mx+n \right ) \end{aligned} \end{array}$

$\begin{array}{ll}\\ 4.&\textrm{Hasil bagi dan sisanya jika}\: \: \left (6x^{4}-3x^{2}+x-1 \right )\\ & \textrm{dibagi oleh}\: \: \left ( 2x-1 \right )\: \: \textrm{adalah}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}3x^{3}+\displaystyle \frac{3}{2}x^{2}-\displaystyle \frac{3}{4}x+\frac{1}{8}&\textrm{dan}&\color{red}-\displaystyle \frac{7}{8}\\ \textrm{b}.\quad 3x^{3}+3x^{2}-\displaystyle \frac{3}{4}x+1&\textrm{dan}&-7\\ \textrm{c}.\quad x^{3}+\displaystyle \frac{3}{2}x^{2}-3x+\frac{1}{8}&\textrm{dan}&\displaystyle \frac{7}{8}\\ \textrm{d}.\quad x^{3}+\displaystyle \frac{3}{2}x^{2}-\displaystyle \frac{3}{4}x+1&\textrm{dan}&\displaystyle \frac{1}{8}\\ \textrm{e}.\quad 3x^{3}+\displaystyle \frac{3}{2}x^{2}-\displaystyle \frac{3}{4}x-\frac{1}{8}&\textrm{dan}&-\displaystyle \frac{7}{8} \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\begin{array}{rr|rrrrrrr} \color{blue}x=\frac{1}{2}&&6&0&-3&1&-1\\ &&&3&\frac{3}{2}&-\frac{3}{4}&\frac{1}{8}&+&\\\hline &&6&3&-\frac{3}{2}&\frac{1}{4}&\color{red}\boxed{-\frac{7}{8}} \end{array}\\ &\textrm{Selanjutnya}\\ &\begin{cases} \textrm{Hasil bagi}: & \displaystyle \frac{6x^{3}+3x^{2}-\frac{3}{2}x+\frac{1}{4}}{2}\\ &=\color{red}3x^{3}+\displaystyle \frac{3}{2}x^{2}-\displaystyle \frac{3}{4}x+\displaystyle \frac{1}{8} \\ & \\ \textrm{Sisa bagi}: & -\displaystyle \frac{7}{8} \end{cases} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 5.&\textrm{Hasil bagi dan sisanya jika}\: \: \left (x^{4}-x^{3}-x^{2}+x-1 \right )\\ &\textrm{dibagi oleh}\: \: \left ( x-2 \right )\left ( x+1 \right )\: \: \textrm{adalah}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}x^{2}+1&\textrm{dan}&\color{red}2x+1\\ \textrm{b}.\quad x^{2}+1&\textrm{dan}&2x-1\\ \textrm{c}.\quad x^{2}-1&\textrm{dan}&2x+1\\ \textrm{d}.\quad x^{2}-1&\textrm{dan}&2x-1\\ \textrm{e}.\quad 2x^{2}-1&\textrm{dan}&x+1\\ \end{array}\\\\ &\textrm{Jawab}:\\ &\textrm{Dengan cara}\: \: \textbf{Horner-Kino}\: \: \textrm{diperoleh} \end{array}$


$.\qquad\begin{cases} \textrm{Suku banyak}: & f(x)=x^{4}-x^{3}-x^{2}+x-1 \\ \textrm{Pembagai}: & p(x)=(x-2)(x+1)=x^{2}-x-2 \\ &: 2\: \: \textrm{dari}\: -\frac{-2}{1},\: \: \textrm{sedang}\: \: 1=-\left ( \frac{-1}{1} \right )\\ \textrm{Hasil bagi}:&h(x)=x^{2}+1\\ \textrm{Sisa bagi}:&s(x)=2x+1 \end{cases}$

$\qquad\begin{aligned}&\textrm{Sehingga},\\ &x^{4}-x^{3}-x^{2}+x-1\\ &\qquad =\color{red}\left ( x^{2}-x-2 \right )\left ( x^{2}+1 \right )+2x+1 \end{aligned}$




Lanjutan Materi Polinom (Teorema Faktor)

7. Teorema Faktor

Pada pembagian sebuah bilangan bahwa suatu bilangan dikatakan habis terbagi jika pembaginya adalah faktor dari bilangan tersebut. Sebagai misal 15 faktornya adalah: 1,3,5, dan 15. Dan pada bahasan materi tentang pemfaktoran pada persamaan kuadrat saat Anda duduk di kelas X sebagai misal  $x^{2}+x-6$ akan habis terbagi oleh  $x+3$  dan  $x-2$. Demikian juga  ketika  $x^{2}+2x-8$  akan habis terbagi oleh  $x+4$  dan  $x-2$. Selanjutnya pembagi-pembagi tersebut kita namakan sebagai faktor dari yang dibagi tersebut.

Untuk selanjutnya toerema faktor dinyatakan:

  • Jika  $(x-h)$ adalah faktor dari  $f(x)$  jika dan hanya jika  $f(h)=0$
  • Jika  $(ax+h)$  merupakan faktor dari  $f(x)$  jika dan hanya jika  $f\left ( \displaystyle \frac{-h}{a} \right )=0$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah apakah}\: \: (x-2)\: \: \textrm{dan}\: \: (x-4)\\ &\textrm{apakah faktor dari}\: \: 2x^{3}+x^{2}-22x+24\\\\ &\textbf{Jawab}:\\ &\textrm{Diketahui bahwa}\\ &P(x)=2x^{3}+x^{2}-22x+24\\ &\bullet \quad x=2\Rightarrow P(2)=2.2^{3}+2^{2}-22.2+24=0\\ &\bullet \quad x=4\Rightarrow P(4)=2.4^{3}+4^{2}-22.4+24=80\neq 0\\ &\textrm{Jadi}, \: \: (x-4)\: \: \textrm{bukan faktor dari}\: \: P(x)\: \: \textrm{di atas} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah apakah}\: \: (x+1)\: \: \textrm{dan}\: \: (x-1)\\ &\textrm{apakah faktor dari}\: \: x^{6}-x^{5}+x^{3}-1\\\\ &\textbf{Jawab}:\\ &\textrm{Diketahui bahwa}\\ &P(x)=x^{6}-x^{5}+x^{3}-1\\ &\bullet \quad x=-1\Rightarrow P(-1)=(-1)^{6}-(-1)^{5}+(-1)^{3}-1=0\\ &\bullet \quad x=1\Rightarrow P(1)=1^{6}-1^{5}+1^{3}-1=0\\ &\textrm{Jadi}, \: \: (x+1)\: \: \textrm{dan}\: \: (x-1)\: \: \textrm{faktor dari}\: \: P(x)\: \: \textrm{di atas} \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Faktorkanlah polinom}\: \: x^{3}-11x^{2}+30x-8\\ &\textrm{ke faktor rasional}\\\\ &\textbf{Jawab}:\\ &\textrm{Diketahui bahwa}\\ &P(x)=x^{3}-11x^{2}+30x-8\\ &\textrm{Misalkan salah satu faktor polinom adalah}:(x-k)\\ &\textrm{maka}\: \: \color{red}k\: \: \color{black}\textrm{adalah faktor dari}\: \: \color{red}-8\color{black},\: \textrm{yaitu}:\pm 1,\pm 2,\pm 4,\pm 8\\ &\textrm{dengan mencoba-coba kita harapkan ketemu}\\ &\bullet \quad x=1\Rightarrow P(1)=1^{3}-11.1^{2}+30.1-8=12\neq 0\\ &\bullet \quad x=-1\Rightarrow P(-1)=(-1)^{3}-11.(-1)^{2}+30.(-1)-8\\ &\qquad\qquad =-66\neq 0\\ &\bullet \quad x=4\Rightarrow P(4)=4^{3}-11.4^{2}+30.4-8= \color{red}0\\ &\textrm{dengan metode sintetis Horner kita tampilkan}\\ &\begin{array}{l|llllll} 4&1&-11&30&-8&\\ &&\: \: \: \: 4&-28&8&+\\\hline &1&\: \: -7&2&\color{red}0 \end{array}\\ &\textrm{Jadi}, \: \: (x-4)\: \: \textrm{faktor dari}\: \: P(x)\: \: \textrm{di atas} \end{array}$.

$\begin{array}{ll}\\ 4.&\textrm{Jika diketahui}\: \: (x-2)\: \: \textrm{dan}\: \: (2x+1)\\&\textrm{adalah faktor dari}\: \: 2x^{3}+ax^{2}+bx-2\\ &\textrm{Tentukanlah nilai}\: \: a\: \: \textrm{dan}\: \: b\\\\ &\textbf{Jawab}:\\ &\textrm{Misalkan polinom}\: \: P(x)=2x^{3}+ax^{2}+bx-2\\ &\bullet \quad x=2\Rightarrow P(2)=2.2^{3}+a.2^{2}+b.2-2=0\\ &\qquad\qquad \Rightarrow P(2)=14+8a+2b=0\: \color{red}.......(1)\\ &\bullet \quad x=\displaystyle \frac{1}{2}\Rightarrow P\left (- \displaystyle \frac{1}{2} \right )=2\left (- \displaystyle \frac{1}{2} \right )^{3}+a\left (- \displaystyle \frac{1}{2} \right )^{2}+b\left (- \displaystyle \frac{1}{2} \right )-2=0\\ &\qquad\qquad \Rightarrow P\left (- \displaystyle \frac{1}{2} \right )=-\displaystyle \frac{2}{8}+\displaystyle \frac{a}{4}-\displaystyle \frac{b}{2}-2=0\\ &\qquad\qquad \Rightarrow P\left (- \displaystyle \frac{1}{2} \right )=a-2b=9\: \color{red}.........(2)\\ &\textrm{Dengan eliminasi diperoleh}\: \: a=-1\: \: \textrm{dan}\: \: b=-5\\ &\textrm{Jadi}, \: \: a=-1\: \: \textrm{dan}\: \: b=-5 \end{array}$.

$\begin{array}{ll}\\ 5.&(\textbf{OSK 2016})\\ &\textrm{Misalkan}\: \: a\: \: \textrm{bilangan real sehingga polinom}\\ &P(x)=x^{4}+4x+a\: \: \textrm{habis dibagi}\: \: (x-c)^{2}\\ &\textrm{untuk suatu bilangan real}\: \: c.\: \: \textrm{Nilai}\: \: a\\ &\textrm{yang memenuhi adalah}\: ....\\\\ &\textbf{Jawab}:\\ &\color{blue}\textbf{Alternatif 1}\\ &\textrm{Diketahui polinom}\: \: P(x)=x^{4}+4x+a\\ &\textrm{Dengan metode Horner sebanyak 2 kali}\\ &\textrm{yaitu}:\\ &\begin{array}{l|lllllll} c&1&0&0&4&\color{red}a\\ &&c&c^{2}&c^{3}&c^{4}+4c^{3}&+\\\hline c&1&c&c^{2}&c^{3}+4&\color{red}c^{4}+4c^{3}+a\\ &&c&2c^{2}&3c^{3}&\\\hline &1&2c&3c^{2}&\color{red}4c^{3}+4& \end{array}\\ &\textrm{Dari bentuk di atas diperoleh}\\ &\bullet \quad 4c^{3}+4=0\Rightarrow c=-1\\ &\bullet \quad c^{4}+4c^{3}+a=0\Rightarrow 1-4+a=0\Rightarrow \color{red}a=3\\  &\textrm{Jadi}, \: \: a=3\\\\ &\color{blue}\textbf{Alternatif 2}\\ &\textrm{Silahkan Anda coba sebagai latihan mandiri}  \end{array}$.

$\LARGE\colorbox{yellow}{LATIHAN SOAL}$.

$\begin{array}{ll}\\ 1. &\textrm{Buktikan bahwa}\: \: x+3\: \: \textrm{dan}\: \: x-8\: \: \textrm{adalah}\\ &\textrm{faktor dari polinom}\\ &f(x)=2x^{4}+6x^{3}-114x^{2}-454x-336  \end{array}$.

$\begin{array}{ll}\\ 2. &\textrm{Tentukan nilai}\: \: k,\: \: k\neq 0\: \: \textrm{agar}\: \: x+k\\ &\textrm{dan}\: \: x-k\: \: \textrm{keduanya adalah faktor dari}\\ &x^{3}-x^{2}-9x+9  \end{array}$ .

$\begin{array}{ll}\\ 3. &\textrm{Bila}\: \: x^{2}-x-2\: \: \textrm{adalah faaktor dari}\\ &\textrm{sebuah  polinom}\\ &P(x)=6x^{4}-x^{3}+ax^{2}-6x+b\\ &\textrm{tentukanlah nilai}\: \: a+b  \end{array}$.

$\begin{array}{ll}\\ 4. &\textrm{Bila}\: \: x+1\: \: \textrm{dan}\: \: x-3\: \: \textrm{adalah faktor}\\ &\textrm{dari  polinom}\\ &P(x)=x^{4}+px^{3}+5x^{2}+5x+q\\ &\textrm{tentukanlah nilai}\: \: p\: \: \textrm{dan}\: \: q\: \: \textrm{serta}\\ &\textrm{dua faktor lainnya yang belum }\\ &\textrm{diketahui dari polinom tersebut}  \end{array}$.

$\begin{array}{ll}\\ 5.&(\textbf{OSK 2019})\\ &\textrm{Kedua akar dari persamaan kuadrat}\\ &x^{2}-111x+k=0\: \: \textrm{adalah bilangan prima}\\ &\textrm{Nilai}\: \: k\: \: \textrm{adalah}\: ....  \end{array}$.

$\begin{array}{ll}\\ 6.&(\textbf{OSK 2015})\\ &\textrm{Diketahui}\: \: a,b,c\: \: \textrm{adalah akar dari persamaan}\\ &x^{3}-5x-9x+10=0.\: \: \textrm{Jika polinom}\\ &P(x)=Ax^{3}+Bx^{2}+Cx-2015\: \: \textrm{memenuhi}\\ &P(a)=b+c,\: P(b)=a+c,\: P(c)=a+b,\\ &\textrm{maka nilai dari}\: \: A+B+C\: \: \textrm{adalah}\: ....  \end{array}$.

$\begin{array}{ll}\\ 7.&(\textbf{OSK 2014})\\ &\textrm{Semua bilangan bulat}\: \: n\: \: \textrm{sehingga}\\ &n^{4}-51n^{2}+225\: \: \textrm{merupakan bilangan}\\ &\textrm{prima adalah}\: ....  \end{array}$.

$\begin{array}{ll}\\ 8. &\textrm{Diketahui bahwa salah satu dari penyelesaian}\\ &x^{4}-14n^{3}+54x^{2}-62x+13=0\: \: \textrm{adalah}\\ &2+\sqrt{3}.\: \: \textrm{Carilah tiga buah akar yang lain}  \end{array}$.

DAFTAR PUSTAKA

  1. Kanginan, M., Nurdiansyah, H., Akhmad, G. 2016. Matematika untuk SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: YRAMA WIDYA.
  2. Muslim, M.S. 2020. Kumpulan Soal dan Pembahasan Olimpiade Matematika SMA Tingkat Kota/Kabupaten Tahun 2009-2019. Bandung: YRAMA WIDYA.
  3. Noormandiri, B.K. 2017. Matematika Jilid 2 untuk SMA/MA Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.
  4. Tim Matematika. 2007. Program Pembinaan Kompetensi Siswa Bidang Matematika Tahap 1. Bandung: ITB

Lanjutan Materi Polinom (Teorema Sisa)

6. Teorema Sisa

Sebelumnya telah diketahui bahwa jika suatu polinom  $\textbf{P(x)}$ dibagi oleh  $\textbf{g(x)}$ dengan hasil bagi  $\textbf{h(x)}$  dan sisa pembagian berupa  $\textbf{s(x)}$, maka kondisi tersebut dapat dituliskan dengan

$P(x)=g(x)\times h(x)+s(x)$

Selanjutnya apabila  $\textbf{P(x)}$  berderajat  $\color{blue}n$  dibagi oleh  $\textbf{g(x)}$ berderajat  $\color{blue}m$, maka hasil bagi  $\textbf{h(x)}$  akan berderajat  $\color{blue}n-m$  dan sisa pembagian maksimum berderajat $\color{blue}m-1$.

Perhatikan kembali contoh soal sebelumnya yaitu:

Dari paparan di atas apabila disederhanakan, maka:

$\begin{aligned}\textrm{Jika}\: &\textrm{polinomial}\: \: P(x)\: \: \textrm{dibagi oleh}\\ \textrm{1}.\quad&g(x)=(x-a),\: \: s(x)=\color{red}P(a)\\ \textrm{2}.\quad&g(x)=(x+a),\: \: s(x)=\color{red}P(-a)\\ \textrm{3}.\quad&g(x)=(ax-b),\: \: s(x)=\color{red}P\left ( \displaystyle \frac{b}{a} \right )\\ \textrm{4}.\quad&g(x)=(ax+b),\: \: s(x)=\color{red}P\left (- \displaystyle \frac{b}{a} \right )\\ \textrm{5}.\quad&g(x)=(x-a)(x-b)\\ &\quad s(x)=\displaystyle \frac{x-a}{b-a}\color{red}P(b)\color{black}+\frac{x-b}{a-b}\color{red}P(a)\\ \textrm{6}.\quad&g(x)=(x-a)(x-b)(x-c)\\ &\quad s(x)=\displaystyle \frac{(x-a)(x-b)}{(c-a)(c-b)}\color{red}P(c)\\ &\: \qquad +\displaystyle \frac{(x-a)(x-c)}{(b-a)(b-c)}\color{red}P(b)\\ &\: \qquad +\displaystyle \frac{(x-b)(x-c)}{(a-b)(a-c)}\color{red}P(a) \end{aligned}$.

Sebagai bukti dari beberapa properti formula di atas adalah sebagai berikut

$\begin{aligned}&\color{blue}\textrm{Untuk formula no.1 di atas adalah:}\\ &\textrm{Pandang}:\: P(x)=g(x).h(x)+s(x)\\ &\textrm{atau}\: \: \color{red}P(x)=(x-a).h(x)+s(x)\\ &\textrm{substitusikan}\: \: x-a=0\: \: \textrm{atau}\: \: x=a\\ &\textrm{maka akan diperoleh bentuk}\\ &P(a)=(a-a).h(a)+s(x)=0+s(x)\\ &\qquad\, =s(x)\\ &\textrm{Jadi},\: \: s(x)=P(a)\qquad \textrm{(terbukti)} \end{aligned}$.

$\begin{aligned}&\color{blue}\textrm{Dan untuk formula no.3 di atas adalah}:\\ &\textrm{Pandang}:\: P(x)=g(x).h(x)+s(x)\\ &\textrm{atau}\: \: \color{red}P(x)=(ax-b).h(x)+s(x)\\ &\textrm{substitusikan}\: \: ax-b=0\: \: \textrm{atau}\: \: x=\displaystyle \frac{b}{a}\\ &\textrm{maka akan diperoleh bentuk}\\ &P\left ( \displaystyle \frac{b}{a} \right )=\left (a\left ( \displaystyle \frac{b}{a} \right )-b  \right ).h\left ( \displaystyle \frac{b}{a} \right )+s(x)\\ &\qquad\quad\, =0+s(x)\\  &\textrm{Jadi},\: \: s(x)=P\left ( \displaystyle \frac{b}{a} \right )\qquad \textrm{(terbukti)} \end{aligned}$.

$\begin{aligned}&\color{blue}\textrm{Untuk formula no.5 di atas}\\ &\textrm{Pandang}:\: P(x)=g(x).h(x)+s(x)\\ &\textrm{anggap sisanya}\: \: s(x)=ux+v\\ &\textrm{atau}\\ &\color{red}P(x)=(x-a)(x-b).h(x)+ux+v\\ &\textrm{substitusikan}\: \: x-a=0\: \: \textrm{atau}\: \: x=a\\ &\textrm{maka akan diperoleh bentuk}\\ &P(a)=(a-a)(a-b).h(a)+ua+v\\ &\qquad\, =0+ua+v=ua+v\: .....(1)\\ &\textrm{Demikian pula}\\ &P(b)=(a-b)(b-b).h(b)+ub+v\\ &\qquad\, =0+ub+v=ub+v\: .....(2)\\ &\textrm{Selanjutnya}\\ &\begin{array}{rllll}\\ P(a)&=&ua+v\\ P(b)&=&ub+v&-\\\hline P(a)-P(b)&=&u(a-b)\\ \displaystyle \frac{P(a)-P(b)}{a-b}&=&u\\ \textrm{atau}\\ u&=&\displaystyle \frac{P(a)-P(b)}{a-b} \end{array}\\ &\textrm{dan}\\ &\begin{aligned}&P(a)=ua+v\\ &P(a)=\left ( \displaystyle \frac{P(a)-P(b)}{a-b} \right )a+v\\ &\Leftrightarrow  v=P(a)-\left ( \displaystyle \frac{P(a)-P(b)}{a-b} \right )a\\ &\Leftrightarrow  v=\displaystyle \frac{(a-b)}{(a-b)}P(a)-\left ( \displaystyle \frac{P(a)-P(b)}{a-b} \right )a\\ &\Leftrightarrow v=\displaystyle \frac{aP(a)-bP(a)-aP(a)+aP(b)}{a-b}\\ &\Leftrightarrow v=\displaystyle \frac{-bP(a)+aP(b)}{a-b} \end{aligned}\\ &\textrm{Sehingga},\\ &\begin{aligned}s(x)&=ux+v\\ &=\displaystyle \frac{P(a)-P(b)}{a-b}x+\displaystyle \frac{-bP(a)+aP(b)}{a-b}\\ &=\displaystyle \frac{P(a)x-P(b)x-bP(a)+aP(b)}{a-b}\\ &=\displaystyle \frac{(x-b)P(a)+(a-x)P(b)}{a-b}\\ &=\color{red}\displaystyle \frac{a-b}{x-b}P(a)+\frac{x-a}{b-a}P(b) \end{aligned}\\ &\textrm{Jadi},\\ &s(x)=\displaystyle \frac{a-b}{x-b}P(a)+\frac{x-a}{b-a}P(b)\qquad \textrm{(terbukti)} \end{aligned}$.


$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\colorbox{yellow}{Pembagi Linear}$.

$\begin{array}{ll}\\ &\textrm{Tentukan sisa pembagian}\\ &1.\quad 12x^{4}-40x^{3}+27x^{2}+13x-6\\ &\qquad \textrm{jika dibagi oleh}\: \: \: x+1\\ &2.\quad 2x^{3}+4x^{2}-6x+7\: \: \textrm{jika dibagi}\\ &\qquad \textrm{oleh}\: \: \: x+1\\ &3.\quad 3x^{4}-5x^{2}+4\: \: \textrm{jika dibagi}\\ &\qquad \textrm{oleh}\: \: \: x^{2}+2\\\\ &\textbf{Jawab}:\\ &\begin{aligned}1.\quad &\textup{Polinom}\: \: P(x)=12x^{4}-40x^{3}+27x^{2}+13x-6\\ &\textrm{dibagi}\: \: x+1,\: \textrm{artinya}\\&P(-1)=12(-1)^{4}-40(-1)^{3}+27(-1)^{2}+13(-1)-6\\&\Leftrightarrow P(-1)=12+40+27-13-6=\color{red}60 \end{aligned}\\ &\begin{aligned}2.\quad &\textup{Polinom}\: \: P(x)=2x^{3}+4x^{2}-6x+7\\ &\textrm{dibagi}\: \: x+1,\: \textrm{artinya}\\ &P\left ( \displaystyle \frac{1}{2} \right )=2\left ( \displaystyle \frac{1}{2} \right )^{3}+4\left ( \displaystyle \frac{1}{2} \right )^{2}-6\left ( \displaystyle \frac{1}{2} \right )^{2}+7\\&\Leftrightarrow P\left ( \displaystyle \frac{1}{2} \right )=\color{red}5\frac{1}{4} \end{aligned}\\ &\begin{aligned}3.\quad &\textup{Polinom}\: \: P(x)=3x^{4}-5x^{2}+4\\ &\textrm{dibagi}\: \: x^{2}+2,\: \textrm{gunakan bentuk sederhana}\\ &\textrm{misa}\: \: x^{2}=n=-2,\: \: \textrm{maka}\\ &P(-2)=3(-2)^{2}-5(-2)+4\\ &\Leftrightarrow P(-2)=12+10+4=\color{red}26 \end{aligned}  \end{array}$.

$\colorbox{yellow}{Pembagi Kuadrat}$.

$\begin{array}{ll}\\ 4.&\textrm{Tentukan sisa pembagian suku banyak}\\ &\textrm{a}.\quad (3x^{3}-7x^{2}-11x+4)\: \: \textrm{oleh}\: \: (x^{2}-x-2)\\ &\textrm{b}.\quad (2x^{3}+5x^{2}-7x+3):(x^{2}-4)\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&P(x)=g(x).h(x)+s(x)\\ &P(x)=g(x).h(x)+ax+b\\ &\textrm{dengan}\\ &P(x)=3x^{3}-7x^{2}-11x+4\\ &g(x)=x^{2}-x-2=(x-2)(x+1)\\ &\textrm{maka}\\ &\color{red}3x^{3}-7x^{2}-11x+4\\ &=(x-2)(x+1).h(x)+\color{blue}ax+b\\ &\textrm{Selanjutnya kita substitusikan}\\ &\textrm{pembuat nol fungsi, yaitu}\\ &x=2\: \: \textrm{atau}\: \: x=-1,\: \: \textrm{maka}\\ &\bullet \: \: x=2\Rightarrow -22=0+2a+b\: ....(1)\\ &\bullet \: \: x=-1\Rightarrow 5=0-a+b\: ........(2)\\ &\color{red}\textrm{perhatikan eliminasi berikut}\\ &\begin{array}{rlllll}\\ 2a&+&b&=&-22\\ -a&+&b&=&5&-\\\hline 3a&&&=&-27\\ a&&&=&-9\\ \textrm{maka}&&b&=&-4\end{array}\\ &\textrm{Jadi, sisanya}=s(x)=\color{red}-9x-4 \end{aligned}\\ &\begin{aligned}\textrm{b}.\quad&\textrm{Dengan cara yang semisal di atas}\\ &g(x)=x^{2}-4=(x-2)(x+2)\\ &\textrm{dengan}\: \:  s(x)=\color{blue}ax+b\\ &\textrm{maka}\\ &P(x)=g(x).h(x)+s(x)\\ &\bullet \: \: x=2\Rightarrow 25=2a+b\: ......(1)\\ &\bullet \: \: x=-2\Rightarrow 21=-2a+b\: ....(2)\\ &\color{red}\textrm{perhatikan eliminasi berikut}\\ &\begin{array}{rlllll}\\ 2a&+&b&=&25\\ -2a&+&b&=&21&-\\\hline 4a&&&=&4\\ a&&&=&1\\ \textrm{maka}&&b&=&23\end{array}\\ &\textrm{Jadi, sisanya}=s(x)=\color{red}x+23 \end{aligned} \end{array}$.

$\LARGE\colorbox{yellow}{LATIHAN SOAL}$.

$\begin{array}{ll}\\ &\textrm{Tentukan sisa pembagian}\\ &1.\quad 3x^{4}-2x^{3}+27x^{2}+x-7\\ &\qquad \textrm{jika dibagi oleh}\: \: \: x-2\\ &2.\quad x^{3}+5x^{2}-3x-16\: \: \textrm{jika dibagi}\\ &\qquad \textrm{oleh}\: \: \: x+1\\ &3.\quad 3x^{4}-5x^{2}+4\: \: \textrm{jika dibagi}\\ &\qquad \textrm{oleh}\: \: \: x^{2}-2  \end{array}$.

$\begin{array}{ll}\\ 4.&\textrm{Tentukan sisa pembagian suku banyak}\\ &\textrm{a}.\quad (x^{3}-6x^{2}+3x-2): (x^{2}-3x+2)\\ &\textrm{b}.\quad (x^{3}+2x^{2}-4):(x^{2}-9)\\ &\textrm{c}.\quad (4x^{3}-x^{2}+7x+1):(x^{2}-x-2)\\ &\textrm{d}.\quad (2x^{4}-2x^{2}-7):(x^{2}+x-6)\\ &\textrm{e}.\quad (x^{3}+4x^{2}-x+2):(x^{2}+2x-3)\\ &\textrm{f}.\quad (4x^{3}-x^{2}+4x-1):(x^{2}+2x-15)\\ &\textrm{g}.\quad (2x^{3}-6x^{2}-5x+3):(2x^{2}-7x-4)\\ &\textrm{h}.\quad (x^{4}-x^{3}+5):(x^{2}+4) \end{array}$.

$\begin{array}{ll}\\ 5. &\textrm{Polinom}\: \: f(x)=2x^{3}+px^{2}+qx-7\: \: \textrm{saat}\\ &\textrm{dibagi}\: \: x^{2}+2x-3\: \: \textrm{bersisa}\: \: -4x-1.\\ &\textrm{Nilai}\: \: p-q=\: .... \end{array}$.

$\begin{array}{ll}\\ 6.&(\textbf{SBMPTN 2015 Matematika IPA})\\ &\textrm{Sisa pembagian}\: \: Ax^{2014}+x^{2015}-B(x-2)^{2}\\ &\textrm{oleh}\: \: x^{2}-1\: \: \textrm{adalah}\: \: 5x-4.\: \: \textrm{Nilai}\: \: A+B=\: .... \end{array}$.

$\begin{array}{ll}\\ 7. &\textrm{Suatu perusahaan mulai beroperasi 1 Juni 2016}\\ &\textrm{Pendapatan kotor tahunan perusahaan tersebut}\\ &\textrm{setelah}\: \: t\: \: \textrm{tahun adalah sebesar}\: \: x\: \: \textrm{juta rupiah}\\ &\textrm{dengan definisi fungsi}\: \: x\: \: \textrm{sebagai berikut}\\ &\qquad x=250.000+90.000t+3.000t^{2}\\ &\textrm{Tentukan}\\ &\textrm{a}.\quad \textrm{Berapa besar pendapatkan kotor perusahaan}\\ &\qquad \textrm{tersebut pada awal}\: \: \textrm{Juni 2021}?\\ &\textrm{b}.\quad \textrm{Setelah berapa tahun perusahaan tersebut}\\ &\qquad \textrm{akan memeperoleh pendapatan sebesar}\\ &\qquad 2.125\: \textrm{miliar rupiah}? \end{array}$.

$\begin{array}{ll}\\ 8. &\textrm{Suatu gelombang udara bergerak mendekati}\\ &\textrm{sebuah kota}.\: \textrm{Jika suhu}\: \: t\: \: \textrm{jam setelah tengah}\\ &\textrm{malam adalah}\: \: T\: \: \textrm{yang diformulasikan}\\ &\qquad T=0,01(400-40t+t^{2}),\: \: 0\leq t\leq 10\\ &\textrm{Tentukan}\\ &\textrm{a}.\quad \textrm{Berapa besar suhu di kota tersebut pada}\\ &\qquad \textrm{pukul}\: \: 05.00\: \: \textrm{pagi}?\\ &\textrm{b}.\quad \textrm{Pada pukul berapa suhu di kota tersebut}\\ &\qquad \textrm{mencapai}\: \: 15^{\circ}C? \end{array}$.

DAFTAR PUSTAKA

  1. Kanginan, M., Nurdiansyah, H., Akhmad, G. 2016. Matematika untuk SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: YRAMA WIDYA.
  2. Noormandiri, B.K. 2017. Matematika Jilid 2 untuk SMA/MA Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.
  3. Sukino. 2017. Matematika Jilid 2 untuk SMA/MA Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA


Metode Horner-Kino (Lanjutan Materi Operasi Polinom)

 TAMBAHAN


Pembagian Horner - Kino
Perhatikanlah bagan berikut



Sebagai tambahan penjelasan dari bagan di atas adalah

$\LARGE\colorbox{yellow}{CONTOH SOAL}$
$\begin{array}{ll}\\ 1.&\textrm{Dengan metode Horner, tentukanlah}\\ & \textrm{nilai suku banyak berikut ini}!\\ &\textrm{a})\quad 4x^{4}-7x^{3}+8x^{2}-2x+3\: \: \: \textrm{jika}\: \: x=2\\ &\textrm{b})\quad 2x^{5}+3x^{3}-x+1\: \: \: \textrm{jika}\: \: x=-3\\ &\textrm{c})\quad 2x^{3}+x^{2}-2x+3\: \: \: \textrm{jika}\: \: x=\displaystyle \frac{1}{3}\\\\ &\textrm{Jawab}:\\ &\textrm{Diketahui bahwa}\\ &f(x)=\color{red}4x^{4}-7x^{3}+8x^{2}-2x+3\\ &\textbf{Cara biasa (Substitusi)}\\ &\begin{aligned}f(2)&=4(2)^{4}-7(2)^{3}+8(2)^{2}-2(2)+3\\ &=64-56+32-4+3\\ &=39\\ \textrm{Seba}&\textrm{gai catatan bahwa}:\\ &\: \textrm{Polinom}\: \: f(x)\: \: \textrm{tersebut di atas }\\ &\textrm{jika dibagi}\: (x-2)\: \textrm{bersisa 39} \end{aligned}\\ &\textbf{Cara Horner}\\ & \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Hitunglah nilai}\: \: a,\: b,\: c,\: \: \textrm{dan}\: \: d,\: \: \textrm{jika}\\ &\textrm{a})\quad -3x+4\equiv a(x-7)-b(2x-3)\\ &\textrm{b})\quad a(x-1)^{2}-b(x+4)\equiv 2x^{2}-5x-7\\ &\textrm{c})\quad 3x^{2}+2x-5\equiv (ax+1)(x+b)-c(x+1)+2(ab-c)\\ &\textrm{d})\quad x^{4}-8x^{3}+15x-20\equiv x^{4}+ax^{3}+(a+b)x^{2}+(2b-c)x+d\\ &\textrm{e})\quad \displaystyle \frac{a}{x-1}+\frac{b}{x+3}\equiv \displaystyle \frac{8}{x^{2}+2x-3}\\ &\textrm{f})\quad \displaystyle \frac{a}{x-1}+\frac{b}{x-4}\equiv \displaystyle \frac{3}{x-1}+\frac{20}{x-4}+\frac{x+17}{x^{2}-5x+4}\\ &\textrm{g})\quad \displaystyle \frac{5x-4}{x^{2}-1}\equiv \displaystyle \frac{a}{x-1}+\frac{b}{x+1}-\frac{3}{x^{2}-1}\\ &\textrm{h})\quad \displaystyle \frac{2x^{2}+x+2}{x^{3}-1}\equiv \displaystyle \frac{a}{x-1}+\frac{bx+c}{x^{2}+x+1}\\ &\textrm{i})\quad \displaystyle \frac{3x^{2}+2x-5}{x^{2}+5x+6}\equiv \displaystyle \frac{a(x-3)}{x+3}+\frac{b(x-5)}{x+2}+\frac{4c}{(x+2)(x+3)}\\ &\textrm{j})\quad x^{3}+ax^{2}+bx+c=0\: \: \textrm{dengan akar-akar}\: \: x_{1}=x_{2}=-1\: \: \textrm{dan}\: \: x_{3}=-3\\ &\textrm{k})\quad x^{3}+ax^{2}+bx+c=0\: \: \textrm{dengan akar-akar}\: \: 1,\: 2,\: \: \textrm{dan}\: \: 3 \end{array}$

$.\: \qquad\begin{aligned}\color{blue}\textrm{Yang diba}&\color{blue}\textrm{has hanya no. 6 d}\\ x^{4}-8x^{3}+&15x-20\\ \equiv \color{red}x^{4}\color{black}+a\color{red}x^{3}&+(a+b)\color{red}x^{2}\color{black}+(2b-c)\color{red}x\color{black}+d\\ \textrm{koefisien}\: \: \color{red}x^{4}&:\: \: 1=1\\ \textrm{koefisien}\: \: \color{red}x^{3}&:\: \: -8=a,\: \: \textrm{maka}\: \: a=-8\\ \textrm{koefisien}\: \: \color{red}x^{2}&:\: \: 0=a+b,\: \: \textrm{maka}\: \: b=-a=-(-8)=8\\ \textrm{koefisien}\: \: \color{red}x^{1}&:\: \: 15=2b-c,\: \: \textrm{maka}\: \: c=2b-15=2(8)-15=1\\ \textrm{koefisien}\: \: \color{red}x^{0}&:\: \: -20=d,\: \: \textrm{maka}\: \: d=-20\\ \end{aligned}$

$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah hasil bagi dan sisanya}!\\ &\begin{array}{ll}\\ \textrm{a})\quad (3x^{3}-2x^{2}+x-4):(x-1)&\textrm{k})\quad (x^{7}+3x^{5}+1):(x^{2}-1)\\ \textrm{b})\quad (2x^{4}-3x^{3}+x^{2}-5x+3):(x-2)&\textrm{l})\quad (x^{4}-3x^{3}-5x^{2}+x-6):(x^{2}-x-2)\\ \textrm{c})\quad (3-x+4x^{2}-x^{3}):(x-3)&\textrm{m})\quad (2x^{4}-3x^{2}-x+2):(x^{2}-2x+1)\\ \textrm{d})\quad (x^{4}-x^{2}+11):(x+4)&\textrm{n})\quad (3x^{6}+4x^{4}-2x-1):(x-1)(x^{2}-4)\\ \textrm{e})\quad (x^{3}-10x+9):(x+5)&\textrm{o})\quad (x^{4}-4x^{3}+2x^{2}-x+1):(2x+1)(x^{2}-3x+2)\\ \textrm{f})\quad (2x^{3}-5x^{2}-11x+8):(3x+1)&\textrm{p})\quad (x^{7}-7x^{4}+3x):(x^{3}-4x)\\ \textrm{g})\quad (5x^{3}+11x^{2}+7x-4):(5x+1)&\textrm{q})\quad (2x^{3}+x^{2}-4x+5):(x^{2}+x+1)\\ \textrm{h})\quad (2x^{3}+5x^{2}-4x+5):(2x+3)&\textrm{r})\quad (2x^{4}+x^{3}-3x+6):(x^{2}+x+2)\\ \textrm{i})\quad (2x^{3}+7x^{2}-5x+4):(2x-1)&\textrm{s})\quad (x^{4}-3x^{2}+7x-4):(x^{2}-2x-1)\\ \textrm{j})\quad (6x^{3}-x^{2}+3):(2x-3)&\textrm{t})\quad (3x^{3}+4x-8):(3x^{2}+x+2) \end{array} \end{array}$

$.\qquad\begin{aligned}&\textrm{Untuk pembahasan no. 3 i} \end{aligned}$
$.\qquad\begin{aligned}&\begin{array}{|l|l|}\hline \textrm{Pembagi}&\begin{aligned}&\textrm{Sisa}\\ &s(x)=\displaystyle \frac{7}{2} \end{aligned}\\\hline \begin{aligned}&2x-1=2(x-\frac{1}{2}) \end{aligned}&\begin{aligned}&\textrm{Hasil bagi}\\ &\displaystyle \frac{h(x)}{2}=\frac{2x^{2}+8x-1}{2}=x^{2}+4x-\frac{1}{2}\ \end{aligned}\\\hline \end{array} \end{aligned}$

$.\qquad\begin{aligned}&\textrm{Dan untuk pembahasan no. 3 m} \end{aligned}$
$.\qquad\begin{array}{|l|l|}\hline \textrm{Pembagi}&\begin{aligned}&\textrm{Sisa}\\ &s_{2}(x-p)+s_{1}\\ &1(x-1)+0=x-1 \end{aligned}\\\hline \begin{aligned}(x-p)(x-q)&=(x-1)(x-1)\\ &=(x-1)^{2} \end{aligned}&\begin{aligned}&\textrm{Hasil bagi}\\ &2x^{2}+4x+3 \end{aligned}\\\hline \end{array}$
$.\qquad\begin{aligned}&\textrm{Coba bandingkan dengan cara Horner-Kino berikut} \end{aligned}$
$.\qquad\begin{cases} \textrm{Suku banyak}: & f(x)=2x^{4}-3x^{2}-x+2 \\ \textrm{Pembagai}: & p(x)=x^{2}-2x+1 \\ &: -1\: \: \textrm{dari}\: -\frac{1}{1},\: \: \textrm{sedang}\: \: 2=-\left ( \frac{-2}{1} \right )\\ \textrm{Hasil bagi}:&h(x)=2x^{2}+4x+3\\ \textrm{Sisa bagi}:&s(x)=x-1 \end{cases}$.
$.\qquad \textrm{Sehingga},\\\\ 2x^{4}-3x^{2}-x+2=\color{red}\left ( x^{2}-2x+1 \right )\left ( 2x^{2}+4x+3 \right )+x-1$

$\begin{array}{ll}\\ 4.&\textrm{Jika diketahui akar-akar persamaan}\: \: x^{2}+4x-5=0\\ &\textrm{juga akar-akar untuk persamaan}\: \: 2x^{3}+9x^{2}-6x-5=0,\\ &\textrm{maka akar ketiga untuk persamaan yang kedua adalah}\: ...\\\\ &\textrm{Jawab}:\\ \end{array}$
$.\qquad \begin{cases} \textrm{Suku banyak}: & f(x)=2x^{3}+9x^{2}-6x-5 \\ \textrm{Pembagai}: & p(x)=x^{2}+4x-5 \\ &: 5\: \: \textrm{dari}\: -\left (\frac{-5}{1} \right ),\: \: \textrm{sedang}\: \: -4=\left ( \frac{4}{1} \right )\\ \textrm{Hasil bagi}:&h(x)=2x+1\\ \textrm{Sisa bagi}:&s(x)=0 \end{cases}$
$.\qquad\begin{aligned}&\textrm{Sehingga}\\ &2x^{3}+9x^{2}-6x-5=\left ( x^{2}+4x-5 \right )\left ( 2x+1 \right )\\ &\textrm{Jadi, akar yang lain (yang ketiga) adalah}\\ & (2x+1)\Rightarrow x=\color{red}-\displaystyle \frac{1}{2} \end{aligned}$

$\LARGE\colorbox{yellow}{LATIHAN SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah hasil bagi dan sisanya}!\\ &\begin{array}{ll}\\ \textrm{a})\quad (x^{7}+3x^{5}+1):(x^{2}-1)\\ \textrm{b})\quad (x^{4}-3x^{3}-5x^{2}+x-6):(x^{2}-x-2)\\ \textrm{c})\quad (2x^{3}+x^{2}-4x+5):(x^{2}+x+1)\\ \textrm{d})\quad (2x^{4}+x^{3}-3x+6):(x^{2}+x+2)\\ \textrm{e})\quad (x^{4}-3x^{2}+7x-4):(x^{2}-2x-1)\\ \textrm{f})\quad (3x^{3}+4x-8):(3x^{2}+x+2) \end{array} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Jika}\: \: a\: \: \textrm{dan}\: \: b\: \: \textrm{bilangan bulat yang menyebabkan}\\ & x^{2}-x-1\: \: \textrm{merupakan faktor dari}\: \: ax^{3}+bx^{2}+1,\\ &\textrm{maka harga}\: \: b\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&-2&&&\textrm{d}.&1\\ \textrm{b}.&-1&\textrm{c}.&0&\textrm{e}.&2 \end{array}\\ &\qquad\qquad\qquad\quad\qquad\qquad\qquad (\textrm{AHSME 1988})\end{array}$.

$\color{blue}\textrm{Pembagian Istimewa}$
Aturan pembagian istimewa adalah
$\begin{aligned}1.\quad &\displaystyle \frac{x^{n}-a^{n}}{x-a}=x^{n-1}a^{0}+x^{n-2}a^{1}+\cdots +x^{1}a^{n-2}+x^{0}a^{n-1}\\ &\qquad =\displaystyle \sum_{k=1}^{n}x^{n-k}a^{k-1}\\ &\textrm{dengan suku ke}-k\: \: \textrm{hasil bagi}=\color{red}x^{n-k}a^{k-1}\\ 2.\quad&\displaystyle \frac{x^{2n}-a^{2n}}{x+a}=x^{2n-1}a^{0}-x^{2n-2}a^{1}+\cdots +x^{1}a^{2n-2}-x^{0}a^{2n-1}\\ &\qquad =\displaystyle \sum_{k=1}^{2n}(-1)^{k+1}x^{2n-k}a^{k-1}\\ &\textrm{dengan suku ke}-k\: \: \textrm{hasil bagi}=\color{red}(-1)^{k+1}x^{2n-k}a^{k-1}\\ 3.\quad&\displaystyle \frac{x^{2n+1}+a^{2n+1}}{x+a}=x^{2n}a^{0}-x^{2n-1}a^{1}+\cdots -x^{1}a^{2n-1}+x^{0}a^{2n}\\ &\qquad =\displaystyle \sum_{k=1}^{2n+1}(-1)^{k+1}x^{2n+1-k}a^{k-1}\\ &\textrm{dengan suku ke}-k\: \: \textrm{hasil bagi}=\color{red}(-1)^{k+1}x^{2n+1-k}a^{k-1} \end{aligned}$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah hasil bagi polinom}\\ &\textrm{untuk tiap pembagian istimewa berikut}\\ &\textrm{a}.\quad \left ( x^{3}-a^{3} \right ):(x-a)\\ &\textrm{b}.\quad \left ( x^{4}-a^{4} \right ):(x+a)\\ &\textrm{c}.\quad \left ( x^{5}+a^{5} \right ):(x+a)\\\\ &\textrm{Jawab}:\\ &\textrm{a}.\quad \displaystyle \frac{\left ( x^{3}-a^{3} \right )}{(x-a)}=x^{2}+xa+a^{2}\: \: ....(\textrm{rumus}\: 1)\\ &\textrm{b}.\quad \displaystyle \frac{\left ( x^{4}-a^{4} \right )}{(x+a)}=x^{3}-x^{2}a+xa^{2}-a^{3}\: \: ....(\textrm{rumus}\: 2)\\ &\textrm{c}.\quad \displaystyle \frac{\left ( x^{5}+a^{5} \right )}{(x+a)}=x^{4}-x^{3}a+x^{2}a^{2}-xa^{3}+a^{4}\: \: ....(\textrm{rumus}\: 3) \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah hasil bagi polinom}\\ &\textrm{untuk tiap pembagian istimewa berikut}\\ &\textrm{a}.\quad \left ( m^{8}-n^{8} \right ):(m+n)\\ &\textrm{b}.\quad \left ( x^{10}-y^{10} \right ):(x+y)\\\\ &\textrm{Jawab}:\\ &\textrm{a}.\quad \displaystyle \frac{\left ( m^{8}-n^{8} \right )}{(m+n)}=m^{7}-m^{6}n+m^{5}n^{2}-\cdots +mn^{6}-n^{7}\\ &\textrm{b}.\quad \displaystyle \frac{\left ( x^{10}-y^{10} \right )}{(x+y)}=x^{9}-x^{8}y+x^{7}y^{2}-\cdots +xy^{8}-y^{9}\\ \end{array}$


Operasi Polinom

 $\color{blue}\textrm{C. Operasi Pada Polinom}$

$\textbf{1. Kesamaan dua buah polinom}$

Dua buah polinom dikatakan sama jika keduanya memiliki pangkat/derajat  sama dan koefisien-koefisien suku yang sejenis juga sama.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{aligned}1.\quad \textrm{Misalkan diketahui}\: \quad&\\\color{red}x^{4}+Ax^{3}-4x^{2}-10x+3&=\color{red}(x^{2}+2x+3)(x^{2}+Bx+1)\\ x^{4}+Ax^{3}-4x^{2}-10x+3&=x^{4}+(B+2)x^{3}+(2B+4)x^{2}\\ &+(3B+2)x+3\\ \textrm{Elemen yang bersesuaian}&\\ \textrm{untuk}\: \: x^{1}\: :\: \color{red}-10&=\color{red}3B+2\\ \textrm{maka}\: \: \: B& =4\\ \textrm{untuk}\: \: x^{3}\: :\: \color{red}A&=\color{red}B+2\\ A&=-2 \end{aligned}$.

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah nilai}\: \: m\: \: \textrm{dan}\: \: n,\: \textrm{jika diketahui}\\ &\displaystyle \color{red}\frac{m}{x+1}+\frac{n}{x-2}=\frac{3x+4}{x^{2}-x-2}\\\\ &\textbf{Jawab}:\\ &\textrm{Kalikan kedua ruas dengan}\\ &\color{red}x^{2}-x-2\: \: \color{black}\textrm{atau}\: \: \color{red}(x+1)(x-2)\\ &\textrm{maka}\\ &\color{red}3x+4=m(x-2)+n(x+1)\\ &\Leftrightarrow 3x+4=(m+n)x+(-2m+n)\\ &\textrm{Dari bentuk kesamaan di atas didapatkan}\\ &\color{red}m+n=3\\ &\color{red}-2m+n=4\\ &\textrm{Dengan eliminasi substitusi akan}\\ &\textrm{didapatkan nilai}\: \: m=-\displaystyle \frac{1}{3}\: \: \textrm{dan}\: \: n=\frac{10}{3} \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Diketahui kesamaan dua polinom}\\ &\displaystyle \color{red}5x^{2}-2x+3=ax^{2}+(b+c)x+7(b-c)\\ &\textrm{Tentukan nilai}\: \: a+8b-6c\\\\ &\textbf{Jawab}:\\ &\textrm{Dari soal diketahui bahwa}\\ &\begin{cases} a &=5 \\ b+c &=-2 \\ 7(b-c) &=3 \end{cases}\\ &\textrm{maka}\\ &7b+7c=-14\\ &7b-7c=3\qquad +\\\hline &14b=-11\Rightarrow b=-11/14\\ &\textrm{dan}\\ &7b+7c=-14\\ &7b-7c=3\qquad -\\\hline &14c=-17\Rightarrow c=-17/14\\ &\textrm{maka nilai}\: \: a+8b-6c\\ &=\color{red}5+8\left ( \displaystyle \frac{-11}{14} \right )-6\left (-\displaystyle \frac{17}{14}  \right )\\ &=\color{red}5+\displaystyle \frac{14}{14}\color{black}=\color{red}5+1\color{black}=\color{red}6  \end{array}$.

$\textbf{2. Penjumlahan}$

 Dua polinom dapat dijumlahkan jika hanya jika suku-sukunya sejenis, jika tidak maka tidak bisa

$\textbf{3. Pengurangan}$

Pada operasi pengurangan juga juga berlaku seperti pada operasi penjumlahan, yaitu pengurangan hanya bisa terjadi pada suku-suku yang sejenis saja yang lainnya tidak dapat dilakukan.

$\textbf{4. Perkalian}$

Pada jenis operasi ini dilakukan seperti mengalikan biasa yaitu mengalikan semua suku-suku secara distribusi dari kedua polinom tersebut.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Diketahui 2 suku banyak berikut}\\ &\begin{cases} p(x) &=x^{3}+2x^{2}+x-1 \\ q(x) &=x^{4}+5x+2 \end{cases}\\ &\textrm{Tentukanlah}\\ &\textrm{a}.\quad \textrm{penjumlahan keduanya}\\ &\textrm{b}.\quad \textrm{pengurangan}\: \: p(x)\: \: \textrm{oleh}\: \: q(x)\\\\ &\textrm{Jawab}:\\ &\begin{array}{lllllllllll}\\ p(x)=&&x^{3}&+&2x^{2}&+&x&-&1&\\ q(x)=&x^{4}&&&&+&5x&+&2&(+)\\\hline &\color{red}x^{4}\: +&\color{red}x^{3}&+&\color{red}2x^{2}&+&\color{red}6x&+&\color{red}1& \end{array}\\ &\textrm{poin b Silahkan dicoba sebagai latihan} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah hasil kali perkalian}\\ &\textrm{dari dua polinom berikut}\\ &\textrm{a}.\quad 3x(-5x^{2})\\ &\textrm{b}.\quad 2a(7a-3)\\ &\textrm{c}.\quad (x+2)(x-5)\\ &\textrm{d}.\quad (3t-2)(2t^{2}-5t+3)\\ &\textrm{e}.\quad (5a^{2}+2)(5a^{2}-2)\\ &\textrm{f}.\quad (x^{3}-2x)(x^{2}+3x-4)\\ &\textrm{g}.\quad (2a^{3}+1)(-a-3)^{2}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&3x(-5x^{2})=-3.5x^{1+2}=\color{red}-15x^{3}\\ \textrm{b}.\quad&2a(7a-3)=2.7a^{1+1}-2.3a=\color{red}14a^{2}-6a\\ &\color{blue}\textrm{Selanjutnya kita langsungkan saja}\\ \textrm{c}.\quad&(x+2)(x-5)=x^{2}+(2-5)x-2.5\\ &\qquad\qquad \qquad\: =\color{red}x^{2}-3x-10\\ \textrm{d}.\quad&(3t-2)(2t^{2}-5t+3)\\ &\qquad = 6t^{3}-15t^{2}+9t-4t^{2}+10t-6\\ &\qquad = \color{red}6t^{3}-19t^{2}+19t-6\\ \textrm{e}.\quad&(5a^{2}+2)(5a^{2}-2)\\ &\qquad = 25a^{4}-10x^{2}+10a^{2}-4\\ &\qquad =\color{red}25a^{4}-4\\ \textrm{f}.\quad&(x^{3}-2x)(x^{2}+3x-4)\\ &x^{5}+3x^{4}-4x^{3}-2x^{3}-6x^{2}+8x\\ &\qquad =\color{red}x^{5}+3x^{4}-6x^{3}-6x^{2}+8x\\ \textrm{g}.\quad&(2a^{2}+1)(-a-3)^{2}\\ &\qquad =(2a^{2}+1)(a^{2}+6a+9)\\ &\qquad =2a^{4}+12a^{3}+18a^{2}+a^{2}+6a+9\\ &\qquad =\color{red}2a^{4}+12a^{3}+19a^{2}+6a+9 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah hasil dari perkalian}\\ &\textrm{dua polinom berikut}\\ &\textrm{a}.\quad \begin{cases} p(x) &=x^{2}-x-1 \\ q(x) &=x^{2}+x+1 \end{cases}\\\\ &\textrm{b}.\quad \begin{cases} p(x) &=x^{5}+3x^{3}-x-1 \\ q(x) &=x^{4}+2x+1 \end{cases}\\\\ &\textrm{c}.\quad \begin{cases} p(x) &=x^{6}+3x-6 \\ q(x) &=x^{3}-6x+3 \end{cases}\\\\ &\textrm{d}.\quad \begin{cases} p(x) &=x^{2020}-x \\ q(x) &=x^{2}+x-1 \end{cases}\\\\ &\textrm{e}.\quad \begin{cases} p(x) &=x^{2021}-1 \\ q(x) &=x^{2019}+1 \end{cases}\\\\ &\textrm{Jawab}:\\ &\textrm{Poin a sampai d silahkan dicoba}\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Diketahui bahwa}\\ &\begin{cases} p(x) &=x^{2021}-1 \\ q(x) &=x^{2019}+1 \end{cases}\\ &\textrm{maka}\: \: p(x)\times q(x)\\ &=\left ( x^{2021}-1 \right )\times \left ( x^{2019}+1 \right )\\ &=x^{2021+2019}+1\times x^{2021}-1\times x2019-1\times 1\\ &=\color{red}x^{4040}+x^{2021}-x^{2019}-1 \end{aligned} \end{array}$

$\textbf{5. Pembagian}$

Perhatikanlah ilustrasi pembagian bersusun panjang berikut

Misalkan untuk pembagian  $x^{3}+4x^{2}-2x+4$  oleh   $x-1$ adalah sebagai berikut:

Selanjutnya dari caontoh di atas kita mendapatkan, 
$\begin{aligned}x^{3}&+4x^{2}-2x+4\\ &=(x-1)(x^{2}+5x+3)+7 \end{aligned}$
Sehingga dari uraian di atas secara umum pembagian polinom dapat dinyatakan bahwa:
$\textrm{Polinomial}=\textrm{Pembagi}\times \textrm{Hasil bagi}+\textrm{Sisa}$

$\textbf{a. Pembagian bentuk}\:  (x-h)$
$\textbf{b. Pembagian bentuk}\: (ax+b)$
$\textbf{c. Pembagian bentuk}\: (ax^{2}+bx+c)$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$
$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah hasil bagi dan sisa pembagian}\\ &\textrm{jika}\: \: x^{3}+4x^{2}-2x+4\: \: \textrm{oleh}\: \: x-1\\\\ &\color{blue}\textrm{Jawab}:\\ & \end{array}$
$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah hasil bagi dan sisa pembagian}\\ &\textrm{jika}\: \: 4x^{3}-8x^{2}-x+5\: \: \textrm{oleh}\: \: 2x-1\\\\ &\color{blue}\textrm{Jawab}:\\ & \end{array}$
$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah hasil bagi dan sisa pembagian}\\ &\textrm{jika}\: \: x^{4}-2x^{2}-13x-19\: \: \textrm{oleh}\: \: x^{2}-2x-3\\\\ &\color{blue}\textrm{Jawab}:\\ & \end{array}$

Catatan hasil bagi adalah pada contoh no.1 s.d 3 adalah pada tiap pembahasan di tiap nomornya adalah terletak di bagian atas (berwarna biru) dan sisa pembagiannya adalah yang terletak di bagian paling bawah (berwarna merah).


DAFTAR PUSTAKA

  1. Kanginan, M., Nurdiansyah, H., Akhmad, G. 2016. Matematika untuk SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: YRAMA WIDYA.
  2. Noormandiri, B.K. 2017. Matematika Jilid 2 untuk SMA/MA Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.
  3. Sukino. 2017. Matematika Jilid 2 untuk SMA/MA Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA



Polinom (Suku Banyak)

 $\color{blue}\textrm{A. Pendahuluan}$

Polinom disebut juga suku banyak. Polinom atau suku banyak adalah suatu bentuk variabel yang berpangkat/berderajat.

Secara definisi suku banyak (polinomial) dalam  $x$  berderajat $n$ adalah:

Suatu bentuk

$\displaystyle a_{n}x^{n}+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_{2}x^{2}+a_{1}x^{1}+a_{0}$

dengan  $n$  bilangan cacah serta  $a_{0},\: a_{1},\: a_{2},\: ...,\: a_{n}$  koefisien dari suku  $x$  dan  $a_{n}\neq 0$  dengan  $a_{0}$  sebagai suku tetap (konstan)nya.

Selanjutnya perhatikanlah tabel berikut!

$\color{purple}\begin{array}{|l|l|}\hline \begin{aligned}a_{n}&\: \: \textrm{adalah koefisien dari} \: \: x^{n}\\ a_{n-1}&\: \: \textrm{adalah koefisien dari} \: \: x^{n-1}\\ a_{n-2}&\: \: \textrm{adalah koefisien dari} \: \: x^{n-2}\\ \vdots &\\ a_{2}&\: \: \textrm{adalah koefisien dari} \: \: x^{2}\\ a_{1}&\: \: \textrm{adalah koefisien dari} \: \: x^{1}\\ a_{0}&\: \: \textrm{adalah konstanta} \\ &(\textrm{suku tetap}) \end{aligned}&\begin{aligned}a_{n}\: &\: \neq 0\\ n:&\: \: \textrm{bilangan cacah},\\ :&\: \: \textrm{adalah derajat (pangkat)} \\ &\: \: \textrm{tertinggi dalam suku} \\ &\: \: \textrm{banyak tersebut}&\\ &\\ &\\ &\end{aligned}\\\hline \end{array}$

$\LARGE\colorbox{yellow}{CONTOH SOAL 1}$

$\begin{aligned}1.\quad&\textrm{Polinom}\: \: \color{red}2x^{3}-6x^{2}+2020\: \: \color{black}\textrm{dapat dinyatakan}\\ &\textrm{dengan}\: \: \: \color{blue}2x^{3}-6x^{2}+0x^{1}+2020x^{0}\\ &\textrm{Polinom tersebut memiliki suku tetap}\: \: 2020\\ 2.\quad&\textrm{Polinom}\: \: \color{red}5x^{4}-8x^{3}+6x-2021 \: \: \color{black}\textrm{dapat dinyatakan}\\ &\textrm{dengan}\: \: \: \color{blue}5x^{4}-8x^{3}+0x^{2}+6x^{1}-2021x^{0}\\ &\textrm{Polinom tersebut memiliki suku tetap}\: \: -2021\\ 3.\quad&\textrm{Polinom}\: \: \color{red}x^{4}-2x^{3}+3x^{2}-2\sqrt{x}+1 \: \: \color{black}\textrm{tidak dapat}\\ &\textrm{dinamakan polinom, sebab ada variabel dari}\: \: \: \color{blue}x\\ &\textrm{yang berderajat bukan bilangan cacah}\\ 4.\quad&\textrm{Sedangkan polinom}\: \: \color{red}5-x+(2-x)(1+x+x^{2})\\ &\textrm{adalah bentuk polinom, karena dapat dinayatakan}\\ &\textrm{dengan}\: \: \: \color{blue}-x^{3}+x^{2}+7 \end{aligned}$

$\color{blue}\textrm{B. Nilai Polinom}$

Polinom atau suku banyak yang berderajat $\color{red}n$ yang selanjutnya dinyatakan dengan 

$f(x)=\displaystyle a_{n}x^{n}+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_{1}x^{1}+a_{0}$

Berkaitan dengan kebutuhan penentuan nilai ini, dapat ditentukan dengan dua cara:

$\textbf{a. Substitusi}$

$\begin{aligned}&\textrm{Nilai suku banyak}\: \: \color{red}f(x)\: \: \textrm{berderajat}\\ &n\: \: \textrm{saat}\: \: \color{red}x = k\: \: \color{black}\textrm{adalah}\: \: \color{blue}f(k).\\ &\textrm{Jika}\: \: f(k)=0\: \: \textrm{maka}\: \: x = k\: \: \textrm{akar dari}\: \: f(x),\\ &\textrm{dan}\: \: (x-k)\: \: \textrm{faktor dari}\: \: f(x)\\ &\end{aligned}$

$\LARGE\colorbox{yellow}{CONTOH SOAL 2}$

Jika suatu polinom dinyatakan dengan  $f(x)$, maka nilai polinom itu untuk  $x=3$  adalah  $f(3)$.

Misalkan diketahui  

$\begin{aligned}1.\quad f(x)&=x^{3}-1\\ \textrm{mak}&\textrm{a}\\ f(1)&=1^{3}-1=1-1=0\\ f(3)&=3^{3}-1=27-1=26\\ f(-4)&=(-4)^{2}-1=-64-1=-65 \end{aligned}$

$\begin{array}{ll}\\ 2.&\textrm{Diketahui}\: \: h(x)=2x^{3}+5x^{2}-12x-6\\ &\textrm{Tentukanlah nilai untuk}\: \: h(-2),\: h(-1),\\ &h(0),\: h(1),\: \: \textrm{dan}\: \: h(2)\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{array}{|c|c|l|}\hline \color{red}x=k&\color{red}h(k)&\qquad\qquad\qquad\qquad\color{red}\textrm{Nilai}\\\hline x=-2&h(-2)&\begin{aligned}h(-2)&=2(-2)^{3}+5(-2)^{2}-12(-2)-6\\ &=-16+20+24-6\\ &=22 \end{aligned}\\\hline x=-1&h(-1)&\begin{aligned}h(-1)&=2(-1)^{3}+5(-1)^{2}-12(-1)-6\\ &=-2+5+12-6\\ &=9 \end{aligned}\\\hline x=0&h(0)&\begin{aligned}h(0)&=2(0)^{3}+5(0)^{2}-12(0)-6\\ &=-6 \end{aligned}\\\hline x=1&h(1)&\begin{aligned}h(1)&=2(1)^{3}+5(1)^{2}-12(1)-6\\ &=2+5-12-6\\ &=-11 \end{aligned}\\\hline x=2&h(2)&\begin{aligned}h(2)&=2(2)^{3}+5(2)^{2}-12(2)-6\\ &=16+20-24-6\\ &=6 \end{aligned}\\\hline \end{array} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Diketahui}\: \: p(x)=x-2019\\ &\textrm{dan}\: \: q(x)=x^{2019}+1.\: \textrm{Tentukanlah}\\ &\textrm{nilai untuk}\: \: p\left ( q(2) \right )\: \: \textrm{dan}\: \: q\left ( p(2) \right )\\\\ &\color{blue}\textrm{Jawab}:\\ &\textrm{Yang dibahas yang bagian}\: \: p\left ( q(2) \right )\\ &q(2)=2^{2019}+1,\: \textrm{maka nilai}\\ &\begin{aligned}p\left ( q(2) \right )&=\left ( 2^{2019}+1 \right )-2019\\ &=2^{2019}-2018 \end{aligned}\\\\ &\textrm{Untuk yang}\: \: q\left ( p(2) \right )\: \: \textrm{adalah}\\ &p(2)=\cdots , \: \textrm{maka nilai}\\ &\begin{aligned}q\left ( p(2) \right )&=\because \cdots ^{2019}+1\\ &=\cdots \end{aligned} \end{array}$

$\textbf{b. Horner/Sintetik}$

Nilai suatu polinom dapat ditentukan dengan pembagian sintesis Horner

Misalkan:

$\begin{aligned}f(x)&=\color{blue}ax^{3}+bx^{2}+cx+d\: \: \color{black}\textrm{saat akan dibagi}\\ &\color{red}x=h,\: \: \color{black}\textrm{maka pembagian Horner itu}:\\ & \end{aligned}$


Perhatikan bahwa proses ke bawah adalah berup proses penjumlahan.

Proses di atas akan sama saat kita mensubstitusikan  $\color{red}x=h$  ke dalam  $\color{red}f(x)$, yaitu:
$\begin{aligned}f(x)&=\color{blue}ax^{3}+bx^{2}+cx+d\: \: \textrm{saat}\\ &\color{red}x=h,\: \: \color{black}\textrm{maka}\\ f(\color{red}h\color{black})&=a\color{red}h^{3}\color{black}+b\color{red}h^{2}\color{black}+c\color{red}h\color{black}+d\\ &\\ &\textbf{Cukup JELAS bukan}? \end{aligned}$

$\LARGE\colorbox{yellow}{CONTOH SOAL 3}$

$\begin{array}{l}\\ \textrm{Tentukanlah nilai dari}\: \: f(4)\: \: \textrm{jika}\\ \textrm{diketahui}\: \: f(x)=x^{3}-x-5\\ \textrm{Jawab}:\\ \begin{aligned}(1).\quad&\textrm{Cara substitusi langsung}\\ &f(x)=x^{3}-x-5\\ &f(4)=\color{red}4^{3}-4-5\\ &\qquad=\color{red}64-9=\color{blue}55\\ (2).\quad&\textrm{Cara Horner}\\ &\textrm{Karena}\: \: f(x)=x^{3}-x-5\\ &\textrm{dan koefisiennya yang akan}\\ &\textrm{adalah}:\\ & a_{3}=1,\: a_{2}=0,\: a_{1}=-1,\: \&\: a_{0}=-5\\ &\textbf{maka bagan pembagian Hornernya}\\ &\begin{array}{ll|llllllllll}\\ &\color{red}x=4&1&\color{blue}0&\color{magenta}-1&-5&\\ &&&&&&\\ &&&\color{blue}4&\color{magenta}16&60&+\\\hline &&1&\color{blue}4&\color{magenta}15&55 \end{array} \end{aligned} \end{array}$


Contoh Soal 3 Polinom

$\begin{array}{ll}\\ 11.&\textrm{Jika polinom}\: \: f(x)\: \: \textrm{dibagi oleh}\\ &(x-a)(x-b)\: \: \textrm{dan}\: \: a\neq b\: ,\: \textrm{maka}\\ &\textrm{sisa pembagiannya adalah}\: ....\\ &\begin{array}{lllllll}\\ &\textrm{a}.\quad \displaystyle \displaystyle \frac{x-a}{a-b}f(a)+\frac{x-a}{b-a}f(b)\\\\ &\textrm{b}.\quad \displaystyle \displaystyle \frac{x-a}{a-b}f(b)+\frac{x-a}{b-a}f(a)\\\\ &\textrm{c}.\quad \displaystyle \displaystyle \color{red}\frac{x-b}{a-b}f(a)+\frac{x-a}{b-a}f(b)\\\\ &\textrm{d}.\quad \displaystyle \displaystyle \frac{x-b}{a-b}f(b)+\frac{x-a}{b-a}f(a)\\\\ &\textrm{e}.\quad \displaystyle \displaystyle \frac{x-a}{b-a}f(b)+\frac{x-a}{b-a}f(a)\\ \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Misal sisa pembagiannya}:\: \color{red}s(x)=px+q\\ &\textrm{Saat}\: \: f(x)\: \: \textrm{dibagi}\: \: (x-a)(x-b)\: \: \textrm{berarti}\\ &\bullet \quad x=a\Rightarrow s(a)=f(a)=ap+q\: ....(1)\\ &\bullet \quad x=b\Rightarrow s(b)=f(b)=bp+q\: ......(2)\\ &\textrm{Persamaan}\: \: (1)\: \: \textrm{dan}\: \: (2)\: \: \textrm{dieliminasi}\\ &\color{blue}\begin{array}{llllllll}\\ ap&+&q&=&f(a)\\ bp&+&q&=&f(b)&-\\\hline ap&-&bp&=&f(a)-f(b)\\ &&p&=&\color{purple}\displaystyle \frac{f(a)-f(b)}{a-b}& \end{array}\\ &\textrm{Dari persamaan}\: \: (1),\\ &f(a)=ap+q\\ &f(a)=a\left ( \displaystyle \frac{f(a)-f(b)}{a-b} \right )+q\\ &q=a\left ( \displaystyle \frac{f(a)-f(b)}{a-b} \right )+f(a)\\ &q=a\left ( \displaystyle \frac{f(a)-f(b)}{a-b} \right )+f(a)\left ( \displaystyle \frac{a-b}{a-b} \right )\\ &q=\displaystyle \frac{-bf(a)-af(b)}{a-b}\\ &\textrm{Sehingga}\\ &s(x)=px+q\\ &\qquad =\left ( \displaystyle \frac{f(a)-f(b)}{a-b} \right )x+\left ( \displaystyle \frac{-bf(a)-af(b)}{a-b} \right )\\ &\qquad =\displaystyle \frac{f(a)x-f(b)x-bf(a)+af(b)}{a-b}\\ &\qquad =\displaystyle \frac{(x-b)f(a)+(a-x)f(b)}{a-b}\\ &\qquad =\displaystyle \frac{x-b}{a-b}f(a)+\frac{a-x}{a-b}f(b)\\ &\qquad =\color{red}\displaystyle \frac{x-b}{a-b}f(a)+\frac{x-a}{b-a}f(b) \end{aligned} \end{array}$

$\begin{array}{ll}\\ 12.&\textrm{Diketahui}\: \: f(x)\: \: \textrm{dibagi oleh}\: \: x-2\: \: \textrm{bersisa 5},\\ &\textrm{dan dibagi}\: \: x-3\: \: \textrm{bersisa 7. Jia}\: \: f(x)\: \: \\ &\textrm{dibagi oleh}\: \: x^{2}-5x+6\: \: \textrm{akan memiliki sisa}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle x-2&&\textrm{d}.\quad \color{red}\displaystyle 2x+1\\ \textrm{b}.\quad \displaystyle 2x-4&\textrm{c}.\quad \displaystyle x+2&\textrm{e}.\quad 2x+3 \end{array}\\\\ &\textrm{Jawab}:\\ &\color{blue}\textbf{Alternatif 1}\\ &\begin{aligned}f(x)&=(x-2).h(x)+5\\ f(x)&=(x-3).h(x)+7\\ f(x)&=(x^{2}-5x+6).H(x)+s(x)\\ f(x)&=(x-2)(x-3).H(x)+px+q\\ f(2)&=(2-2)(2-3).H(x)+2p+q=5\\ &\Rightarrow \color{blue}0+2p+q=5\: \color{black}.................(1)\\ f(3)&=(3-2)(3-3).H(x)+3p+q=7\\ &\Rightarrow \color{blue}0+3p+q=7\: \color{black}.................(2)\\ \textrm{Dari}&\: \textrm{persamaan}\: \: (1)\: \: \textrm{dan}\: \: (2)\\ \color{red}\textrm{saat}\: &\color{red}\textrm{persamaan (1) dikurangi persamaan (2)}\\ &\qquad -p=-2\\ &\qquad\: \: \: \: \: \: p=2\\ &\textrm{maka}, \: \: \: q=1\\ &\textrm{Sehingga},\: \: \\ &s(x)=px+q=\color{red}2x+1\end{aligned}\\ &\color{blue}\textbf{Alternatif 2}\\ &\begin{aligned}&f(x)\: \: \textrm{dibagi}\: \: (x-2)\: \: \textrm{sisa}\: \: 5\: \Rightarrow f(2)=5\\ &f(x)\: \: \textrm{dibagi}\: \: (x-3)\: \: \textrm{sisa}\: \: 7\: \Rightarrow f(3)=7\\ &\textrm{maka},\\ &s(x)=\color{red}\displaystyle \frac{x-b}{a-b}f(a)+\frac{x-a}{b-a}f(b)\\ &\qquad =\color{red}\displaystyle \frac{x-3}{2-3}\color{black}(5)\color{red}+\frac{x-2}{3-2}\color{black}(7)\\ &\qquad =\displaystyle \frac{5x-15}{-1}+\frac{7x-14}{1}\\ &\qquad =15-5x+7x-14\\ &\qquad =\color{red}2x+1 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 13.&\textrm{Polinom}\: \: f(x)\: \: \textrm{dibagi oleh}\: \: (2x-4)\: \: \textrm{bersisa 6},\\ &\textrm{dibagi oleh}\: \: (x+4)\: \: \textrm{bersisa 24}.\\ &\textrm{Dan polinom}\: \: g(x)\: \: \textrm{dibagi oleh}\: \: (2x-4)\: \: \textrm{bersisa 5},\\ & \textrm{dibagi oleh}\: \: (x+4)\: \: \textrm{bersisa 2}.\\ &\textrm{Jika}\: \: h(x)=f(x).g(x),\: \: \textrm{maka}\: \: h(x)\\ &\textrm{dibagi}\: \: (2x^{2}+4x-16)\: \: \textrm{akan sisa}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad -3x+24&&\textrm{d}.\quad -6x+36\\ \textrm{b}.\quad \color{red}-3x+36&\textrm{c}.\quad 6x+24&\textrm{e}.\quad 12x+3 \end{array}\\\\ &\textrm{Jawab}:\\ &\color{blue}\textrm{Langkah pertama}\\ &\begin{aligned}f(x)&=(2x-4).h(x)_{1}+6\\ f(x)&=(x+4).h(x)_{2}+24\\ f(x)&=(2x-4)(x+4).H_{1}(x)+p_{1}x+q_{1}\\ &\textrm{Gunakanlah cara sebagai mana}\\ &\textrm{contoh soal No. 12 di atas yang}\\ \color{magenta}\textrm{Alte}&\color{magenta}\textrm{natif 2}\\ \textrm{mak}&\textrm{a}\quad p_{1}x+q_{1}=-3x+12 \end{aligned} \\ &\color{blue}\textrm{Langkah kedua}\\ &\begin{aligned}g(x)&=(2x-4).h(x)_{3}+5\\ g(x)&=(x+4).h(x)_{4}+2\\ g(x)&=(2x-4)(x+4).H_{2}(x)+p_{2}x+q_{2}\\ &\textrm{Gunakanlah cara sebagai mana}\\ &\textrm{contoh soal No. 12 di atas yang}\\ \color{magenta}\textrm{Alte}&\color{magenta}\textrm{natif 2}\\ \textrm{mak}&\textrm{a}\quad p_{2}x+q_{2}=\displaystyle \frac{1}{2}x+4 \end{aligned} \\ &\color{blue}\textrm{Langkah ketiga}\\ &\begin{aligned}&h(x)=\color{red}f(x)\times g(x)\\ &=\left ( (2x-4)(x+4)H_{1}(x)+(-3x+12) \right )\\ &\qquad\qquad\qquad \times \left ( (2x-4)(x+4)H_{2}(x)+\displaystyle \frac{1}{2}x+4 \right )\\ &\textrm{maka}\\ &\bullet \quad h(2)=\left ( 0+(-3.2+12) \right )\left ( 0+\displaystyle \frac{1}{2}.2+4 \right )=6.5=30\\ &\bullet \quad h(-4)=\left ( 0+(-3.-4+12) \right )\left ( 0+\displaystyle \frac{1}{2}.-4+4 \right )=24.2=48\\ &\textrm{Dengan pembagi}\: \: 2x^{2}+x-16,\: \textrm{maka sisanya}:\: s_{3}(x)=p_{3}x+q_{3}\\ &\textrm{saat}\: \: x=2\qquad \Rightarrow 2p+q=30\\ &\textrm{saat}\: \: x=-4\: \: \Rightarrow -4p+q=48\\ &\textrm{selanjutnya dengan eliminasi-substitusi diperoleh}\: \: p=-3,\: q=36\\ &\textrm{sehingga}\: \: s(x)=px+q=\color{red}-3x+36 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 14.&\color{purple}(\textrm{KSM 2015})\color{black}\textrm{Diketahui}\: \: f(x)\: \: \textrm{adalah polinom}\\ & (x-x_{1})(x-x_{2})(x-x_{3})(x-x_{4})(x-x_{5})\\ &\textrm{dengan}\: \: \: x_{1},\: x_{2},\: x_{3},\: x_{4},\: \: \textrm{dan}\: \: x_{5}\: \: \textrm{adalah}\\ &\textrm{bilangan bulat berbeda}.\: \textrm{Jika}\: \: f(104)=2012,\\ &\textrm{maka nilai} \: \: \: x_{1}+ x_{2}+ x_{3}+ x_{4}+x_{5}\: \: \textrm{sama dengan}....\\ &\textrm{a}.\quad 13\\ &\textrm{b}.\quad 14\\ &\textrm{c}.\quad 16\\ &\textrm{d}.\quad \color{red}17\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{Diketa}&\textrm{hui bahwa}:\\ f(x)&=(x-x_{1})(x-x_{2})(x-x_{3})(x-x_{4})(x-x_{5})\\ f(104)&=(104-x_{1})(104-x_{2})(104-x_{3})(104-x_{4})(104-x_{5})=2012\\ &=2012=1\times 2\times 503\\ &=(-1)\times (1)\times (-2)\times (2)\times (503)\\ \textrm{maka}&\: \: \begin{cases} (104-x_{1}) &=-2\Rightarrow x_{1}=106 \\ (104-x_{2}) &=-1\Rightarrow x_{2}=105 \\ (104-x_{3}) &=1\Rightarrow x_{3}=103 \\ (104-x_{4}) &=2\Rightarrow x_{4}=102 \\ (104-x_{5}) &=503\Rightarrow x_{5}=-399 \\ \end{cases}\\ \textrm{sehin}&\textrm{gga},\\ &x_{1}+ x_{2}+ x_{3}+ x_{4}+x_{5}=106+105+103+102+(-399)=\color{red}17 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 15.&\textrm{Tentukanlah suku banyak}\: \: f(x)\: \: \textrm{sedemikian}\\ &\textrm{sehingga}\: \: f(x)\: \: \textrm{terbagi oleh}\: \: x^{2}+1,\\ &\textrm{sedangkan}\: \: f(x)+1\: \: \textrm{terbagi oleh}\: \: x^{3}+x^{2}+1\\\\ &\textrm{Jawab}:\\ &\begin{aligned}f(x)&=\left ( x^{2}+1 \right ).h_{1}x\\ f(x)+1&=\left ( x^{2}+1 \right ).h_{1}x+1\\ \textrm{supaya}\: \: \: &f(x)+1\: \: \textrm{terbagi habis oleh}\: \: x^{3}+x^{2}+1 ,\\ & \textrm{maka akan ada bilangan bulat}\: \: k,\: \: \left ( k\neq 0 \right )\\ k&=\displaystyle \frac{f(x)+1}{x^{3}+x^{2}+1}\\ &=\displaystyle \frac{\left ( x^{2}+1 \right ).h_{1}x+1}{x^{3}+x^{2}+1}\\ k=1\Rightarrow &1=\displaystyle \frac{\left ( x^{2}+1 \right ).h_{1}x+1}{x^{3}+x^{2}+1}\: \: \textrm{maka}\: \: h_{1}x=x\\ \textrm{sehingga}&\: \: f(x)=\color{red}x^{3}+x^{2}\\ \textrm{untuk ni}&\textrm{lai}\: \: k\: \: \textrm{yang lain, tak ditemukan} \end{aligned} \end{array}$

Contoh Soal 4 Polinom

$\begin{array}{ll}\\ 16.&\textrm{Diketahui akar-akar polinom}\\ & x^{2017}+x^{2016}+x^{2015}+...+x^{2}+x+1=0\\ & \textrm{adalah}\: \: x_{1},\: x_{2},\: x_{3},...,x_{2017}\\ &\textrm{Tentukan nilai dari}\\ & \displaystyle \frac{1}{1-x_{1}}+\frac{1}{1-x_{2}}+\frac{1}{1-x_{3}}+...+\displaystyle \frac{1}{1-x_{2017}}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\displaystyle \frac{x^{2018}-1}{x-1}&=x^{2017}+x^{2016}+x^{2015}+...+x^{2}+x+1=0\\ \textrm{perlu dii}&\textrm{ngat bahwa kondisi ini mensyaratkan}\: \: x\neq 1,\\ & \textrm{sehingga}\\\\ x^{2018}-1&=0\\ x^{2018}&=1\\ x&=\pm 1,\: \: \: \: \textrm{pilih}\: \: x=-1\\ \textrm{maka}\: \quad &\textrm{nilai dari}\\ \displaystyle \frac{1}{1-x_{1}}+&\frac{1}{1-x_{2}}+\frac{1}{1-x_{3}}+...+\displaystyle \frac{1}{1-x_{2017}}\\ &=\underset{\textrm{sebanyak 2017}}{\underbrace{\displaystyle \frac{1}{1-(-1)}+\frac{1}{1-(-1)}+\frac{1}{1-(-1)}+...+\frac{1}{1-(-1)}}}\\ &=\underset{\textrm{sebanyak 2017}}{\underbrace{\displaystyle \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+...+\displaystyle \frac{1}{2}}} \\ &=\color{red}\displaystyle \frac{2017}{2} \end{aligned} \end{array}$

Contoh Soal 2 Polinom

$\begin{array}{ll}\\ 6.&\textrm{Diketahui bahwa}\\ &\displaystyle \frac{f(x)}{x-2}=h(x)+\displaystyle \frac{3}{x-2}\\ &\textrm{dan}\: \: \displaystyle \frac{f(x)}{x-1}=h(x)+\displaystyle \frac{2}{x-1}\: ,\\ &\textrm{jika}\: \: \displaystyle \frac{f(x)}{(x-2)(x-1)}=h(x)+\displaystyle \frac{s(x)}{(x-2)(x-1)},\\ &\textrm{maka}\: \: s(x)=....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}x+1&&\textrm{d}.\quad 2x-1\\ \textrm{b}.\quad x+2&\textrm{c}.\quad 2x+1&\textrm{e}.\quad x-2\\ \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\displaystyle \frac{f(x)}{x-2}=h(x)+\displaystyle \frac{3}{x-2}\\ &\Rightarrow f(x)=(x-2).h(x)+3\Rightarrow f(2)=3\\ &\displaystyle \frac{f(x)}{x-1}=h(x)+\displaystyle \frac{2}{x-1}\\ &\Rightarrow f(x)=(x-1).h(x)+2\Rightarrow f(1)=2\\ &\displaystyle \frac{f(x)}{(x-2)(x-1)}=h(x)+\displaystyle \frac{s(x)}{(x-2)(x-1)}\\ &\textrm{maka}\: \: \: f(x)=(x-2)(x-1).h(x)+s(x)\\ &f(x)=(x-2)(x-1).h(x)+px+q\\ &f(2)=2p+q=3\\ &f(1)=p+q=2,\\ &\textrm{sehingga dengan }\: \textrm{eliminasi akan diperoleh}\\ p&=1\quad \textrm{dan}\\ &q=1\\ &\textrm{Jadi},\quad px+q=\color{red}x+1 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 7.&\textrm{Jika}\: \: x^{4}+2mx-n\: \: \textrm{dibagi}\: \: x^{2}-1\\ &\textrm{bersisa}\: \: 2x-1\: ,\textrm{maka nilai}\: \: m\\ &\textrm{dan}\: \: n\: \: \textrm{adalah}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad m=-1\: \: \textrm{dan}\: \: n=2\\ \textrm{b}.\quad m=1\: \: \textrm{dan}\: \: n=-2\\ \textrm{c}.\quad \color{red}m=1\: \: \textrm{dan}\: \: \color{red}n=2\\ \textrm{d}.\quad m=-1\: \: \textrm{dan}\: \: n=-2\\ \textrm{e}.\quad m=-2\: \: \textrm{dan}\: \: n=1\\ \end{array}\\\\ &\textrm{Jawab}:\\ &\textrm{dengan Horner-Kino didapatkan} \end{array}$

$.\qquad\begin{cases} \textrm{Suku banyak}: & f(x)=x^{4}+2mx-n \\ \textrm{Pembagai}: & p(x)=(x-1)(x+1)=x^{2}-1 \\ &: 1\: \: \textrm{dari}\: -\frac{-1}{1},\: \: \textrm{sedang}\: \: 0=-\left ( \frac{0}{1} \right )\\ \textrm{Hasil bagi}:&h(x)=x^{2}+1\\ \textrm{Sisa bagi}:&s(x)=2mx+(1-n)=2x-1 \end{cases}$
$.\qquad \begin{aligned}&\textrm{Sehingga},\\ &\bullet \quad 2m=2\Rightarrow m=\color{red}1\\ &\bullet \quad 1-n=-1\Rightarrow n=\color{red}2 \end{aligned}$

$\begin{array}{ll}\\ 8.&\textrm{Jika}\: \: f(x)=x^{4}-kx^{2}+5\: \: \textrm{habis dibagi}\\ &(x-1)\: \: \textrm{maka}\: \: f(x)\: \: \textrm{juga habis dibagi oleh}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}x+1&&\textrm{d}.\quad x+5\\ \textrm{b}.\quad 2x+1&\textrm{c}.\quad 3x+1&\textrm{e}.\quad 2x+5 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}f(x)&=x^{4}-kx^{2}+5\\ f(1)&=(1)^{4}-k(1)^{2}+5\\ 0&=1-k+5\\ k&=6\\ f(x)&=x^{4}-6x^{2}+5\\ &=(x^{2}-1)(x^{2}-5)\\ &=(x-1)\color{red}(x+1)\color{black}(x^{2}-5) \end{aligned} \end{array}$

$\begin{array}{ll}\\ 9.&\textrm{Jika}\: \: (m-2)\: \: \textrm{adalah faktor dari}\: \: 2m^{3}+3tm+4,\\ &\textrm{maka nilai}\: \: t\: \: \textrm{adalah}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle \frac{10}{3}&&\textrm{d}.\quad -\displaystyle \frac{3}{10}\\\\ \textrm{b}.\quad \displaystyle \frac{1}{3}&\textrm{c}.\quad \displaystyle \frac{3}{10}&\textrm{e}.\quad \color{red}-\displaystyle \frac{10}{3} \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}f(m)&=2m^{3}+3tm+4\\ f(2)&=2(2)^{3}+3t(2)+4\\ 0&=16+6t+4\\ -6t&=20\\ t&=\color{red}-\displaystyle \frac{10}{3} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 10.&\textrm{(KSM MA Kab/Kota 2015)Nilai terkecil}\: \: n\\ & \textrm{yang mengkin sehingga}\: \: n.(n+1).(n+2)\\\ & \textrm{habis dibagi 24 adalah}....\\ &\begin{array}{l}\\ \textrm{a}.\quad 1\\ \textrm{b}.\quad \color{red}2\\ \textrm{c}.\quad 3\\ \textrm{d}.\quad 4 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}k&=\displaystyle \frac{n.(n+1).(n+2)}{24}\\ &=\displaystyle \frac{n.(n+1).(n+2)}{2.(2+1).(2+2)}\\ &\textrm{maka}\: \: n=\color{red}2 \end{aligned} \end{array}$