Kedudukan Titik terhadap Lingkaran (Kelas XI)

$\color{blue}\textrm{D. Kedudukan Titik Terhadap Lingkaran }$.


Kedudukan sebuah titik terhadap sebuah lingkaran yang berpusat di O(0,0) memiliki 3 kemungkinan, yaitu:
  • jika titik A(x,y) di dalam lingkaran, maka berlaku  $x^{2}+y^{2}<r^{2}$.
  • jika titik A(x,y) pada lingkaran, maka berlaku  $x^{2}+y^{2}=r^{2}$, dan
  • jika titik A(x,y) di luar lingkaran, maka berlaku  $x^{2}+y^{2}>r^{2}$.

Demikian juga kedudukan sebuah titik terhadap sebuah lingkaran yang berpusat di $(a,b)$ memiliki 3 kemungkinan, yaitu:

  • jika titik A(x,y) di dalam lingkaran, maka berlaku $(x-a)^{2}+(y-b)^{2}<r^{2}$  atau  $x^{2}+y^{2}+Ax+By+C<0$.
  • jika titik A(x,y) pada lingkaran, maka berlaku $(x-a)^{2}+(y-b)^{2}=r^{2}$  atau  $x^{2}+y^{2}+Ax+By+C=0$.
  • jika titik A(x,y) di luar lingkaran, maka berlaku $(x-a)^{2}+(y-b)^{2}>r^{2}$  atau  $x^{2}+y^{2}+Ax+By+C>0$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Sebuah lingkaran yang berpusat pada }\\ &\textrm{pangkal koordinat}\\ &\textrm{a}.\quad \textrm{Tentukanlah persamaan lingkaran }\\ &\qquad\textrm{yang berjari-jari 5}\\ &\textrm{b}.\quad \textrm{Gambarlah lingkaran (pada soal a.) }\\ &\qquad\textrm{pada kertas grafiks}\\ &\textrm{c}.\quad \textrm{Lukislah titik-titik dari},\\ &\qquad A(2,3),\: B(4,3),\: \: \textrm{dan}\: \: C(3,6).\\ &\textrm{d}.\quad \textrm{Nyatakan kedudukan titik-titik}\\ &\qquad A,\: B,\: \textrm{dan}\: C\: \textrm{terhadap lingkaran. }\\ &\qquad\textrm{Di dalam, pada, atau}\\ &\qquad\textrm{beradakah di luar lingkaran}\\ &\textbf{Jawab}:\\ &\textrm{Perhatikanlah ilustrasi berikut} \end{array}$.


$\begin{aligned}\textrm{a}.\quad&\textrm{Diketahui}\: \: r=5\\ &\begin{aligned}&x^{2}+y^{2}=5^{2}\\ &\qquad\qquad \updownarrow\\ &x^{2}+y^{2}=25\\ &\textrm{atau}\\ &L\equiv \left \{ (x,y)|x^{2}+y^{2}=25 \right \} \end{aligned}\\ \textrm{b}.\quad&\textrm{Lihat gambar di atas}\\ \textrm{c}.\quad&\textrm{Lihat juga gambar di atas}\\ \textrm{d}.\quad&\textrm{Dari gambar jelas bahwa}:\\ &\begin{matrix} \bullet \quad \textrm{Titik}\: \: A(2,3)\: \textrm{berada di dalam lingkaran}\\ \textrm{atau}:(2)^{2}+(3)^{2}=4+9=13<\color{red}25\\ \bullet \quad \textrm{Titik}\: \: A(4,3)\: \textrm{berada pada lingkaran}\: \: \: \: \: \: \: \\ \textrm{atau}:(4)^{2}+(3)^{2}=16+9=25=\color{red}25\\ \bullet \quad \textrm{Titik}\: \: A(3,6)\: \textrm{berada di luar lingkaran}\: \: \: \,\\ \textrm{atau}:(3)^{2}+(6)^{2}=9+36=45>\color{red}25\\ \end{matrix} \end{aligned}$.

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah persamaan lingkaran}\\ &\textrm{yang berpusat di pangkal koordinat}\\ &\textrm{dan melalui titik}\: \: P(5,-3)\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{Diketahui}&\: \textrm{pusat lingkaran di pangkal }\\ \textrm{koordinat}&\: \: O(0,0)\: \: \textrm{serta lingkaran}\\ \textrm{yang mela}&\textrm{lui titik}\: \: P(5,-3),\: \textrm{maka}\\ r&=\sqrt{(x_{p}-0)^{2}+(y_{p}-0)^{2}}\\ &=\sqrt{5^{2}+(-3)^{2}}\\ &=\sqrt{25+9}\\ &=\sqrt{34}\\ \textrm{Sehingga }&,\: \textrm{persamaan lingkarannya adalah}\\ L&\equiv x^{2}+y^{2}=r^{2}\Leftrightarrow x^{2}+y^{2}=\color{red}34 \end{aligned}\end{array}$.


DAFTAR PUSTAKA
  1. Kartini, Suprapto, Subandi, Setiadi, U. 2005. Matematika Program Studi Ilmu Alam Kelas XI untuk SMA dan MA. Klaten: INTAN PARIWARA.
  2. Sobirin. 2006. Kompas Matematika Strategi Praktis Menguasai Tes Matematika SMA Kelas 2. Jakarta: KAWAN PUSTAKA.
  3. Wirodikromo, S. 2007. Matematika Jilid 2 IPA untuk Kelas XI. Jakarta: ERLANGGA.

Tidak ada komentar:

Posting Komentar

Informasi