Lanjutan 1 Contoh Soal Kombinasi (Distribusi Binomial)

$\begin{array}{ll}\\ 4.&\textrm{Bentuk sederhana dari}\\ &\textrm{a}.\quad \displaystyle 5!+6!+7!\\ &\textrm{b}.\quad \displaystyle \frac{(n+1)!}{(n-1)!}\\ &\textrm{c}.\quad \displaystyle \frac{(n+2)!}{n!}\\ &\textrm{d}.\quad \displaystyle \frac{(n-2)!}{(n+1)!}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&5!+6!+7!=5!+6.5!+7.6.5!\\ &\quad\quad\quad\quad \: \: \: \: =(1+6+42).5!\\ &\quad\quad\quad\quad \: \: \: \: =49.5!=49.120=5880\\ \textrm{b}.\quad&\displaystyle \frac{(n+1)!}{(n-1)!}=\frac{(n+1)n(n-1)!}{(n-1)!}\\ &\quad\quad\quad\: \: \: =(n+1)n=n^{2}+n\\ \textrm{c}.\quad&\displaystyle \frac{(n+2)!}{n!}=\frac{(n+1)(n+1)n!}{n!}\\ &\quad\quad\quad\: \: \: =(n+2)(n+1)\\ &\quad\quad\quad\: \: \: =n^{2}+3n+2\\ \textrm{d}.\quad&\displaystyle \frac{(n-2)!}{(n+1)!}=\frac{(n-2)!}{(n+1)n(n-1)(n-2)!}\\ &\quad\quad\quad\: \: \: =\displaystyle \frac{1}{(n+1)n(n-1)}\\ &\quad\quad\quad\: \: \: =\displaystyle \frac{1}{n^{3}-n} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 5.&\textrm{Tentukanlah nilai}\: \: n\: \: \textrm{yang memenuhi}\\ &\textrm{persamaan berikut}\\ &\textrm{a}.\quad \displaystyle \frac{n!3!}{6!(n-3)!}=\frac{33}{4}\\ &\textrm{b}.\quad \displaystyle \frac{3}{8!}-\frac{2}{7!}+\frac{1}{6!}=\frac{5n+3}{8!}\\ &\textrm{c}.\quad \displaystyle \frac{7!}{5!2!}:\frac{10!}{5!5!}=1:4n\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\displaystyle \frac{n!3!}{6!(n-3)!}=\frac{33}{4}\\ &\Leftrightarrow \displaystyle \frac{n(n-1)(n-2) \not{(n-3)!}.\not{3!}}{6.5.\not{4}.\not{3!}\not{(n-3)}!}=\frac{33}{\not{4}}\\ &\Leftrightarrow n(n-1)(n-2)=33.6.5=11.10.9\\ &\Leftrightarrow n(n-1)(n-2)=11.(11-1).(11-2)\\ &\Leftrightarrow \qquad\qquad\qquad \: n=11\\ \textrm{b}.\quad&\displaystyle \frac{3}{8!}-\frac{2}{7!}+\frac{1}{6!}=\frac{5n+3}{8!}\\ &\Leftrightarrow \displaystyle \frac{3-2.8+56}{8!}=\frac{5n+3}{8!}\\ &\Leftrightarrow \frac{43}{8!}=\frac{5n+3}{8!}\\ &\Leftrightarrow 43=5n+3\Leftrightarrow 5n=40\Leftrightarrow n=8\\ \textrm{c}.\quad &\displaystyle \frac{7!}{5!2!}:\frac{10!}{5!5!}=1:4n\\ &\Leftrightarrow 4n=\displaystyle \frac{5!2!10!}{7!5!5!}\\ &\Leftrightarrow 4n=\displaystyle \frac{\not{5!}2!10.9.8.\not{7!}}{\not{7!}5!\not{5!}}\\&\Leftrightarrow \: \: n=3 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 6.&\textrm{Tentukanlah nilai}\: \: n\: \: \textrm{yang memenuhi}\\ &\textrm{persamaan berikut}\\ &\textrm{a}.\quad P(n,2)=42\\ &\textrm{b}.\quad 7.P(n,3)=6.P(n+1,3)\\ &\textrm{c}.\quad 3.P(n,4)=P(n-1,5)\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&P(n,2)=42\\ &\Leftrightarrow \displaystyle \frac{n!}{(n-2)!}=42\\ &\Leftrightarrow \displaystyle \frac{n!}{(n-2)!}=\displaystyle \frac{n\times (n-1)\times (n-2)!}{(n-2)!}=42\\ &\Leftrightarrow \displaystyle n\times (n-1)=7.6=7.(7-1)\\ &\Leftrightarrow n=7\\ \textrm{b}.\quad&7.P(n,3)=6.P(n+1,3)\\ &\displaystyle \frac{7.n!}{(n-3)!}=\frac{6(n+1)!}{(n+1-3)!}\\ &\displaystyle \frac{7\not{n!}}{(n-3)!}=\frac{6.(n+1).\not{n!}}{(n-2)!}\\ &\Leftrightarrow \frac{7}{\not{(n-3)!}}=\frac{6n+6}{(n-1)\not{(n-3)!}}\\ &\Leftrightarrow 7(n-2)=6n+6\\ &\Leftrightarrow 7n-6n=6+14\Leftrightarrow n=20\\ \textrm{c}.\quad&3.P(n,4)=P(n-1,5)\\ &\Leftrightarrow \displaystyle \frac{3.n!}{(n-4)!}=\frac{(n-1)!}{(n-1-5)!}\\ &\Leftrightarrow \frac{3.n.\not{(n-1)!}}{(n-4)!}=\frac{\not{(n-1)!}}{(n-6)!}\\ &\Leftrightarrow \frac{3n}{(n-4)(n-5).\not{(n-6)!}}=\frac{1}{\not{(n-6)!}}\\ &\Leftrightarrow 3n=(n-4)(n-5)\\ &\Leftrightarrow 3n=n^{2}-9n+20\\ &\Leftrightarrow n^{2}-12n+20=0\\ &\Leftrightarrow (n-2)(n-10)=0\\ &\Leftrightarrow n=2\: \: \color{red}\textrm{tidak memenuhi}\: \: \color{black}\textrm{atau}\: \: n=10\\ &\textrm{jadi},\: \: n=10 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 7.&\textrm{Jika 10 siswa akan dipilih 4 orang untuk}\\ &\textrm{menjadi ketua kelas, wakil, sekretaris dan}\\ &\textrm{seorang bendahara, maka banyak susunan}\\ &\textrm{terjadi adalah}\: ....\\\\ &\color{blue}\textrm{Jawab}:\\ &\textrm{Penyusunan memerlukan urutan}\\ &\textrm{maka perlu digunakan permutasi, yaitu}:\\ &P(n,r)=\displaystyle \frac{n!}{(n-r)!}\\ &\Leftrightarrow P(10,4)=\displaystyle \frac{10!}{(10-4)!}=\frac{10!}{6!}\\ &\Leftrightarrow \qquad\qquad =\displaystyle \frac{10\times 9\times 8\times 7\times \not{6!}}{\not{6!}}\\ &\Leftrightarrow \qquad\qquad =5040 \end{array}$

$\begin{array}{ll}\\ 8.&\textrm{Jika dari kota A ke kota B terdapat 3 jalur.}\\ &\textrm{Dan dari kota B ke kota C terdapat 4 jalur,}\\ &\textrm{serta dari kota C sampai ke kota D ada 5 jalur}\\ &\textrm{Banyak jalan dari kota A ke kota D adalah}\: ....\\\\ &\color{blue}\textrm{Jawab}:\\ &\textrm{Jalur yang ada semuanya berbeda}\\ &\textrm{maka perlu digunakan permutasi, yaitu}:\\ &P(n,r)=\displaystyle \frac{n!}{(n-r)!}\\ &\begin{aligned}\textrm{a}&\textrm{dari A ke B ada 3 jalur cukup pilih satu, maka}\\ &\bullet \quad P(3,1)=\displaystyle \frac{3!}{(3-1)!}=\frac{3!}{2!}=3\\ \textrm{b}&\textrm{dari B ke C ada 4 jalur cukup pilih satu, maka}\\ &\bullet \quad P(4,1)=\displaystyle \frac{4!}{(4-1)!}=\frac{4!}{3!}=4\\ \textrm{c}&\textrm{dari C ke D ada 5 jalur cukup pilih satu, maka}\\ &\bullet \quad P(5,1)=\displaystyle \frac{5!}{(5-1)!}=\frac{5!}{4!}=5 \end{aligned}\\ &\textrm{Jadi, total jalur yang dapat di lalui dari A sampai D adalah}:\\ &\qquad P(3,1)\times P(4,1)\times P(5,1)=3\times 4\times 5=\color{red}60 \end{array}$

$\begin{array}{ll}\\ 9.&\textrm{Jika di suatu kelas terdapat 4 orang akan dipilih 3 orang }\\ &\textrm{untuk menjadi ketua, sekretaris, dan bendahara}.\\ &\textrm{Tentukanlah banyak cara memilih 3 orang tersebut?}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Karena ada 4 orang, misal A, B, C, dan D yang}\\ &\textrm{akan dipilih 3 orang untuk menduduki posisi} \\ &\textrm{ketua, sekretaris, dan bendahara, maka kita tinggal}\\ &\textrm{buat permutasinya, yaitu posisi ketua dapat dipilih }\\ &\textrm{dengan 4 cara, sekretaris dapat dipilih dengan 3 cara}, \\ &\textrm{dan bendahara dapat dipilih dengan 2 cara. atau} \\ &\color{blue} P(4,3)=\displaystyle \frac{4!}{(4-3)!}=\frac{4!}{1!}=\frac{4\times 3\times 2\times 1}{1}=24\: \: \textrm{cara}\\ &\textrm{Berikut ilustrasinya dengan diagram pohon} \end{aligned} \end{array}$

$\color{red}\begin{cases} A&\begin{cases} B & \begin{cases} C &\rightarrow ABC\\ D & \rightarrow ABD \end{cases} \\ C & \begin{cases} B &\rightarrow ACB\\ D & \rightarrow ACD \end{cases} \\ D & \begin{cases} B &\rightarrow ADB \\ C &\rightarrow ADC \end{cases} \end{cases} \\ \\ B&\begin{cases} A & \begin{cases} C &\rightarrow BAC\\ D & \rightarrow BAD \end{cases} \\ C & \begin{cases} A &\rightarrow BCA\\ D & \rightarrow BCD \end{cases} \\ D & \begin{cases} A &\rightarrow BDA \\ C &\rightarrow BDC \end{cases} \end{cases} \\ \\ C&\begin{cases} A & \begin{cases} B &\rightarrow CAB\\ D & \rightarrow CAD \end{cases} \\ B & \begin{cases} A &\rightarrow CBA\\ D & \rightarrow CBD \end{cases} \\ D & \begin{cases} A &\rightarrow CDA \\ B &\rightarrow CDB \end{cases} \end{cases} \\ \\ D&\begin{cases} A & \begin{cases} B &\rightarrow DAB\\ C & \rightarrow DAC \end{cases} \\ B & \begin{cases} A &\rightarrow DBA\\ C & \rightarrow DBC \end{cases} \\ C & \begin{cases} A &\rightarrow DCA \\ B &\rightarrow DCB \end{cases} \end{cases} \end{cases}$
$\begin{array}{ll}\\ 10.&\textrm{Seorang anak akan mengambil 4 buah bola dari}\\ &\textrm{10 warna yang berbeda. Berapakah banyak}\\ &\textrm{kombinasi warna yang berbeda yang diambil}\\ &\textrm{oleh Andi}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}n=10&\: \: \textrm{dan}\: \: r=4\\ C(n,r)&=\displaystyle \frac{n!}{r!(n-r)!}\\ C(10,4)&=\displaystyle \frac{10!}{4!(10-4)!}\\ &=\displaystyle \frac{10!}{4!\times 6!}\\ &=\displaystyle \frac{10\times 9\times 8\times 7\times 6!}{(4\times 3\times 2\times 1)\times 6!}\\ &=420\: \: \textrm{kombinasi warna bola berbeda} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 11.&\textrm{Berapa banyak cara dapat memilih untuk}\\ &\textrm{3 perwakilan dari 10 anggota suatu}\\ &\textrm{kelompok, jika}\\ &\textrm{a. tanpa perlakuan khusus}\\ &\textrm{b. salah seorang harus terpilih}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Dengan tanpa perlakuan}\\ &\textrm{memilih 3 orang dari 10 orang adalah}:\\ &C(10,3)=\displaystyle \frac{10!}{3!(10-3)!}=\frac{10!}{3!\times 7!}=\color{blue}120\\ \textrm{b}.\quad&\textrm{Dengan perlakuan 1 orang terpilih}\\ &\color{red}(\textrm{1 orang ini artinya tidak perlu diperhitungkan})\\ &\textrm{memilih 2 orang dari 9 orang adalah}:\\ &C(9,2)=\displaystyle \frac{9!}{2!(9-2)!}=\frac{9!}{2!\times 8!}=\color{blue}36 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 12.&\textrm{Berapa banyak cara dapat memilih 2 buku}\\ &\textrm{matematika dan 3 buku fisika serta 4 buku}\\ &\textrm{ekonomi pada suatu lemari buku yang}\\ &\textrm{di dalamnya terdapat 10 buku matematika,}\\ &\textrm{11 buku fisika dan 12 buku ekonomi}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Banyak}\: \textrm{cara pemilihan tersebut adalah}:\\ &=C(10,2)\times C(11,3)\times C(12,4)\\ &=\displaystyle \frac{10!}{2!\times 8!}\times \frac{11!}{3!\times 8!}\times \frac{12!}{4!\times 8!}\\ &=\displaystyle \frac{10\times 9}{1\times 2}\times \frac{11\times 10\times 9}{1\times 2\times 3}\times \frac{12\times 11\times 10\times 9}{1\times 2\times 3\times 4}\\ &=\color{red}3675375 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 13.&\textrm{Berapa banyak cara dapat memilih 3 tas}\\ &\textrm{dan 4 dompet serta 5 kunci kotak motor}\\ &\textrm{di atas meja yang di atasnya telah tersedia}\\ &\textrm{10 tas, 11 dompet serta 12 kunci kontak}\\ &\textrm{motor}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Banyak}\: \textrm{cara pemilihan tersebut adalah}:\\ &=C(10,3)\times C(11,4)\times C(12,5)\\ &=\displaystyle \frac{10!}{3!\times 7!}\times \frac{11!}{4!\times 7!}\times \frac{12!}{5!\times 7!}\\ &=\displaystyle \frac{10\times 9\times 8}{1\times 2\times 3}\times \frac{11\times 10\times 9\times 8}{1\times 2\times 3\times 4}\times \frac{12\times 11\times 10\times 9\times 8}{1\times 2\times 3\times 4\times 5}\\ &=120\times 330\times 792\\ &=\color{red}31363200 \end{aligned} \end{array}$.

DAFTAR PUSTAKA
  1. Johnaes, Kastolan, & Sulasim. 2004. Kompetensi Matematika SMA Kelas 2 Semester 1 Program Ilmu Sosial KBK 2004. Jakarta: YUDHISTIRA.
  2. Kartini, Suprapto, Subandi, & Setiyadi, U. 2005. Matematika Program Studi Ilmu Alam Kelas XI untuk SMA dan MA. Klaten: INTAN PARIWARA.
  3. Sobirin. 2006. Kompas Matematika Strategi Praktis Menguasai Tes Matematika. Jakarta: KAWAN PUSTAKA.

Tidak ada komentar:

Posting Komentar

Informasi