Contoh Soal dan Pembahasan Distribusi Binomial (Bagian 3)
$\begin{array}{ll}\\ 11.&\textrm{Suatu tes dengan pilihan jawaban }\\ &\textrm{benar-salah berjumlah 8 soal}\\ &\textrm{Supaya lulus tes, peserta diharuskan }\\ &\textrm{menjawab benar minimal 50}\%\\ &\textrm{Peluang seseorang dianggap lulus tes }\\ &\textrm{adalah}\: ....\\ &\textrm{a}.\quad \displaystyle 0,2188\qquad\qquad\quad\qquad \quad\textrm{d}.\quad 0,6367\\ &\textrm{b}.\quad \displaystyle \color{red}0,2734\quad \: \color{black}\textrm{c}.\quad 0,3633\quad\quad \textrm{e}.\quad 0,7266\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&p=\textbf{Peluang benar}=\displaystyle \frac{1}{2},\qquad \textrm{dan}\: \: \\ &q=\textbf{Peluang Salah}=1-\displaystyle \frac{1}{2}=\frac{1}{2}\\ &f(x)=P(X=x)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}.q^{n-x}\\ &\textrm{maka}\\ &P\left ( X=50\%(8)=4 \right )=\begin{pmatrix} 8\\ 4 \end{pmatrix}\times \left ( \displaystyle \frac{1}{2} \right )^{4}\times \left ( \frac{1}{2} \right )^{8-4}\\ &\qquad =\displaystyle \frac{8!}{4!\times 4!}\left ( \displaystyle \frac{1}{2} \right )^{4+4}\\ &\qquad =70\times \displaystyle \frac{1}{256}\\ &\qquad =\color{red}0,2734 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 12.&\textrm{Sebuah kotak berisi 20 bola dengan }\\ &\textrm{rincian 12 boal berwarna kuning dan }\\ &\textrm{sisanya berwarna hijau. Dari kotak} \\ &\textrm{diambil 6 bola secara acak. Peluang}\\ &\textrm{terambil 4 bola hijau adalah}....\\ &\textrm{a}.\quad \displaystyle 0,1238\quad\quad\qquad\qquad \qquad\textrm{d}.\quad 0,8132\\ &\textrm{b}.\quad \color{red}\displaystyle 0,1382\: \quad \color{black}\textrm{c}.\quad 0,3110\quad\quad \textrm{e}.\quad 0,9590\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&p=\textbf{Peluang bola kuning}\\ &\: \: =\displaystyle \frac{C_{1}^{12}}{C_{1}^{20}}=\displaystyle \frac{12}{20}=\frac{3}{5},\\ &q=\textbf{Peluang bola hijau}=1-\displaystyle \frac{3}{5}=\frac{2}{5}\\ &f(x)=P\left ( X=x \right )=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}.q^{n-x}\\ &\textrm{maka}\\ &f(4)=\begin{pmatrix} 6\\ 4 \end{pmatrix}\times \left ( \displaystyle \frac{2}{5} \right )^{4}\times \left ( \frac{3}{5} \right )^{6-4}\\ &\qquad =\displaystyle \frac{6!}{2!\times 4!}\left ( \displaystyle \frac{16}{625} \right )\times \left ( \displaystyle \frac{9}{25} \right )\\ &\qquad =15\times \displaystyle \frac{144}{15625}=\frac{2160}{15625}\\ &\qquad =\color{red}0,1382 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 13.&\textrm{Dua dadu dilambungkan 5 kali}\\ &\textrm{Peluang muncul pasangan mata dadu}\\ &\textrm{berjumlah 4 sampai dengan 7 }\\ &\textrm{sebanyak 4 kali adalah}\: ....\\ &\textrm{a}.\quad \displaystyle 0,1503\: \: \: \: \qquad\qquad\quad\quad \quad\textrm{d}.\quad 0,1583\\ &\textrm{b}.\quad \displaystyle 0,1553\quad \textrm{c}.\quad \color{red}0,1563\quad\quad \color{black}\textrm{e}.\quad 0,1593\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&p=\textbf{Peluang mata dadu berjumlah 4 sampai 7}\\ &\: \: =\displaystyle \frac{18}{36}=\frac{1}{2},\qquad \textrm{dan}\: \: \\ &q=\textbf{Peluang bola hijau}=1-\displaystyle \frac{1}{2}=\frac{1}{2}\\ &f(x)=P\left ( X=x \right )=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}.q^{n-x}\\ &f(4)=P\left ( X=4 \right )=\begin{pmatrix} 5\\ 4 \end{pmatrix}\times \left ( \displaystyle \frac{1}{2} \right )^{4}\times \left ( \frac{1}{2} \right )^{5-4}\\ &\qquad =\displaystyle \frac{5!}{1!\times 4!}\left ( \displaystyle \frac{1}{16} \right )\times \left (\frac{1}{2} \right )\\ &\qquad =5\times \displaystyle \frac{1}{32}=\frac{5}{32}\\ &\qquad =\color{red}0,1563 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 14.&\textrm{Peluang seseorang sembih dari }\\ &\textrm{penyakit jantung adalah 0,6}\\ &\textrm{Jika 7 orang penderita ini menjalani }\\ &\textrm{operasi, maka peluang 3 sampai}\\ &\textrm{6 orang sembuh adalah}... .\\ &\textrm{a}.\quad \displaystyle 0,0629\qquad\qquad\quad\qquad \quad\textrm{d}.\quad \color{red}0,6822\\ &\textrm{b}.\quad \displaystyle 0,2613\quad \textrm{c}.\quad 0,2898\quad\quad \: \textrm{e}.\quad 0,9720\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&p=\textbf{Peluang sembuh}=0,6,\qquad \textrm{maka}\: \: \\ &q=\textbf{Peluang tidak sembuh}=1-0,6=0,4\\ &f(x)=P\left ( X=x \right )=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}.q^{n-x}\\ &\textrm{maka}\\ &P\left ( 3\leq X\leq 6 \right )=P\left ( X\leq 6 \right )-P\left ( X\leq 3 \right )\\ &=C_{4}^{7}(0,6)^{4}(0,4)^{3}+C_{5}^{7}(0,6)^{5}(0,4)^{2}+C_{6}^{7}(0,6)^{6}(0,4)^{1}\\ &=35\times 0,0082944+21\times 0,0124416+7\times 0,0186624\\ &=0,290304+0,2612736+0,1306368\\ &=\color{red}0,6822144 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 15.&\textrm{Peluang seseorang mendapatkan reaksi }\\ &\textrm{buruk setelah disuntik adalah 0,0005}\\ &\textrm{Dari 4000 orang yang disuntik, maka }\\ &\textrm{peluang seseorang mendapatkan reaksi}\\ & \textrm{ada 2 orang adalah}.....\\ &\textrm{a}.\quad \displaystyle \frac{1}{2}e^{-2}\\ &\textrm{b}.\quad e^{-2}\\ &\textrm{c}.\quad \color{red}2e^{-2}\\ &\textrm{d}.\quad \displaystyle \frac{1}{2}e^{2}\\ &\textrm{e}.\quad 2e^{2}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Di atas adalah contoh kasus }\\ &\textrm{permasalahan}\: \: \textbf{Distribusi Poisson}\\ &P\left ( X=x \right )=f(x)=\left\{\begin{matrix} \displaystyle \frac{e^{-\lambda }.\lambda ^{x}}{x!}\: \: ,\: \: x=0,1,2,3,\cdots \\\ 0,\quad \textrm{untuk}\: \: x\: \: \textrm{yang lain} \end{matrix}\right.\\ &P\left ( X=2 \right )=\displaystyle \frac{e^{-np}.(np)^{2}}{2!}\\ &\qquad =\displaystyle \frac{e^{-(4000.0,0005)}.(4000.0,0005)^{2}}{2!}\\ &\qquad =\displaystyle \frac{e^{-2}.2^{2}}{2}\\ &\qquad =\color{red}2e^{-2} \end{aligned} \end{array}$
Contoh Soal dan Pembahasan Distribusi Binomial (Bagian 2)
$\begin{array}{ll}\\ 6.&\textrm{Pengundian terhadap mata uang }\\ &\textrm{yang homogen sebanyak 10 kali}\\ &\textrm{Peluang untuk mendapatkan 6 }\\ &\textrm{muka angka adalah}\: ....\\ &\textrm{a}.\quad 0,1172\\ &\textrm{b}.\quad \color{red}0,2051\\ &\textrm{c}.\quad 0,2461\\ &\textrm{d}.\quad 0,2651\\ &\textrm{e}.\quad 0,2852\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&p=\textbf{Peluang Angka}=\displaystyle \frac{1}{2},\quad \textrm{dan}\: \: \\ &q=\textbf{Bukan Angka}\\ &\: \: =\textbf{Peluang Gambar}=1-\displaystyle \frac{1}{2}=\frac{1}{2}\\ &f(x)=P(x;n;p)=P(X=x)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ &\textrm{maka}\\ &f(x)=P\left ( X=x \right )=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}.q^{n-x}\\ &f(6)=P\left ( X=6 \right )=\begin{pmatrix} 10\\ 6 \end{pmatrix}\times \left ( \displaystyle \frac{1}{2} \right )^{6}\times \left ( \frac{1}{2} \right )^{10-6}\\ &\qquad =\displaystyle \frac{10!}{6!\times 4!}\left ( \displaystyle \frac{1}{2} \right )^{6+4}\\ &\qquad =210\times \displaystyle \frac{1}{1024}\\ &\qquad =\color{red}0,2051 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 7.&\textrm{Pada pengundian terhadap mata uang identik},\\ &\textrm{sebanyak 10 kali, peluang distribusi binomial} \\ &\textrm{untuk mendapatkan 7 muka gambar adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.\quad \displaystyle 0,2653&&\textrm{d}.\quad \displaystyle 0,7522\\ \textrm{b}.\quad \displaystyle \color{red}0,1172&\textrm{c}.\quad \displaystyle 0,2653&\textrm{e}.\quad 0,2422 \end{array}\\\\ &\textrm{Jawab}:\\ &\textrm{Uraian berikut sekaligus tambahan}\\ &\textrm{penjelasan pada uraian jawaban}\\ &\color{blue}\textrm{soal no. 6 di atas}\\ &\begin{aligned}f(x)&=P(x;n;p)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ &\textrm{Ingat sebuah koin ada 2 muka}\\ &\textrm{yaitu muka gambar (G) dan angka (A)}\\ &\color{red}\textrm{misalkan}\\ &A=\textrm{kejadian muncul muka gambar}\\ &\textrm{maka peluangnya adalah}\: \: \displaystyle \frac{1}{2}\\ &\textrm{Selanjutnya di sini disimbolkan dengan}\: \: \: \color{blue}p=\displaystyle \frac{1}{2}\\ &\color{red}\textrm{Demikian juga misalkan}\\ &B=\textrm{kejadian muncul muka angka}\\ &\textrm{maka peluang juga}\: \displaystyle \frac{1}{2}\\ &\textrm{Di sini dituliskan dengan}\: \: \: \color{blue}q=\displaystyle \frac{1}{2}\\ f(7)&=\begin{pmatrix} 10\\ 7 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{7}\left ( \displaystyle \frac{1}{2} \right )^{10-7}\\ &=\begin{pmatrix} 10\\ 7 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{7}\left ( \displaystyle \frac{1}{2} \right )^{3}\\ &=\displaystyle \frac{10!}{7!\times (10-7)!}\left ( \displaystyle \frac{1}{2} \right )^{7+3}\\ &=\displaystyle \frac{10.9.8.\not{7!}}{\not{7!}.3.2.1}\left ( \displaystyle \frac{1}{1024} \right ) \\ &=\color{red}0,1172 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 8.&\textrm{Sebuah uang logam dilempar sebanyak 8}\\ &\textrm{kali. Peluang muncul gambar sebanyak}\\ &\textrm{5 kali adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle \frac{3}{32}&&&\textrm{d}.&\displaystyle \color{red}\frac{7}{32}\\\\ \textrm{b}.&\displaystyle \frac{4}{32}&\textrm{c}.&\displaystyle \frac{5}{32}&\textrm{e}.&\displaystyle \frac{9}{32} \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}f(x)&=P(x;n;p)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ f(5)&=\begin{pmatrix} 8\\ 5 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{5}\left ( \displaystyle \frac{1}{2} \right )^{8-5}\\ &=\begin{pmatrix} 8\\ 5 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{5}\left ( \displaystyle \frac{1}{2} \right )^{3}\\ &=\displaystyle \frac{8!}{5!\times (8-5)!}\left ( \displaystyle \frac{1}{2} \right )^{5+3}\\ &=\displaystyle \frac{8.7.6.5!}{5!.3.2.1}\left ( \displaystyle \frac{1}{256} \right ) \\ &=\displaystyle \frac{8.7}{256}\\ &=\color{red}\displaystyle \frac{7}{32} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 9.&\textrm{Pada pelemparan sebuah koin sebanyak 4 kali}\\ &\textrm{Peluang didapatkannya dua angka pada} \\ &\textrm{pelemparan tersebut adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.\quad \displaystyle 0,123&&\textrm{d}.\quad \displaystyle 0,232\\ \textrm{b}.\quad \displaystyle 0,135&\textrm{c}.\quad \displaystyle 0,154&\textrm{e}.\quad \color{red}0,375 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}f(x)&=P(x;n;p)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ f(2)&=\begin{pmatrix} 4\\ 2 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{2}\left ( \displaystyle \frac{1}{2} \right )^{4-2}\\ &=\begin{pmatrix} 4\\ 2 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{2}\left ( \displaystyle \frac{1}{2} \right )^{2}\\ &=\displaystyle \frac{4!}{2!\times (4-2)!}\left ( \displaystyle \frac{1}{2} \right )^{2+2}\\ &=\displaystyle \frac{4.3.2!}{2!.2.1}\left ( \displaystyle \frac{1}{16} \right ) \\ &=\color{red}0,375 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 10.&\textrm{Dari data survei didapatkan bahwa}\\ &\textrm{satu dari lima orang telah berkunjung}\\ &\textrm{ke dokter dalam sembarang bulan yang}\\ &\textrm{ditanyakan. Jika 10 orang dipilih secara}\\ &\textrm{acak, peluang 3 orang telah berkunjung}\\ &\textrm{ke dokter bulan lalu adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle 0,125&&&\textrm{d}.&\displaystyle \color{red}0,201\\\\ \textrm{b}.&\displaystyle 0,174&\textrm{c}.&\displaystyle 0,182&\textrm{e}.&\displaystyle 0,423 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}f(x)&=P(x;n;p)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ f(3)&=\begin{pmatrix} 10\\ 3 \end{pmatrix}\left ( \displaystyle \frac{1}{5} \right )^{3}\left ( \displaystyle \frac{4}{5} \right )^{10-3}\\ &=\begin{pmatrix} 10\\ 3 \end{pmatrix}\left ( \displaystyle \frac{1}{5} \right )^{3}\left ( \displaystyle \frac{4}{5} \right )^{7}\\ &=\displaystyle \frac{10!}{3!\times 7!}\left ( \displaystyle \frac{1}{125} \right )\left ( \displaystyle \frac{4^{7}}{5^{7}} \right )\\ &=\cdots \\ &=\color{red}\displaystyle 0,201 \end{aligned} \end{array}$
Contoh Soal dan Pembahasan Distribusi Binomial (Bagian 1)
$\begin{array}{ll}\\ 1.&\textrm{Manakah yang merupakan data diskrit dari pernyataan berikut}\\ &\textrm{a}.\quad \textrm{Suhu Badan Anton ketika sakit mencapai}\: \: 40^{\circ}C\\ &\textrm{b}.\quad \textrm{Kecepatan mobil yang sedang melaju adalah}\: \: 100\: \: km/jam\\ &\textrm{c}.\quad \textrm{Tinggi tiang bendaera di madrasah Budi adalah 4 m}\\ &\textrm{d}.\quad \color{red}\textrm{Jumlah guru yang mengajar di MA Futuhiyah }\\ &\qquad \color{red}\textrm{sebanyak 30 orang}\\ &\textrm{e}.\quad \textrm{Berat bayi yang baru lahir adalah 3.500 gram}\\\\ &\textrm{Jawab}:\\ &\textrm{Alasannya dikarena hasil mencacah} \end{array}$
$\begin{array}{ll}\\ 2.&\textrm{Jika Anda mengumpulkan nilai raport}\\ &\textrm{teman-teman sekelas Anda untuk pelajaran}\\ &\textrm{ matematika, maka data yang Anda peroleh }\\ &\textrm{adalah}....\\ &\textrm{a}.\quad \color{red}\textrm{data diskrit}\\ &\textrm{b}.\quad \textrm{data kontinu}\\ &\textrm{c}.\quad \textrm{data kualitatif}\\ &\textrm{d}.\quad \textrm{Populasi}\\ &\textrm{e}.\quad \textrm{Sampel}\\\\ &\textrm{Jawab}:\\ &\textrm{Dengan catatan nilainya cacah} \end{array}$
$\begin{array}{ll}\\ 3.&\textrm{Ukuran yang dihitung dari seluruh data }\\ &\textrm{dalam populasi adalah}\: ....\\ &\textrm{a}.\quad \textrm{data kuantitatif}\\ &\textrm{b}.\quad \textrm{data kualitatif}\\ &\textrm{c}.\quad \textrm{Statistik}\\ &\textrm{d}.\quad \textrm{Statistika}\\ &\textrm{e}.\quad \color{red}\textrm{Parameter}\\\\ &\textrm{Jawab}:\\ &\textrm{Parameter adalah ukuran dari }\\ &\textrm{seluruh data atau populasi} \end{array}$
$\begin{array}{ll}\\ 4.&\textrm{Diketahui distribusi peluang suatu }\\ &\textrm{variabel acak diskrit sebagai berikut}\\ &\begin{array}{|c|c|c|c|c|}\hline x&0&1&2&3\\\hline f(x)&m&0,26&3m&0,42\\\hline \end{array}\\ &\textrm{Peluang nilai X minimal berharga 2 adalah}\\ &\textrm{a}.\quad 0,24\\ &\textrm{b}.\quad 0,34\\ &\textrm{c}.\quad 0,42\\ &\textrm{d}.\quad 0,58\\ &\textrm{e}.\quad \color{red}0,66\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}\: \: X\: \: \textrm{adalah variabel }\\ &\textrm{acak diskrit, maka}\: \: \sum f(x)=1\\ &F(c)=P(X\leq c)=\displaystyle \sum_{x=0}^{x=c}f(x)\\ &=f(0)+f(1)+f(2)+f(3)+\cdots +f(c)=1\\ &\textrm{dalam hal soal}\: \textrm{di atas, maka kita tentukan}\\ &\textrm{nilai}\: \: \color{blue}m\: \: \color{black}\textrm{dulu}\\ &F(3)=P(X\leq 3)=\displaystyle \sum_{x=0}^{x=3}f(x)\\ &=f(0)+f(1)+f(2)+f(3)=1\\ &1=m+0,26+3m+0,42=4m+0,68\\ &4m=1-0.68=0,32\\ &m=0.08, \qquad \textrm{sehingga}\\ &P(2\leq X\leq 3)=f(2)+f(3)=3m+0,42\\ &=3(0,08)+0,42=0,24+0,42=\color{red}0,66 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 5.&\textrm{Diketahui fungsi peluang suatu }\\ &\textrm{variabel acak kontinu adalah}\\ &f(y)=\left\{\begin{matrix} 0,\quad \textrm{untuk \textit{y} yang lain}\\\\ \displaystyle \frac{2y+k}{50},\: \: \textrm{untuk}\: \: 0\leq y\leq 5 \end{matrix}\right.\\ &\textrm{Nilai}\: \: P\left ( \left | Y-1 \right |\leq 2 \right )\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \displaystyle \frac{7}{25}\qquad\qquad\qquad\qquad \textrm{d}.\quad \frac{14}{25}\\\\ &\textrm{b}.\quad \displaystyle \frac{9}{25}\qquad \textrm{c}.\quad \color{red}\frac{12}{25}\qquad\quad \color{black}\textrm{e}.\quad \frac{18}{25}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\int_{0}^{5}\displaystyle \frac{2y+k}{50}\: dy=1\\ &1=\int_{0}^{5}\displaystyle \frac{2y+k}{50}\: dy\\ &50=\int_{0}^{5}(2y+k)dy\\ &50=y^{2}+ky|_{0}^{5}=5^{2}+5k=25+5k\\ &k=5\\ &\color{blue}P(\left | Y-1 \right |\leq 2)=P\left ( -2\leq Y-1\leq 2 \right )\\ &=P\left ( -1\leq Y\leq 3 \right )\\ &=f(-1)+f(0)+f(1)+f(2)+f(3)\\ &=\int_{0}^{3}\left ( \displaystyle \frac{2y+5}{50} \right )dy\\ &=\displaystyle \frac{1}{50}\left ( y^{2}+5y \right )|_{0}^{3}\\ &=\displaystyle \frac{1}{50}\left ( 9+15 \right )=\displaystyle \frac{24}{50}=\color{red}\frac{12}{25} \end{aligned} \end{array}$
Distribusi Binomial
$\color{blue}\begin{aligned}\textrm{E}.\quad&\textrm{Binomial Newton} \end{aligned}$
$\color{blue}\begin{aligned}\textrm{E. 1}.\quad&\textrm{Binomial Newton} \end{aligned}$
$\begin{aligned}&\textrm{Perhatikanlah susunan bilangan berikut}\\\\ &\begin{array}{|c|l|}\hline &\\ 1=C_{0}^{\color{red}1}\quad 1=C_{1}^{\color{red}1}&(a+b)^{\color{red}1}\\ &\\ 1=C_{0}^{\color{red}2}\quad 2=C_{1}^{\color{red}2}\quad 1=C_{2}^{\color{red}2}&(a+b)^{\color{red}2}\\ &\\ 1=C_{0}^{\color{red}3}\quad 3=C_{1}^{\color{red}3}\quad 3=C_{2}^{\color{red}3}\quad 1=C_{3}^{\color{red}3}&(a+b)^{\color{red}3}\\ &\\ 1=C_{0}^{\color{red}4}\quad 4=C_{1}^{\color{red}4}\quad 6=C_{2}^{\color{red}4}\quad 4=C_{3}^{\color{red}4}\quad 1=C_{4}^{\color{red}4}&(a+b)^{\color{red}4}\\ \vdots &\: \: \quad\vdots \\ dst&(a+b)^{\color{red}\cdots }\\ &\\ \vdots&\: \: \quad\vdots \\ &(a+b)^{\color{red}n}\\\hline \end{array}\\\\ &\textrm{Susunan bilangan-bilangan di atas selanjutnya}\\ &\textrm{dinamakan}\: \: \: \textbf{Segitiga Pascal}\\ & \end{aligned}$
$\begin{aligned}&\textrm{Bilangan}\: \: C_{r}^{n}=\begin{pmatrix} n\\ r \end{pmatrix}\: \: \textrm{merupakan koefisien}\\ &\textrm{dari binomial}\: \: (a+b)^{n}\\ &\textrm{Selanjutnya perhatikanlah bahwa untuk}\\ &n=1,2,3,4,\cdots \: \: \: \textrm{berlaku}\\ &\color{red}\begin{aligned}(a+b)^{n}\color{black}=\, &\color{red}C_{0}^{n}a^{n}b^{0}+C_{1}^{n}a^{n-1}b^{1}+C_{2}^{n}a^{n-2}b^{2}\\ &+C_{3}^{n}a^{n-3}b^{3}+\cdots +C_{n-3}^{n}a^{3}b^{n-3}\\ &+C_{n-2}^{n}a^{2}b^{n-2}+C_{n-1}^{n}a^{1}b^{n-1}+C_{n}^{n}a^{0}b^{n}\\ &\color{black}=\displaystyle \sum_{r=0}^{n}C_{r}^{\color{red}n}a^{\color{red}n\color{black}-r}b^{r} \end{aligned}\\ & \end{aligned}$
$\color{blue}\textrm{E. 2 Perluasan Binomial Newton}$
$\begin{aligned}&\textrm{Untuk bilangan real}\: \: n\: \: \textrm{dan bilangan}\\ &\textrm{non negatif}\: \: r,\: \: \textrm{serta}\: \: \left | A \right |<1,\: \textrm{berlaku}:\\ &(1+A)^{n}=\displaystyle \sum_{r=0}^{n}C_{r}^{n}A^{r} \end{aligned}$
$\color{blue}\textrm{E. 3 Teorema Multinomial}$
Pada bentuk multinomial dengan ekspresi $(x_{1}+x_{2}+x_{3}+\cdots +x_{r})^{n}$ dengan n dan r bilangan bulat positif, maka koefisien dari $\color{red}x_{1}^{n_{1}}x_{2}^{n_{2}}x_{3}^{n_{3}}\cdots x_{r}^{n_{r}}$ adalah $\displaystyle \frac{n!}{n_{1}!n_{2}!n_{3}!\cdots n_{r}!}$ dinotasikan dengan $\begin{pmatrix} n\\\\ n_{1},n_{2},n_{3},\cdots ,n_{r} \end{pmatrix}$
$\LARGE\colorbox{yellow}{CONTOH SOAL}$
$\begin{array}{ll}\\ 1.&\textrm{Misalkan untuk}\: \: n\: \: \textrm{bilangan bulat}\\ &\textrm{Positif. Tunjukklan bahwa}\\ &\textrm{a}.\quad (1+x)^{n}=\displaystyle \sum_{r=0}^{n}C_{r}^{n}x^{r}=\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}x^{r}\\ &\textrm{b}.\quad \begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}+\cdots +\begin{pmatrix} n\\ n \end{pmatrix}=2^{n}\\\\ &\textbf{Bukti}\\ &\color{red}\begin{aligned}\color{black}\textrm{a}.\quad(1+x)&^{n}\\ \color{black}=\, &\color{red}C_{0}^{n}1^{n}x^{0}+C_{1}^{n}1^{n-1}x^{1}+C_{2}^{n}1^{n-2}x^{2}\\ &+C_{3}^{n}1^{n-3}x^{3}+\cdots +C_{n-3}^{n}1^{3}x^{n-3}\\ &+C_{n-2}^{n}1^{2}x^{n-2}+C_{n-1}^{n}1^{1}x^{n-1}+C_{n}^{n}1^{0}x^{n}\\ =\, &\color{red}C_{0}^{n}+C_{1}^{n}x+C_{2}^{n}x^{2} +C_{3}^{n}x^{3}+\cdots \\ &+C_{n-3}^{n}x^{n-3} +C_{n-2}^{n}x^{n-2}+C_{n-1}^{n}x^{n-1}\\ &+C_{n}^{n}x^{n}\\ \color{black}\textrm{atau}&\: \color{black}\textrm{dengan bentuk lain}\\ =\, &\begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}x+\begin{pmatrix} n\\ 2 \end{pmatrix}x^{2}+\begin{pmatrix} n\\ 3 \end{pmatrix}x^{3}\\ &+\cdots +\begin{pmatrix} n\\ n-3 \end{pmatrix}x^{n-3}+\begin{pmatrix} n\\ n-2 \end{pmatrix}x^{n-2}\\ &+\begin{pmatrix} n\\ n-1 \end{pmatrix}x^{n-1}+\begin{pmatrix} n\\ n \end{pmatrix}x^{n}\\ \color{black}=&\color{black}\displaystyle \sum_{r=0}^{n}\begin{pmatrix} \color{red}n\\ r \end{pmatrix}x^{r} \end{aligned}\\ &\color{red}\begin{aligned}\color{black}\textrm{b}.\quad(1+x)&^{n}\: \: \color{black}\textrm{lihat jawaban poin}\: \: a,\: \: \textrm{saat}\: \: \color{blue}x=1\\ \color{black}(1+1)&^{n}\color{red} \color{black}=\color{red}\begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}1+\begin{pmatrix} n\\ 2 \end{pmatrix}1^{2}+\begin{pmatrix} n\\ 3 \end{pmatrix}1^{3}\\ &+\cdots +\begin{pmatrix} n\\ n-3 \end{pmatrix}1^{n-3}+\begin{pmatrix} n\\ n-2 \end{pmatrix}1^{n-2}\\ &+\begin{pmatrix} n\\ n-1 \end{pmatrix}1^{n-1}+\begin{pmatrix} n\\ n \end{pmatrix}1^{n}\\ \color{black}(2)&^{n}\color{red} \color{black}=\color{red}\begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}+\begin{pmatrix} n\\ 3 \end{pmatrix}\\ &+\cdots +\begin{pmatrix} n\\ n-1 \end{pmatrix}+\begin{pmatrix} n\\ n \end{pmatrix}\\ \color{black}=&\color{black}\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}\\ \color{black}\textrm{Sehing}&\color{black}\textrm{ga}\\ 2^{n}&=\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 2.&\textrm{Misalkan untuk}\: \: n\: \: \textrm{bilangan bulat}\\ &\textrm{Positif. Tunjukklan bahwa}\\ & \begin{pmatrix} n\\ 0 \end{pmatrix}-\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}-\cdots +(-1)^{n}\begin{pmatrix} n\\ n \end{pmatrix}=0\\\\ &\textbf{Bukti}\\ &\textrm{Sebelumnya diketahui bahwa}\\ &\begin{aligned}&(a+b)^{n}=\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}a^{n-r}b^{r}\\ &\qquad\qquad\qquad \color{blue}\textrm{atau}\\ &\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}a^{n-r}b^{r}=(a+b)^{n}\\ &\blacklozenge \quad \textrm{saat}\: \: \color{blue}a=b=1,\: \: \color{black}\textrm{maka}\\ &\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}1^{n-r}1^{r}=(1+1)^{n}\\ &\Leftrightarrow \displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}=2^{n}\: ...\: (\color{red}\textrm{bukti no. 1.b})\\ &\blacklozenge \quad \textrm{saat}\: \: \color{blue}a=1\: \&\: b=-1\: \: \color{black}\textrm{maka}\\ &\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}1^{n-r}(-1)^{r}=(1-1)^{n}=0\\ &\textrm{Sehingga}\\ &\begin{pmatrix} n\\ 0 \end{pmatrix}-\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}-\cdots +(-1)^{n}\begin{pmatrix} n\\ n \end{pmatrix}=0\quad \blacksquare \end{aligned} \end{array}$
$\color{blue}\begin{aligned}\textrm{E}.\quad&\textrm{Distribusi Binomial} \end{aligned}$
Perhatikan materi Binomial Newton di atas berkaitan dengan distribusi binomial. Misalkan suatu kejadian yang hanya memberikan dua hasil saja $\color{red}a$ dan $\color{red}b$ saja seperti melambungkan sebuah uang koin yang akan menghasilkan 2 hasil saja yang mungkin, yaitu antara sisi gambar $\color{red}G$ atau muncul sisi angka $\color{red}A$ atau pada contoh lainnya adalah ketika seseorang yang menunggu hasil hasil ujian yang jelas hasilnya kemungkinannya cuma dua, yaitu lulus atau tidak lulus.
Percobaan acak yang hanya memberikan 2 hasil saja disebut percobaan $\color{red}Bernoulli$. Selanjujtnya percobaan Bernoulli yang dilakukan sebanyak $\color{blue}n$ kali dinamakan dengan $\color{red}\textrm{percobaan}\: \textrm{Binomial}$.
Variabel acak $\color{red}X$ yanmg mana nilai-nilainya ditentukan oleh hasil dari percobaan binomial disebut sebagai Variabel Acak Binomial.
Berikut ciri-ciri percobaan binomial
- Percobaan dilakukan secara berulang sebanyak $\color{red}n$ kali, dengan $\color{red}n$ bilangan bulat positif
- Setiap percobaan memiliki dua macam hasil saja dan saling berkomplemen, yaitu kejadian yang diharapkan (disebut sukses) dan kejadian yang tidak diharapkan (disebut tidak sukses)
- Peluang setiap kejadian bersifat tetap untuk setiap percobaan dan jumlah peluangnya baik sukses maupun yang tidak sukses sama dengan 1. Misalkan peluang suksesny adalah $\color{red}p$, maka peluang gagalnya adalah $\color{red}q=1-p$
- Setiap percobaan bebas $\color{red}(independent)$ satu sama lainnya, artinya hasil percobaan yang satu tidak mempengaruhi percobaan yang lain.
Secara umum rumus fungsi $\color{red}\textrm{distribusi binomial}$ adalah:
$\begin{aligned}&f(x)=P(x;n;p)=\color{red}C(n,x)p^{x}q^{n-x}\color{black}=\color{red}\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ &\textbf{Keterangan}:\\ &\bullet \: C(n,x)=\begin{pmatrix} n\\ x \end{pmatrix}=\color{blue}\textrm{koefisien bibonial}\\ &\bullet \: x=\textrm{banyak kejadian yang diharapkan},\\ &\quad\qquad \textrm{dengan nilai}\: \: x=0,1,2,3,\cdots ,n\\ &\bullet \: p=\textrm{peluang kejadian yang diharapkan}\\ &\bullet \: q=\textrm{peluang kejadian yang tidak diharapkan} \end{aligned}$
Jika rumus dari fungsi peluang di atas dijabarkan akan menjadi berupa bentuk penjumlahan, maka
$\begin{aligned}F(t)&=P(X\leq t)\\ &=\displaystyle \sum_{x=0}^{x=t}\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ &=\begin{pmatrix} n\\ 0 \end{pmatrix}p^{0}q^{n-0}+\begin{pmatrix} n\\ 1 \end{pmatrix}+p^{1}q^{n-1}+\begin{pmatrix} n\\ 2 \end{pmatrix}p^{2}q^{n-2}+\cdots +\begin{pmatrix} n\\ t \end{pmatrix}p^{t}q^{n-t} \end{aligned}$
Dan rumus di atas karena tidak sepenuhnya sampai $\color{red}n$ , maka akan diperoleh fungsi binomial. kumulatif.
Hasil perhitungan $\color{red}f(x)=P(x;n;p)$ juga dapat dilihat dalam tabel distribusi binomial. Sebagai contohnya adalah $\color{red}P(2;4;0,05)$ yang berarti $\color{red}x=2$, $\color{red}n=4$, dan $\color{red}p=0,05$ berikut tabelnya:
$\LARGE\colorbox{yellow}{CONTOH SOAL}$
$\begin{array}{ll}\\ 1.&\textrm{Dari sebuah survei didapatkan bahwa}\\ &\textrm{1 dari 5 orang berkata bah dia telah}\\ &\textrm{mengunjungi dokter dalam sembarang}\\ &\textrm{bulan. Jika 10 orang dipilih secara acak}\\ &\textrm{maka peluang 3 orang telah berkunjung}\\ &\textrm{ke dokter pada bulan kemaren adalah}\: ....\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&n=10, \: x=3,\: p=\displaystyle \frac{1}{5},\: q=\frac{4}{5}\\ &\textrm{maka}\\ &P(3;10;\displaystyle \frac{1}{5})=\begin{pmatrix} 10\\ 3 \end{pmatrix}\left ( \displaystyle \frac{1}{5} \right )^{3}\left ( \displaystyle \frac{4}{5} \right )^{7} \end{aligned}\\ &\quad\qquad\qquad=\color{red}0,201 \end{array}$
$\LARGE\colorbox{yellow}{TAMBAHAN}$
$\color{blue}\begin{aligned}\textrm{F}.\quad&\textrm{Dsitribusi Poisson} \end{aligned}$
Perhatikanlah rumus ditribusi binomial berikut
$\begin{aligned}&f(x)=P(x;n;p)\\ &=\color{red}C(n,x)p^{x}q^{n-x}\color{black}=\color{red}\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ \end{aligned}$
Saat harga $\color{blue}p$ sebagai lmabang sukses tersebut sangat kecil atau kecil sekali dapat juga dikatakan $\color{blue}p\rightarrow 0$, dan percobaan dilakukan banyak sekali atau $\color{blue}n\rightarrow \infty$ , maka penggunaan formula binomial akan terasa sulit. Dan untuk tetap mendapatkan nilai seperti hasil pada perhitungan dengan rumus binomial tersebut, maka digunakan pendekatan nilai dengan menggunkan rumus Distribusi Poisson berikut:
$f(x)=P(X=x)=\color{red}P(x;\lambda )=\displaystyle \frac{\lambda ^{x}}{x!}.e^{-\lambda }$
$\LARGE\colorbox{yellow}{CONTOH SOAL}$
$\begin{array}{ll}\\ 2.&\textrm{Pada tiap 100 lembarkertas produksi}\\ &\textrm{suatu pabrikdiperkirakan terdapat 1}\\ &\textrm{lembar yang rusak. Tentukanlah}\\ &\textrm{kemungkinan mendapat selembar kertas}\\ &\textrm{dari 20 lembar yang diambil secara acak}\\ &\textrm{dari hasil produksi tersebut}!\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad &n=10, \: x=1,\: p=\displaystyle \frac{1}{100},\: q=\frac{99}{100}\\ &\textrm{maka penghitungan dengan}\\ &\textrm{rumus}\: \textbf{Distribusi Binomial}\\ &P(1;20;\displaystyle \frac{1}{100})=\begin{pmatrix} 20\\ 1 \end{pmatrix}\left ( \displaystyle \frac{1}{100} \right )^{1}\left ( \displaystyle \frac{99}{100} \right )^{19}\\ &=\cdots \\ \textrm{b}.\quad&\textrm{Dengan rumus}\: \textbf{Distribusi poisson}\\ &\bullet \quad n=20\rightarrow \textrm{terlalu besar, dan}\\ &\bullet \quad p=\displaystyle \frac{1}{100}\rightarrow \textrm{terlalu kecil, maka}\\ &\textrm{dengan}\: \: \lambda =np=20\times \displaystyle \frac{1}{100}=\color{blue}0,2\\ &\textrm{dan}\: \: \: e=2,7183\: \: (\textrm{bilangan Euler})\\ &f(x)=P(X=x)=\displaystyle \frac{\lambda ^{x}}{x!}.e^{-\lambda }\\ &f(1)=\displaystyle \frac{(0,2)^{1}.e^{-0,2}}{1!}\\ &\qquad =0,2\times 0,409\\ &\qquad =\color{red}0,0818 \end{aligned} \end{array}$
- Bintari, N. 2009. Master Juara Olimpiade Matematika SMA Nasional dan Internasional. Yogyakarta: PUSTAKA WIDYATAMA.
- Kanginan, M., Terzalgi, Y. 2014. Matematika untuk SMA-MA/SMK Kelas XI. Bandung: SEWU.
- Rasiman, Rahmawati, N., D. 2012. Matematika Diskrit. Semarang: IKIP PGRI Semarang Press.
- Sharma, dkk. 2017. Jelajah Matematika SMA Kelas XII Program Wajib. Jakarta: YUDHISTIRA.
- Tasari, Sksin, N., Miyanto, & Muklis. 2016. Matematika untuk SMA/MA Kelas XII Peminatan Matematika dan Ilmu-Ilmu Alam. Klaten: PT. INTAN PARIWARA.
- Yuliatun. 2019. Matematika IPA Kelas XII SMA/MA Semester Genap. Solo: INDONESIA JAYA
Distribusi Peluang Kontinue
$\color{blue}\begin{aligned}\textrm{D. 2}.\quad&\textrm{Distribusi Peluang Kontinue} \end{aligned}$
- Kurnia, N., dkk. 2018. Jelajah Matematika SMA Kelas XII Peminatan MIPA. Bogor: YUDHISTIRA.
- Tasari. Aksin, N., Miyanto, Muklis. 2016. Matematika untuk SMA/MA Kelas XII Peminatan Matematika dan Ilmu-Ilmu Alam. Klaten: INTAN PARIWARA.
Distribusi Peluang Diskrit
$\color{blue}\begin{aligned}\textrm{D. 1}.\quad&\textrm{Distribusi Peluang Diskrit} \end{aligned}$
$\begin{aligned} &\textrm{Misalkan}\: \: X\: \: \textrm{adalah variabel acak diskrit}\\ &\textrm{dari nilai}\: :\: \: x_{1},\: x_{2},\: x_{3},\: x_{4},\: \cdots \: ,\: x_{k},\: \textrm{dan}\\ &P\: \textrm{adalah seluruh nilai peluang untuk}\: :\\ &p_{1},\: p_{2},\: p_{3},\: p_{4},\: \cdots \: ,p_{k}, \textrm{maka nilai untuk}\\ &\color{blue}p_{1}+ p_{2}+ p_{3}+ p_{4}+ \cdots +p_{k}=1\\ &\textbf{dan}\\ &\textrm{Fungsi}\: \: f(x) =P(X=x)\: \: \textrm{yang mempunyai}\\ &\textrm{nilai}\: \: p_{1},\: p_{2},\: p_{3},\: p_{4},\: \cdots \: ,p_{k},\: \textrm{pada variabel}\\ &X=x_{1},\: x_{2},\: x_{3},\: x_{4},\: \cdots \: ,\: x_{k},\: \textrm{disebut fungsi}\\ &\textrm{kepekatan peluang dari variabel acak}\: \: X.\\ &\textrm{Selanjutnya jika kita gambar grafik}\: \: f(x)\\ &\textrm{terhadap}\: \: x,\: \textrm{maka kita akan grafik yang}\\ &\textrm{dinamakan dengan}\: \: \color{red}\textbf{grafik peluang} \end{aligned}$
Suatu fungsi $f(x)=P(X=x)$ disebut fungsi peluang (probabilitas) dari $X$, jika memenuhi syarat-syarat:
$\color{blue}\begin{matrix} (\textrm{i})\quad f(x)\geq 0\: \: \: \textrm{untuk semua}\: \: x\qquad\qquad\qquad\qquad\qquad\qquad\: \: \\\\ (\textrm{ii})\quad \sum_{i=1}^{n}f\left ( x_{i} \right )=\color{red}f(x_{1})+f(x_{2})+f(x_{3})+...+f(x_{n})=\color{black}1 \end{matrix}$
$\LARGE\colorbox{yellow}{CONTOH SOAL}$
$\begin{array}{ll}\\ 1.&\textrm{Pada percobaan melempar 3 koin identik}\\ &\textrm{sekaligus bersama-sama. Variabel acak}\\ &\textrm{dalam hal ini pada kejadian muncul sisi}\\ &\textrm{gambar, tentukan}\\ &\textrm{a}.\: \: \textrm{distribusi peluangnya}\\ &\textrm{b}.\: \: \textrm{tabel fungsi peluangnya}\\ &\textrm{c}.\: \: \textrm{grafik fungsi peluangnya}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui dari soal}\: \: \color{red}\textrm{variabel acak}\\ &\textrm{pada kejadian di atas adalah munculnya}\\ &\textrm{sisi gambar pada pelemparan 3 koin}\\ &\textrm{maka} \end{aligned}\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Distribusi peluangnya}\\ &\begin{array}{|l|c|c|c|c|c|c|c|c|}\hline \textrm{Sampel}&AAA&AA\color{red}G&A\color{red}G\color{black}A&A\color{red}GG&\color{red}G\color{black}AA&\color{red}G\color{black}A\color{red}G&\color{red}GG\color{black}A&\color{red}GGG\\\hline \textrm{Muncul}\: \color{red}(G)&0&1&1&2&1&2&2&3\\\hline \end{array}\\ \textrm{b}.\quad&\textrm{Tabel fungsi peluangnya}\\ &x=\textrm{muncul kejadian sisi gambar}\: \: \color{red}(G)\\ &\begin{array}{|c|c|c|c|c|c|}\hline x&0&1&2&3&\color{red}\textrm{Jumlah}\\\hline f(x)&\displaystyle \frac{1}{8}&\displaystyle \frac{3}{8}&\displaystyle \frac{3}{8}&\displaystyle \frac{1}{8}&\color{red}1\\\hline \end{array}\\ \textrm{c}.\quad&\textrm{Grafik fungsi peluangnya adalah}\\ & \end{aligned} \end{array}$
- Noormandiri. 2017. Matematika Jilid 3 untuk SMA/MA Kelas XII Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA
- Kurnia, N., dkk. 2018. Jelajah Matematika SMA Kelas XII Peminatan MIPA. Bogor: YUDHISTIRA.
Variabel Acak (Lanjutan Materi Distribusi Binomial)
$\color{blue}\textrm{C. Variabel Acak}$
Suatu besaran yang nilainya hanya tunggal dalam konsep matematis disebut sebagai konstanta, sedangkan besaran yang memungkinkan nilainya berbeda-beda disebut sebagai variabel/peubah.
Berkaitan dengan konsep variabel acak, pada contoh berikut akan diberikan contoh kejadian pelemparan sebuah uang koin sebanyak tiga kali dan didapatkan gambarannya sebagai berikut:
$\begin{aligned} \color{blue}\textrm{Mula}\: \, &(1)\quad (2)\quad (3)\quad \color{blue}\textbf{Ruang sampel}\\ \color{red}\textbf{Mulai}&\left\{\begin{matrix} A\left\{\begin{matrix} A\left\{\begin{matrix} A\rightarrow (A,A,A)\\ G\rightarrow (A,A,G) \end{matrix}\right.\\ G\left\{\begin{matrix} A\rightarrow (A,G,A)\\ G\rightarrow (A,G,G) \end{matrix}\right. \end{matrix}\right.\\ G\left\{\begin{matrix} A\left\{\begin{matrix} A\rightarrow (G,A,A)\\ G\rightarrow (G,A,G) \end{matrix}\right.\\ G\left\{\begin{matrix} A\rightarrow (G,G,A)\\ G\rightarrow (G,G,G) \end{matrix}\right. \end{matrix}\right. \end{matrix}\right. \end{aligned}$.
Ruang sampel yang kita dapatkan dari ilustrasi pelemparan sebuah koin sebanyak tiga kali di atas adalah: S={(A,A,A),(A,A,G),(A,G,A),(A,G,G),(G,A,A),(G,A,G),(G,G,A),(G,G,G)}, sehingga $n(S)=8$.
Selanjutnya dalam fungsi atau pemetaan $S\rightarrow R$ yang memetakan setiap anggota S (ruang sampel) ke X (range=daerah hasil), jika X adalah kejadian munculnya nilai sisi A dari cara acak pelemparan uang koin di atas, maka kita akan memiliki data sebagaimana di bawah.
$\begin{aligned}&\textrm{Perhatikanlah ilustrasi berikut}\\ &\begin{aligned} \color{blue}\textrm{Mula}\: \, &(1)\quad (2)\quad (3)\quad \color{blue}\textbf{Ruang sampel}\quad \textbf{Nilai}\\ \textbf{Mulai}&\left\{\begin{matrix} A\left\{\begin{matrix} A\left\{\begin{matrix} A\rightarrow \color{magenta}(A,A,A)\rightarrow \rightarrow \rightarrow X=3\\ G\rightarrow (A,A,G)\rightarrow \rightarrow \rightarrow X=2 \end{matrix}\right.\\ G\left\{\begin{matrix} A\rightarrow (A,G,A)\rightarrow \rightarrow \rightarrow X=2\\ G\rightarrow (A,G,G)\rightarrow \rightarrow \rightarrow X=1 \end{matrix}\right. \end{matrix}\right.\\ G\left\{\begin{matrix} A\left\{\begin{matrix} A\rightarrow (G,A,A)\rightarrow \rightarrow \rightarrow X=2\\ G\rightarrow (G,A,G)\rightarrow \rightarrow \rightarrow X=1 \end{matrix}\right.\\ G\left\{\begin{matrix} A\rightarrow (G,G,A)\rightarrow \rightarrow \rightarrow X=1\\ G\rightarrow \color{red}(G,G,G)\rightarrow \rightarrow \rightarrow X=0 \end{matrix}\right. \end{matrix}\right. \end{matrix}\right. \end{aligned}\\ &\textrm{Jadi, nilai}\: \: X\: \: \textrm{yang mungkin}=\color{red}0,1,2,\: \color{black}\textrm{atau}\: \color{red}3 \end{aligned}$
Perhatikanlah contoh ilustrasi di atas, nilai X ternyata tidak memiliki nilai tunggal. Karena X tidak memiliki nilai tunggal, maka X selanjutnya disebut dengan variabel. Dan variabel seperti ini yang nilainya ditentukan oleh percobaan sehingga akan mendapatkan beberapa kemungkinan selanjutnya disebut dengan variabel acak. Sehingga X pada contoh di atas adalah salah satu contoh untuk variabel acak.
Sebagai tambahan penjelasan perhatikan pula tabel berikut
$\begin{array}{|l|l|l|}\hline \textrm{No}&\textrm{Istilah}&\qquad\qquad\qquad\textrm{Penjelasan}\\\hline 8&\textrm{Cara}&\color{blue}\textrm{atau radom}.\: \textrm{yaitu setiap elemen populasi}\\ &\textrm{Acak}&\textrm{memiliki kesempatan yang yang sama}\\ &&\textrm{sehingga bersifat objektif}\\\hline 9&\textrm{Ruang}&\textrm{Himpunan dari semua hasil yang mungkin}\\ &\textrm{Sampel}&\textrm{dari sebuah percobaan}\\\hline 10&\textrm{Variabel}&\textrm{Suatu fungsi (aturan) yang memetakan }\\ &\textrm{Acak}&\textrm{setiap anggota ruang sampel dengan}\\ &(\textrm{VA})&\textrm{sebuah bilangan riil. Biasanya dinotasikan}\\ &&\textrm{dengan huruf besar, sedangkan nilai}\\ &&\textrm{variabel acaknya dinotasikan dengan}\\ &&\textrm{huruf kecil}\\\hline 11&(\textrm{VA})&\textrm{Jika VA tersebut memiliki sejumlah nilai}\\ &\textrm{Diskrit}&\textrm{yang dapat dihitung(berupa bilangan}\\ &&\textrm{bulat positif)}\\\hline 12&\textrm{VA}&\textrm{Sebaliknya yaitu berupa bilangan yang}\\ &\textrm{Kontinu}&\textrm{tidak bulat}\\\hline \end{array}$.
Tabel di atas adalah tabel lanjutan dari tabel pada halaman ini.
Perlu untuk dimengerti pada kasus pemisalan di atas untuk kejadian $(X=0)$ adalah ekivalen dengan kejadian $\left \{ (G,G,G) \right \}$ dengan nilai $n\left \{ (X=0) \right \}=1$, sehingga peluang untuk kejadian ini adalah:
$P\left \{ (X=0) \right \}=\displaystyle \frac{n\left \{ (X=0) \right \}}{n(S)}=\displaystyle \frac{1}{8}$.
Selanjutnya untuk penulisan singkat dari perhitungan di atas adalah:
$P(X=0) =\displaystyle \frac{n\left \{ (X=0) \right \}}{n(S)}=\displaystyle \frac{1}{8}$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$
$\begin{array}{ll}\\ 1.&\textrm{Sebuah koin dilempar sebanyak tiga kali}\\ &\textrm{tentukan peluang mendapatkan tepat}\\ &\textrm{dua angka (contoh kasus variabel acak diskrit)}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Misalkan},\: X=\textrm{banyak kejadian muncul sisi angka} \end{aligned}\\ &\begin{aligned}&\textrm{Perhatikan uraian sampel pada materi di atas}\\ &\textrm{ada 2 sisi angka : AAG,AGA,GAA}\\ &\textrm{sehingga peluangnya}=P(X=2),\: \: \textrm{dan nilainya}\\ &P(X=2)=\displaystyle \frac{n(X=2)}{n(S)}=\color{red}\frac{3}{8} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Tunjukkan bahwa total semua kejadian}\\ &\textrm{pada soal No.1 di atas, adalah 1}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Perhatikan lagi ilustrasi nilai}\: \: X\: \: \textrm{yang}\\ &\textrm{mungkin, yaitu}:\: 0,1,2,\: \: \textrm{dan}\: \: 3\\ &\textrm{Karena semua kejadian saling lepas},\\ &\textrm{maka}\\ &P(X=0\cup X=1\cup X=2\cup X=3)\\ &=P(0\leq X\leq 3)\\ &=P(X=0)+P(X=1)+P(X=2)+P(X=3)\\ &=\displaystyle \frac{1}{8}+\frac{3}{8}+\frac{3}{8}+\frac{1}{8}\\ &=\displaystyle \frac{8}{8}=\color{red}1\qquad \color{black}\textbf{(terbukti)} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 3.&\textrm{Pada gambar berikut diberikan ilustrasi}\\ &\textrm{papan putar} \end{array}$.
$.\qquad\begin{array}{|l|l|l|}\hline Y=X_{1}+X_{2}&\textrm{Hasil}&\textrm{Peluang}\: P(Y)\\\hline 2=1+1&(A1,B1)&\displaystyle \frac{2}{4}\times \frac{1}{3}=\frac{2}{12}\\\hline \begin{aligned}3&=1+2\\ &=2+1 \end{aligned}&\begin{aligned}&(A1,B2)\\ &(A2,B1) \end{aligned}&\begin{aligned}&\displaystyle \frac{2}{4}\times \frac{1}{3}\\ &+\displaystyle \frac{1}{4}\times \frac{1}{3}=\frac{3}{12} \end{aligned}\\\hline \begin{aligned}4&=1+3\\ &=2+2\\ &=3+1 \end{aligned}&\begin{aligned}&(A1.B3)\\ &(A2,B2)\\ &(A3,B1)\end{aligned}&\begin{aligned}&\displaystyle \frac{2}{4}\times \frac{1}{3}+\frac{1}{4}\times \frac{1}{3}\\ &+\frac{1}{4}\times \frac{1}{3}=\frac{4}{12} \end{aligned}\\\hline \begin{aligned}5&=2+3\\ &=3+2 \end{aligned}&\begin{aligned}&(A2,B3)\\ &(A3,B2) \end{aligned}&\begin{aligned}&\displaystyle \frac{1}{4}\times \frac{1}{3}\\ &+\displaystyle \frac{1}{4}\times \frac{1}{3}=\frac{2}{12} \end{aligned}\\\hline 6=3+3&(A3,B3)&\displaystyle \frac{1}{4}\times \frac{1}{3}=\frac{1}{12}\\\hline \end{array}$.
$.\qquad\begin{aligned}&\textrm{Dari tabel di atas diperoleh bahwa}\\ &P(Y=2\cup Y=3\cup Y=4\cup Y=5\cup Y=6)\\ &=P(2\leq Y\leq 6)\\ &=P(Y=2)+P(Y=3)+\cdots +P(Y=6)\\ &=\displaystyle \frac{2}{12}+\frac{3}{12}+\frac{4}{12}+\frac{2}{12}+\frac{1}{12}=\frac{12}{12}=1\\ &\textrm{Dari hasil di atas, maka dapat disimpulkan}\\ &Y=X_{1}+X_{2}\: \: \textrm{dengan nilai numeriknya}\\ &\textrm{adalah}\: y=2,3,4,5,6\: \: \textrm{adalah bilangan}\\ &\textrm{bulat, maka}\: \: Y\: \: \textrm{adalah}\: \: \textbf{variabel acak}\\ &\textbf{diskrit} \end{aligned}$.
DAFTAR PUSTAKA
- Kanginan, M., Nurdiansyah, H, Akhmad, G. 2016. Matematika untuk SMA/MA Kelas XII Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: YRAMA WIDYA.
- Tasari, Aksin, N., Miyanto, Muklis. 2016. Matematika untuk SMA/MA Kelas XII Peminatan Matematika dan Ilmu-Ilmu Alam. Klaten: INTAN PARIWARA.
Lanjutan 2 Contoh Soal Kombinasi (Dsitribusi Binomial)
$\begin{array}{ll}\\ 11.&\textrm{Berapa banyak cara dapat memilih untuk}\\ &\textrm{3 perwakilan dari 10 anggota suatu}\\ &\textrm{kelompok, jika}\\ &\textrm{a. tanpa perlakuan khusus}\\ &\textrm{b. salah seorang harus terpilih}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Dengan tanpa perlakuan}\\ &\textrm{memilih 3 orang dari 10 orang adalah}:\\ &C(10,3)=\displaystyle \frac{10!}{3!(10-3)!}=\frac{10!}{3!\times 7!}=\color{blue}120\\ \textrm{b}.\quad&\textrm{Dengan perlakuan 1 orang terpilih}\\ &\color{red}(\textrm{1 orang ini artinya tidak perlu diperhitungkan})\\ &\textrm{memilih 2 orang dari 9 orang adalah}:\\ &C(9,2)=\displaystyle \frac{9!}{2!(9-2)!}=\frac{9!}{2!\times 8!}=\color{blue}36 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 14.&\textrm{Suatu kelompok yang terdiri dari 20 remaja}\\ &\textrm{a}.\quad \textrm{Jika mereka saling berjabat tangan}\\ &\qquad \textrm{seseorang dengan lainnya hanya satu kali}\\ &\qquad \textrm{maka banyak jabat tangan yang terjadi}?\\ &\textrm{b}.\quad \textrm{Jika mereka membentuk regu voly, maka}\\ &\qquad \textrm{berapa banyak regu voly yang terbentuk}?\\ &\textrm{c}.\quad \textrm{Jika mereka membentuk regu sepak bola},\\ &\qquad \textrm{maka banyak regu sepak bola yang terbentuk}?\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui bahwa}\: \: n=20\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Karena jabat tangan dilakukan hanya hanya}\\ &\textrm{pada dua remaja yang berbeda dan urutan}\\ &\textrm{tidak diperlukan, maka hal ini persoalan}\\ &\textrm{kombinasi. Sehingga banyaknya jabat tangan}\\ &\begin{pmatrix} n\\ r \end{pmatrix}=\displaystyle \frac{n!}{r!(n-r)!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 2 \end{pmatrix}=\displaystyle \frac{20!}{2!(20-2)!}=\frac{20!}{2!\times 18!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 2 \end{pmatrix}=\displaystyle \frac{20.19.\not{18!}}{2.\not{18!}}=\color{red}190\\ \textrm{b}.\quad&\textrm{Karena satu regu voli ada 6 orang, maka}\\ &\begin{pmatrix} 20\\ 6 \end{pmatrix}=\displaystyle \frac{20!}{6!(20-6)!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 6 \end{pmatrix}=\displaystyle \frac{20!}{6!\times 14!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 6 \end{pmatrix}=\color{red}\displaystyle \frac{20.19.18.17.16.15.\not{14!}}{720\times \not{14!}}\\ \textrm{c}.\quad&\textrm{Karena satu regu terdiri dari 11 orang},\\ &\textrm{maka}\\ &\begin{pmatrix} 20\\ 11 \end{pmatrix}=\displaystyle \frac{20!}{11!(20-11)!}=\color{red}\frac{20!}{11!\times 9!} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 15.&\textrm{Jajargenjang yang dapat dibuat oleh}\\ &\textrm{himpunan empat garis sejajar yang}\\ &\textrm{berpotongan dengan garis yang terhimpun}\\ &\textrm{dalam 7 garis sejajar adalah}\: ....\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui bahwa kombinasi dari dua himpunan}\\ &\textrm{garis sejajar yang masing-masing berjumlah}\\ &\textrm{4 dan 7 garis, maka}\: \color{red}\textrm{banyak jajar genjang}\\ &\begin{aligned}&=\begin{pmatrix} 4\\ 2 \end{pmatrix}\times \begin{pmatrix} 7\\ 2 \end{pmatrix}\\ &=\displaystyle \frac{4!}{2!(4-2)!}\times \frac{7!}{2!\times (7-2)!}\\ &=\displaystyle \frac{4\times 3\times \not{2!}}{2\times \not{2!}}\times \frac{7\times 6\times \not{5!}}{2\times \not{5!}}\\ &=6\times 21\\ &=\color{red}126\: \: \color{black}\textrm{jajar genjang} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 16.&\textrm{Diketahui segi enam beraturan. Tentukanlah}\\ &\textrm{a}.\quad \textrm{Banyak diagonal dapat dibentuk}?\\ &\textrm{b}.\quad \textrm{Banyak segi tiga di dalamnya}?\\ &\textrm{c}.\quad \textrm{Banyak perpotongan diagonal-diagonal}\\ &\qquad \textrm{jika tidak ada titik-titik perpotongan}\\ &\qquad \textrm{yang sama}?\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui segi}-n\: \: \textrm{dengan}\: \: n=6\\ &\textrm{Dan perlu diingat bahwa di sini tidak diperlukan}\\ &\textrm{urutan mana yang perlu didahulukan, maka}\\ &\textrm{rumus kombinasi yang perlu digunakan, yaitu}\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Banyak diagonalnya adalah}:\\ &\begin{pmatrix} n\\ 2\end{pmatrix}-n=\displaystyle \frac{n(n-3)}{2}\\ &\Leftrightarrow \qquad\quad=\displaystyle \frac{6.(6-3)}{2}=\frac{6.3}{2}=\color{red}9\\ \textrm{b}.\quad&\textrm{Banyaknya segi tiga, berarti melibatkan}\\ &\textrm{tiga garis, maka}\\ &\begin{pmatrix} 6\\ 3 \end{pmatrix}=\displaystyle \frac{6!}{3!\times (6-3)!}=\frac{6\times 5\times 4\times \not{3!}}{6\times \not{3!}}=\color{red}20\\ \textrm{c}.\quad&\textrm{Satu buah titik potong dapat dibentuk}\\ &\textrm{dengan dua garis ekuivalen dengan empat}\\ &\textrm{buah titik sudut, maka banyaknya titik}\\ &\textrm{potong adalah}:\\ &\begin{pmatrix} 6\\ 4 \end{pmatrix}=\displaystyle \frac{6!}{4!\times (6-4)!}=\frac{6!}{4!\times 2!}=\color{red}15 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 17.&\textrm{Perhatikalah dua ilustrasi gambar berikut} \end{array}$
DAFTAR PUSTAKA
- Bintari, N. 2009. Master Juara Olimpiade Matematika SMA Nasional dan Internasional. Yogyakarta: PUSTAKA WIDYATAMA.
- Ibrahim, Mussafi, N, S, M. 2013. Pengantar Kombinatorika dan Teori Graf. Yogyakarta: GRAHA ILMU.
- Johnaes, Kastolan, & Sulasim. 2004. Kompetensi Matematika SMA Kelas 2 Semester 1 Program Ilmu Sosial KBK 2004. Jakarta: YUDHISTIRA.
- Kanginan, M., Terzalgi, Y. 2014. Matematika untuk SMA-MA/SMK Kelas XI (Wajib). Bandung: SRIKANDI EMPAT WIDYA UTAMA.
- Kartini, Suprapto, Subandi, & Setiyadi, U. 2005. Matematika Program Studi Ilmu Alam Kelas XI untuk SMA dan MA. Klaten: INTAN PARIWARA.
- Sobirin. 2006. Kompas Matematika: Strategi Praktis Menguasai Tes Matematika (SMA Kelas XI IPA). Jakarta: KAWAN PUSTAKA.
- Sukino. 2011. Maestro Olimpiade Matematika SMP Seri B. Jakarta: ERLANGGA.
- Susyanto, N, 2012. Tutor Senior Olimpiade Matematika Lima Benua Tingkat SMP. Yogyakarta: KENDI MAS MEDIA.
- Tampomas, H. 1999. SeribuPena Matematika SMU Jilid 2 Kelas 2 Berdasarkan Kurikulum 1994 Suplemen CBPP 1999. Jakarta: ERLANGGA.
Lanjutan 1 Contoh Soal Kombinasi (Distribusi Binomial)
$\begin{array}{ll}\\ 4.&\textrm{Bentuk sederhana dari}\\ &\textrm{a}.\quad \displaystyle 5!+6!+7!\\ &\textrm{b}.\quad \displaystyle \frac{(n+1)!}{(n-1)!}\\ &\textrm{c}.\quad \displaystyle \frac{(n+2)!}{n!}\\ &\textrm{d}.\quad \displaystyle \frac{(n-2)!}{(n+1)!}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&5!+6!+7!=5!+6.5!+7.6.5!\\ &\quad\quad\quad\quad \: \: \: \: =(1+6+42).5!\\ &\quad\quad\quad\quad \: \: \: \: =49.5!=49.120=5880\\ \textrm{b}.\quad&\displaystyle \frac{(n+1)!}{(n-1)!}=\frac{(n+1)n(n-1)!}{(n-1)!}\\ &\quad\quad\quad\: \: \: =(n+1)n=n^{2}+n\\ \textrm{c}.\quad&\displaystyle \frac{(n+2)!}{n!}=\frac{(n+1)(n+1)n!}{n!}\\ &\quad\quad\quad\: \: \: =(n+2)(n+1)\\ &\quad\quad\quad\: \: \: =n^{2}+3n+2\\ \textrm{d}.\quad&\displaystyle \frac{(n-2)!}{(n+1)!}=\frac{(n-2)!}{(n+1)n(n-1)(n-2)!}\\ &\quad\quad\quad\: \: \: =\displaystyle \frac{1}{(n+1)n(n-1)}\\ &\quad\quad\quad\: \: \: =\displaystyle \frac{1}{n^{3}-n} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 5.&\textrm{Tentukanlah nilai}\: \: n\: \: \textrm{yang memenuhi}\\ &\textrm{persamaan berikut}\\ &\textrm{a}.\quad \displaystyle \frac{n!3!}{6!(n-3)!}=\frac{33}{4}\\ &\textrm{b}.\quad \displaystyle \frac{3}{8!}-\frac{2}{7!}+\frac{1}{6!}=\frac{5n+3}{8!}\\ &\textrm{c}.\quad \displaystyle \frac{7!}{5!2!}:\frac{10!}{5!5!}=1:4n\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\displaystyle \frac{n!3!}{6!(n-3)!}=\frac{33}{4}\\ &\Leftrightarrow \displaystyle \frac{n(n-1)(n-2) \not{(n-3)!}.\not{3!}}{6.5.\not{4}.\not{3!}\not{(n-3)}!}=\frac{33}{\not{4}}\\ &\Leftrightarrow n(n-1)(n-2)=33.6.5=11.10.9\\ &\Leftrightarrow n(n-1)(n-2)=11.(11-1).(11-2)\\ &\Leftrightarrow \qquad\qquad\qquad \: n=11\\ \textrm{b}.\quad&\displaystyle \frac{3}{8!}-\frac{2}{7!}+\frac{1}{6!}=\frac{5n+3}{8!}\\ &\Leftrightarrow \displaystyle \frac{3-2.8+56}{8!}=\frac{5n+3}{8!}\\ &\Leftrightarrow \frac{43}{8!}=\frac{5n+3}{8!}\\ &\Leftrightarrow 43=5n+3\Leftrightarrow 5n=40\Leftrightarrow n=8\\ \textrm{c}.\quad &\displaystyle \frac{7!}{5!2!}:\frac{10!}{5!5!}=1:4n\\ &\Leftrightarrow 4n=\displaystyle \frac{5!2!10!}{7!5!5!}\\ &\Leftrightarrow 4n=\displaystyle \frac{\not{5!}2!10.9.8.\not{7!}}{\not{7!}5!\not{5!}}\\&\Leftrightarrow \: \: n=3 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 6.&\textrm{Tentukanlah nilai}\: \: n\: \: \textrm{yang memenuhi}\\ &\textrm{persamaan berikut}\\ &\textrm{a}.\quad P(n,2)=42\\ &\textrm{b}.\quad 7.P(n,3)=6.P(n+1,3)\\ &\textrm{c}.\quad 3.P(n,4)=P(n-1,5)\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&P(n,2)=42\\ &\Leftrightarrow \displaystyle \frac{n!}{(n-2)!}=42\\ &\Leftrightarrow \displaystyle \frac{n!}{(n-2)!}=\displaystyle \frac{n\times (n-1)\times (n-2)!}{(n-2)!}=42\\ &\Leftrightarrow \displaystyle n\times (n-1)=7.6=7.(7-1)\\ &\Leftrightarrow n=7\\ \textrm{b}.\quad&7.P(n,3)=6.P(n+1,3)\\ &\displaystyle \frac{7.n!}{(n-3)!}=\frac{6(n+1)!}{(n+1-3)!}\\ &\displaystyle \frac{7\not{n!}}{(n-3)!}=\frac{6.(n+1).\not{n!}}{(n-2)!}\\ &\Leftrightarrow \frac{7}{\not{(n-3)!}}=\frac{6n+6}{(n-1)\not{(n-3)!}}\\ &\Leftrightarrow 7(n-2)=6n+6\\ &\Leftrightarrow 7n-6n=6+14\Leftrightarrow n=20\\ \textrm{c}.\quad&3.P(n,4)=P(n-1,5)\\ &\Leftrightarrow \displaystyle \frac{3.n!}{(n-4)!}=\frac{(n-1)!}{(n-1-5)!}\\ &\Leftrightarrow \frac{3.n.\not{(n-1)!}}{(n-4)!}=\frac{\not{(n-1)!}}{(n-6)!}\\ &\Leftrightarrow \frac{3n}{(n-4)(n-5).\not{(n-6)!}}=\frac{1}{\not{(n-6)!}}\\ &\Leftrightarrow 3n=(n-4)(n-5)\\ &\Leftrightarrow 3n=n^{2}-9n+20\\ &\Leftrightarrow n^{2}-12n+20=0\\ &\Leftrightarrow (n-2)(n-10)=0\\ &\Leftrightarrow n=2\: \: \color{red}\textrm{tidak memenuhi}\: \: \color{black}\textrm{atau}\: \: n=10\\ &\textrm{jadi},\: \: n=10 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 7.&\textrm{Jika 10 siswa akan dipilih 4 orang untuk}\\ &\textrm{menjadi ketua kelas, wakil, sekretaris dan}\\ &\textrm{seorang bendahara, maka banyak susunan}\\ &\textrm{terjadi adalah}\: ....\\\\ &\color{blue}\textrm{Jawab}:\\ &\textrm{Penyusunan memerlukan urutan}\\ &\textrm{maka perlu digunakan permutasi, yaitu}:\\ &P(n,r)=\displaystyle \frac{n!}{(n-r)!}\\ &\Leftrightarrow P(10,4)=\displaystyle \frac{10!}{(10-4)!}=\frac{10!}{6!}\\ &\Leftrightarrow \qquad\qquad =\displaystyle \frac{10\times 9\times 8\times 7\times \not{6!}}{\not{6!}}\\ &\Leftrightarrow \qquad\qquad =5040 \end{array}$
$\begin{array}{ll}\\ 8.&\textrm{Jika dari kota A ke kota B terdapat 3 jalur.}\\ &\textrm{Dan dari kota B ke kota C terdapat 4 jalur,}\\ &\textrm{serta dari kota C sampai ke kota D ada 5 jalur}\\ &\textrm{Banyak jalan dari kota A ke kota D adalah}\: ....\\\\ &\color{blue}\textrm{Jawab}:\\ &\textrm{Jalur yang ada semuanya berbeda}\\ &\textrm{maka perlu digunakan permutasi, yaitu}:\\ &P(n,r)=\displaystyle \frac{n!}{(n-r)!}\\ &\begin{aligned}\textrm{a}&\textrm{dari A ke B ada 3 jalur cukup pilih satu, maka}\\ &\bullet \quad P(3,1)=\displaystyle \frac{3!}{(3-1)!}=\frac{3!}{2!}=3\\ \textrm{b}&\textrm{dari B ke C ada 4 jalur cukup pilih satu, maka}\\ &\bullet \quad P(4,1)=\displaystyle \frac{4!}{(4-1)!}=\frac{4!}{3!}=4\\ \textrm{c}&\textrm{dari C ke D ada 5 jalur cukup pilih satu, maka}\\ &\bullet \quad P(5,1)=\displaystyle \frac{5!}{(5-1)!}=\frac{5!}{4!}=5 \end{aligned}\\ &\textrm{Jadi, total jalur yang dapat di lalui dari A sampai D adalah}:\\ &\qquad P(3,1)\times P(4,1)\times P(5,1)=3\times 4\times 5=\color{red}60 \end{array}$
$\begin{array}{ll}\\ 9.&\textrm{Jika di suatu kelas terdapat 4 orang akan dipilih 3 orang }\\ &\textrm{untuk menjadi ketua, sekretaris, dan bendahara}.\\ &\textrm{Tentukanlah banyak cara memilih 3 orang tersebut?}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Karena ada 4 orang, misal A, B, C, dan D yang}\\ &\textrm{akan dipilih 3 orang untuk menduduki posisi} \\ &\textrm{ketua, sekretaris, dan bendahara, maka kita tinggal}\\ &\textrm{buat permutasinya, yaitu posisi ketua dapat dipilih }\\ &\textrm{dengan 4 cara, sekretaris dapat dipilih dengan 3 cara}, \\ &\textrm{dan bendahara dapat dipilih dengan 2 cara. atau} \\ &\color{blue} P(4,3)=\displaystyle \frac{4!}{(4-3)!}=\frac{4!}{1!}=\frac{4\times 3\times 2\times 1}{1}=24\: \: \textrm{cara}\\ &\textrm{Berikut ilustrasinya dengan diagram pohon} \end{aligned} \end{array}$
- Johnaes, Kastolan, & Sulasim. 2004. Kompetensi Matematika SMA Kelas 2 Semester 1 Program Ilmu Sosial KBK 2004. Jakarta: YUDHISTIRA.
- Kartini, Suprapto, Subandi, & Setiyadi, U. 2005. Matematika Program Studi Ilmu Alam Kelas XI untuk SMA dan MA. Klaten: INTAN PARIWARA.
- Sobirin. 2006. Kompas Matematika Strategi Praktis Menguasai Tes Matematika. Jakarta: KAWAN PUSTAKA.
Distribusi Binomial (Matematika Peminatan kelas XII SMA/MA)
$\color{blue}\textrm{A. Pendahuluan Distribusi Binomial}$
$\begin{aligned}&\left\{\begin{matrix} (1)\: \textrm{Review}\begin{cases} \textrm{Peluang} \begin{cases} \textrm{Populasi} \\ \textrm{Sampel}\begin{cases} \textrm{Acak} \\ \textrm{Bukan Acak}.\quad \end{cases} \end{cases} \\ \textrm{Kombiasi} & \end{cases}\\ (2)\: \textrm{Variabel Acak}\begin{cases} \textrm{Diskrit} & .\qquad\qquad\qquad\qquad \\ \textrm{Kontinue} & \end{cases}\\ (3)\: \textrm{Distribusi}\begin{cases} \textrm{Distribusi Peluang Variabel Acak} & \\ \textrm{Fungsi Distribusi Kumulatif} & \\ \textrm{Variabel Acak Binomial}&\\ \textrm{Distribusi Binomial} \end{cases}\\ \end{matrix}\right. \end{aligned}$
$\color{blue}\textrm{Penjelasan}$
$\begin{array}{|c|l|l|}\hline \textrm{No}&\quad\textrm{Istilah}&\qquad\qquad\qquad\textrm{Penjelasan}\\\hline 1&\textrm{Statistika}&\textrm{Ilmu tentang pengumpulan, pengolahan},\\ &&\textrm{penganalisaan serta penarikan kesimpulan}\\ &&\textrm{data. Selanjutnya akan dibagi dua yaitu}\\ &&\color{blue}\textrm{deskriptif dan inferensia}\\\hline 2&\textrm{Statistik}&\color{red}\textrm{Kumpulan data/ukuran sampel}\\\hline 3&\textrm{Parameter}&\textrm{Ukuran populasi}\\\hline 4&\textrm{Populasi}&\color{blue}\textrm{Keseluruhan/semua anggota objek/data}\\\hline 5&\textrm{Sampel}&\color{blue}\textrm{Subjek/Objek yang mewakili populasi}\\\hline 6&\textrm{Sesus}&\textrm{Penelitian seluruh data (populasi)}\\\hline 7&\textrm{Tekik}&\textrm{Cara pengambilan data terbatas pada}\\ &\textrm{Sampling}&\textrm{sebagian saja dari populasi yang diteliti}\\\hline \end{array}$.
$\color{blue}\textrm{B. Kombinasi, Peluang, dan Variabel Acak}$.
Untuk memulai bahasan ini kita sertakan pengertian yang berkaitan dengan kombinasi yaitu adalah permutasi. Perhatikanlah tabel berikut
$\begin{array}{|l|l|l|}\hline \textrm{Istilah}&\qquad\qquad\qquad\textrm{Permutasi}&\qquad\qquad\qquad\textrm{Kombinasi}\\\hline \textrm{Definisi}&\begin{aligned}&\textrm{Permutasi r unsur dari n unsur}\\ &\textrm{adalah banyaknya kemungkinan}\\ &\textrm{urutan r unsur yang dipilih}\\ &\textrm{dari n unsur yang tersedia}.\\ & \textrm{Tiap unsur berbeda dan}\: r\leq n\\ &\end{aligned}&\begin{aligned}&\textrm{Kombinasi r unsur dan n unsur}\\ &\textrm{adalah banyaknya kemungkinan}\\ &\textrm{tidak terurut dalam pemilihan}\\ &\textrm{r unsur yang diambil dari n}\\ & \textrm{unsur yang tersedia. Tiap unsur}\\ &\textrm{berbeda dan}\: \: r\leq n \end{aligned}\\\hline \textrm{Tipe}&\begin{aligned}&\textrm{Bentuk khusus kaidah}\\ &\textrm{perkalian} \end{aligned}&\begin{aligned}&\textrm{Bentuk khusus dari bentuk}\\ &\textrm{permutasi} \end{aligned}\\\hline \textrm{Notasi}&_{n}P_{r},\: P_{n}^{r},\: \textrm{atau}\: \: P(n,k)&_{n}C_{r},\: C_{r}^{n},\: \binom{n}{r},\: \textrm{atau}\: \: C(n,r)\\\hline \textrm{Rumus}&P(n,r)=\displaystyle \frac{n!}{(n-r)!}&\binom{n}{r}=C(n,r)=\displaystyle \frac{n!}{r!(n-r)!}\\\hline \end{array}$.
$\begin{aligned}&\color{red}\textrm{Sebagai catatan bahwa}\\&n!=1\times 2\times 3\times \cdots \times (n-1)\times n \end{aligned}$
Selanjutnya yang akan kita bahas berkaitan bab ini adalah kombinasi beserta contohnya. Perhatikan pula tabel berikut
$\begin{array}{|c|c|}\hline \color{red}\textrm{Kombinasi}&\textrm{Kombinasi dalam}\\ \textrm{dengan pengulangan}&\color{red}\textrm{Binom Newton}\\\hline \begin{aligned}&C(n+r-1,r)\\ &=C(n+r-1,n-1)\\ &\binom{n+r-1}{r}\\ &=\binom{n+r-1}{n-1} \end{aligned}&\begin{aligned}&(x+y)^{n}\\ &=\sum_{k=o}^{n}\binom{n}{r}x^{n-k}y^{k}\\\\ &\textrm{Koefisien untuk}\\ &x^{n-k}y^{k},\: \textrm{yaitu}\\ &\textrm{suku ke}-(k+1)\\ &\textrm{adalah}\: \binom{n}{r} \end{aligned}\\\hline \end{array}$.
serta
$\LARGE\colorbox{yellow}{CONTOH SOAL}$
$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah nilai}\\ &\begin{array}{lll}\\ \textrm{a}.\quad 3!&\textrm{e}.\quad \displaystyle \frac{6!}{4!}&\textrm{i}.\quad \displaystyle \frac{2!}{0!}+\frac{3!}{1!}+\frac{4!}{2!}\\ \textrm{b}.\quad 5!&\textrm{f}.\quad \displaystyle \frac{10!}{6!}&\textrm{j}.\quad \displaystyle \frac{2!}{0!}\times \frac{3!}{1!}+\frac{4!}{2!}\\ \textrm{c}.\quad 0!+1!+2!+3!&\textrm{g}.\quad \displaystyle \frac{7!}{3!\times 4!}&\textrm{k}.\quad \displaystyle \frac{3\times 4!}{3!(5!-5!)}\\ \textrm{d}.\quad (2!)!+(3!)!&\textrm{h}.\quad \displaystyle \frac{13!}{12!+12!}&\textrm{l}.\quad \displaystyle \frac{3!+5!+7!}{4!+6!}\end{array}\\\\ &\textrm{Jawab}:\\\\ &\begin{array}{l}\\ \textrm{a}.\quad 3!=3.2.1=6\\ \textrm{b}.\quad 5!=5.4.3.2.1=120\\ \begin{aligned}\textrm{c}.\quad 0!+1!+2!+3!&=1+1+2+6\\ &=10 \end{aligned}\\ \begin{aligned}\textrm{d}.\quad (2!)!+(3!)!&=2!+6!\\ &=2+720\\ &=722 \end{aligned}\\ \textrm{e}.\quad \displaystyle \frac{6!}{4!}=\frac{720}{24}=30\quad \textrm{atau}\quad \displaystyle \frac{6!}{4!}=\displaystyle \frac{6.5.\not{4}.\not{3}.\not{2}.\not{1}}{\not{4}.\not{3}.\not{2}.\not{1}}=6.5=30\\ \textrm{f}.\quad \displaystyle \frac{10!}{6!}=\frac{10.9.8.7.6.5.4.3.2.1}{6.5.4.3.2.1}=.... (\textrm{silahkan diselesaikan sendiri})\\ \textrm{g}.\quad \displaystyle \frac{7!}{3!\times 4!}=\frac{7.6.5.4.3.2.1}{(3.2.1)\times (4.3.2.1)}=.... (\textrm{silahkan juga diselesaikan sendiri})\\ \vdots \\ (\textrm{silahkan selanjutnya diselesaikan sendiri}) \end{array} \end{array}$
$\begin{array}{ll}\\ 2.&\textrm{Sederhanakanlah}\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle \frac{n!}{(n-1)!}&\textrm{e}.\quad \displaystyle \frac{1}{n!}+\frac{n}{(n+1)!}-\frac{1}{(n-1)!}\\ \textrm{b}.\quad \displaystyle \frac{(n+2)!}{(n+1)!}&\textrm{f}.\quad \displaystyle \frac{(4n)!}{(4n+1)!}+\frac{(4n)!}{(4n-1)!}\\ \textrm{c}.\quad \displaystyle \frac{(2n)!}{(2n+1)!}&\textrm{g}.\quad \displaystyle \frac{1}{n}-\frac{n!}{(n-1).(n-2)!}\\ \textrm{d}.\quad \displaystyle \frac{(n+2)!}{(n^{2}+3n+2)}&\textrm{h}.\quad 1.1!+2.2!+3.3!+4.4!+5.5!+...+n.n!\end{array}\\\\ &\textrm{Jawab}:\\\\ &\begin{array}{l}\\ \textrm{a}.\quad \displaystyle \frac{n!}{(n-1)!}=\frac{n.(n-1)!}{(n-1)!}=n\\ \textrm{b}.\quad \displaystyle \frac{(n+2)!}{(n+1)!}=\frac{(n+2).(n+1)!}{(n+1)!}=n+2\\ \textrm{c}.\quad \displaystyle \frac{(2n)!}{(2n+1)!}=\frac{(2n)!}{(2n+1).(2n)!}=\frac{1}{2n+1}\\ \textrm{d}.\quad \displaystyle \frac{(n+2)!}{n^{2}+3n+2}=\frac{(n+2)!}{(n+2).(n+1)}=\frac{(n+2).(n+1).n!}{(n+2).(n+1)}=n!\\ \vdots \\ (\textrm{silahkan selanjutnya diselesaikan sendiri sebagai latihan})\\ \vdots \\ \begin{aligned}\textrm{h}.\quad &1.1!+2.2!+3.3!+4.4!+5.5!+...+n.n!\\ & =(2-1).1!+(3-1).2!+(4-1).3!+(5-1).4!+...+(n+1-1).n!\\ &=2.1!+3.2!+4.3!+5.4!+...+(n+1).n!-1!-2!-3!-4!-...-n!\\ &=2!+3!+4!+5!+...+(n+1)!-\left ( 1!+2!+3!+4!+...+n! \right )\\ &=(n+1)!-1 \end{aligned} \end{array} \end{array}$
$\begin{array}{ll}\\ 3.&\textrm{Sederhanakanlah bentuk penjumlahan berikut}\\ &\displaystyle \frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+\cdots +\displaystyle \frac{100}{98!+99!+100!}\\\\ &\textrm{Jawab}:\\\\ &\begin{aligned}&\textrm{Perhatikan}\, \: \textrm{bahwa}\\ &\displaystyle \frac{3}{1!+2!+3!}=\frac{3}{1+2+6}=\frac{3}{9}=\frac{1}{3}\times \frac{2}{2}=\frac{2}{1\times 2\times 3}=\frac{2}{3!}=\frac{3-1}{3!}=\frac{3}{3!}-\frac{1}{3!}=\frac{3}{2!\times 3}-\frac{1}{3!}=\frac{1}{2!}-\frac{1}{3!}\\ &\textrm{sehingga}\\ &\frac{3}{1!+2!+3!}=\frac{1}{2!}-\frac{1}{3!}\\ &\displaystyle \frac{4}{2!+3!+4!}=\cdots =\frac{1}{3!}-\frac{1}{4!}\\ &\displaystyle \frac{5}{3!+4!+5!}=\cdots =\frac{1}{4!}-\frac{1}{5!}\\ &\vdots \\ &\displaystyle \frac{100}{98!+99!+100!}=\cdots =\frac{1}{99!}-\frac{1}{100!}\\ &---------------------------\\ &\qquad\qquad\qquad\qquad\quad\quad =\frac{1}{2!}-\frac{1}{100!} \end{aligned} \end{array}$.