$\color{blue}\textrm{A. Definisi Lingkaran}$.
Secara definisi lingkaran adalah tempat kedudukam titik-titik yang berjarak sama terhadap satu titik tertentu. Selanjutnya titik tertentu disebut sebagai pusat lingkaran sedangkan jarak yang salalu sama terhadapa titik tertentu tersebut disebut sebagai jari-jari atau radius (r).
Sebagai ilustrasi berikut diberikan gambar berkaitan kedudukan titik-titik tersebut
$\color{blue}\textrm{B. Persamaan Lingkaran Berpusat di O(0,0) }$.
Persamaan sebuah lingkaran dengan dengan jari-jari $r$ dan berpusat di titik pusat koordinat dapat dilustrasikan sebagai berikut
Misalkan sebuah titik $\textrm{P}(x,y)$ terletak pada sebuah lingkaran yang berpusat di O(0,0). Dan titik $\textrm{P}'(x,0)$ adalah proyeksi titik P pada sumbu-X sehingga $\bigtriangleup \textrm{OP}'\textrm{P}$ berupa sebuah segitiga siku-siku di $\textrm{P}'$. Dengan rumus Pythagoras kita mendapatkan
$\begin{aligned}&OP^{2}=(OP')^{2}+(PP')^{2}\\ &\Leftrightarrow \: r^{2}=x^{2}+y^{2}\\ &\Leftrightarrow r=\sqrt{x^{2}+y^{2}} \end{aligned}$
Untuk lebih memudahkan pemahaman Anda, perhatikanlah ilustrasi berikut
Sehingga dapat disimpulkan persamaan lingkaran yang berpusat di O(0,0) adalah:
$\begin{array}{|ccc|}\hline &&\\ &\color{red}x^{2}+y^{2}=r^{2}&\\ &&\\\hline \end{array}$.
$\color{blue}\textrm{C. Persamaan Lingkaran Berpusat di (a,b)}$.
Perhatikanlah ilustrasi berikut
Pada ilustrasi gambar di atas ditunjukkan sebuah lingkaran berpusat di $N(a,b)$ dengan jari-jari $r$, misalkan kita ambil sebuah titik $P(x,y)$ pada keliling lingkaran, maka $NP=r$.
$\begin{aligned}&\sqrt{(x-a)^{2}+(y-b)^{2}}=r^{2}\\ &\color{red}(x-a)^{2}+(y-b)^{2}=r^{2}\\ &\textrm{persamaan di atas adalah}\: \: \textbf{Bentuk Umum}\\ &\textrm{dari}\: \: \textbf{Persamaan Lingkaran}\: \: \textrm{yang}\\ &\textrm{berpusat di}\: \: (a,b) \end{aligned}$
Selanjutnya perhatikanlah rangkuman berikut
$\begin{array}{|l|c|c|}\hline \textrm{Lingkaran} &x^{2}+y^{2}=r^{2}&(x-p)^{2}+(y-q)^{2}=r^{2}\\\hline \textrm{Pusat}&(0,0)&(p,q)\\\hline \textrm{Jari-jari}&r&r\\\hline \begin{aligned}&\textrm{Pesamaan garis}\\ &\textrm{singgung melalui}\\ &\textrm{titik}\: \: (x_{1},y_{1})\\ &\textrm{pada lingkaran} \end{aligned}&x_{1}x+y_{1}y=r^{2}&\begin{aligned}&(x_{1}-p)(x-p)\\ &\: +(y_{1}-q)(y-q)=r^{2} \end{aligned}\\\hline \begin{aligned}&\textrm{Persamaan garis}\\ &\textrm{singgung dengan}\\ &\textrm{gradien}\: \: m \end{aligned}&\begin{aligned}&y=mx\\ &\: \pm r\sqrt{m^{2}+1} \end{aligned}&\begin{aligned}&(y-q)=m(x-a)\\ &\: \pm r\sqrt{m^{2}+1} \end{aligned}\\\hline \end{array}$.
Kusus untuk yang pusat $(a,b)$ adalah:
$\begin{array}{|l|c|}\hline \textrm{Lingkaran} &x^{2}+y^{2}+Ax+By+C=0\\\hline \textrm{Pusat}&\left ( -\frac{1}{2}A,-\frac{1}{2}B \right )\\\hline \textrm{Jari-jari}&r=\sqrt{\displaystyle \frac{1}{4}\left ( A^{2}+B^{2} \right )-C}\\\hline \begin{aligned}&\textrm{Pesamaan garis}\\ &\textrm{singgung melalui}\\ &\textrm{titik}\: \: (x_{1},y_{1})\\ &\textrm{pada lingkaran} \end{aligned}&\begin{aligned}&x_{1}x+y_{1}y\\ &\: +\displaystyle \frac{A}{2}(x_{1}+x)\\ &\: +\displaystyle \frac{B}{2}(y_{1}+y)+C=0 \end{aligned}\\\hline \begin{aligned}&\textrm{Persamaan garis}\\ &\textrm{singgung dengan}\\ &\textrm{gradien}\: \: m \end{aligned}&\begin{aligned}&y+\frac{1}{2}B=m(x+\frac{1}{2}A)\\ &\: \pm \sqrt{\displaystyle \frac{1}{4}\left ( A^{2}+B^{2} \right )-C}.\sqrt{m^{2}+1} \end{aligned}\\\hline \end{array}$
$\color{blue}\textrm{D. Kedudukan Titik Terhadap Lingkaran }$.
Kedudukan sebuah titik terhadap sebuah lingkaran yang berpusat di O(0,0) memiliki 3 kemungkinan, yaitu:
- jika titik A(x,y) di dalam lingkaran, maka berlaku $x^{2}+y^{2}<r^{2}$.
- jika titik A(x,y) pada lingkaran, maka berlaku $x^{2}+y^{2}=r^{2}$, dan
- jika titik A(x,y) di luar lingkaran, maka berlaku $x^{2}+y^{2}>r^{2}$.
Demikian juga kedudukan sebuah titik terhadap sebuah lingkaran yang berpusat di $(a,b)$ memiliki 3 kemungkinan, yaitu:
- jika titik A(x,y) di dalam lingkaran, maka berlaku $(x-a)^{2}+(y-b)^{2}<r^{2}$ atau $x^{2}+y^{2}+Ax+By+C<0$.
- jika titik A(x,y) pada lingkaran, maka berlaku $(x-a)^{2}+(y-b)^{2}=r^{2}$ atau $x^{2}+y^{2}+Ax+By+C=0$.
- jika titik A(x,y) di luar lingkaran, maka berlaku $(x-a)^{2}+(y-b)^{2}>r^{2}$ atau $x^{2}+y^{2}+Ax+By+C>0$.
$\color{blue}\textrm{E. Kedudukan Garis Terhadap Lingkaran }$.
Posisi garis terhadap lingkaran tergantung nilai Diskriminan (D) hasil substitusi persamaan garis ke persamaan lingkaran.
$\begin{cases} \bullet &\textrm{memotong lingkaran di dua titik}\: \: (D>0)\\ & \textrm{ada garis dan titik polar} \\ \bullet &\textrm{menyinggung lingkaran}\: \: (D=0) \\ \bullet &\textrm{tidak memotong ataupun menyinggung}\: \: (D<0) \end{cases}$.
Berikut Ilustrasi gambarnya
$\color{blue}\textrm{F. Jarak Garis ke Pusat Lingkaran}$.
$\begin{array}{|l|l|}\hline \textrm{Jarak titik}\: \: M(p,q)\: \: \textrm{terhadap pusat}&\\ \textrm{lingkaran}\: \: N(a,b)&\left | MN \right |=r\\ \qquad r=\left | \displaystyle \frac{Ap+Bq+C}{\sqrt{A^{2}+B^{2}}} \right |&\\\hline \end{array}$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Sebuah lingkaran yang berpusat pada }\\ &\textrm{pangkal koordinat}\\ &\textrm{a}.\quad \textrm{Tentukanlah persamaan lingkaran }\\ &\qquad\textrm{yang berjari-jari 5}\\ &\textrm{b}.\quad \textrm{Gambarlah lingkaran (pada soal a.) }\\ &\qquad\textrm{pada kertas grafiks}\\ &\textrm{c}.\quad \textrm{Lukislah titik-titik dari},\\ &\qquad A(2,3),\: B(4,3),\: \: \textrm{dan}\: \: C(3,6).\\ &\textrm{d}.\quad \textrm{Nyatakan kedudukan titik-titik}\\ &\qquad A,\: B,\: \textrm{dan}\: C\: \textrm{terhadap lingkaran. }\\ &\qquad\textrm{Di dalam, pada, atau}\\ &\qquad\textrm{beradakah di luar lingkaran}\\ &\textbf{Jawab}:\\ &\textrm{Perhatikanlah ilustrasi berikut} \end{array}$.
$\begin{aligned}\textrm{a}.\quad&\textrm{Diketahui}\: \: r=5\\ &\begin{aligned}&x^{2}+y^{2}=5^{2}\\ &\qquad\qquad \updownarrow\\ &x^{2}+y^{2}=25\\ &\textrm{atau}\\ &L\equiv \left \{ (x,y)|x^{2}+y^{2}=25 \right \} \end{aligned}\\ \textrm{b}.\quad&\textrm{Lihat gambar di atas}\\ \textrm{c}.\quad&\textrm{Lihat juga gambar di atas}\\ \textrm{d}.\quad&\textrm{Dari gambar jelas bahwa}:\\ &\begin{matrix} \bullet \quad \textrm{Titik}\: \: A(2,3)\: \textrm{berada di dalam lingkaran}\\ \bullet \quad \textrm{Titik}\: \: A(4,3)\: \textrm{berada pada lingkaran}\: \: \: \: \: \: \: \\ \bullet \quad \textrm{Titik}\: \: A(3,6)\: \textrm{berada di luar lingkaran}\: \: \: \, \end{matrix} \end{aligned}$
$\begin{aligned}\textrm{a}.\quad&\textrm{Diketahui}\: \: r=5\\ &\begin{aligned}&x^{2}+y^{2}=5^{2}\\ &\qquad\qquad \updownarrow\\ &x^{2}+y^{2}=25\\ &\textrm{atau}\\ &L\equiv \left \{ (x,y)|x^{2}+y^{2}=25 \right \} \end{aligned}\\ \textrm{b}.\quad&\textrm{Lihat gambar di atas}\\ \textrm{c}.\quad&\textrm{Lihat juga gambar di atas}\\ \textrm{d}.\quad&\textrm{Dari gambar jelas bahwa}:\\ &\begin{matrix} \bullet \quad \textrm{Titik}\: \: A(2,3)\: \textrm{berada di dalam lingkaran}\\ \textrm{atau}:(2)^{2}+(3)^{2}=4+9=13<\color{red}25\\ \bullet \quad \textrm{Titik}\: \: A(4,3)\: \textrm{berada pada lingkaran}\: \: \: \: \: \: \: \\ \textrm{atau}:(4)^{2}+(3)^{2}=16+9=25=\color{red}25\\ \bullet \quad \textrm{Titik}\: \: A(3,6)\: \textrm{berada di luar lingkaran}\: \: \: \,\\ \textrm{atau}:(3)^{2}+(6)^{2}=9+36=45>\color{red}25\\ \end{matrix} \end{aligned}$.
$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah persamaan lingkaran}\\ &\textrm{yang berpusat di pangkal koordinat}\\ &\textrm{dan melalui titik}\: \: P(5,-3)\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{Diketahui}&\: \textrm{pusat lingkaran di pangkal }\\ \textrm{koordinat}&\: \: O(0,0)\: \: \textrm{serta lingkaran}\\ \textrm{yang mela}&\textrm{lui titik}\: \: P(5,-3),\: \textrm{maka}\\ r&=\sqrt{(x_{p}-0)^{2}+(y_{p}-0)^{2}}\\ &=\sqrt{5^{2}+(-3)^{2}}\\ &=\sqrt{25+9}\\ &=\sqrt{34}\\ \textrm{Sehingga }&,\: \textrm{persamaan lingkarannya adalah}\\ L&\equiv x^{2}+y^{2}=r^{2}\Leftrightarrow x^{2}+y^{2}=\color{red}34 \end{aligned}\end{array}$.
$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah persamaan lingkaran yang }\\ &\textrm{berpusat di pangkal koordinat dan}\\ &\textrm{menyinggung}\: \: k\equiv 2x+y-5=0\\\\ &\textbf{Jawab}:\\ &\textrm{Perhatikan ilustrasi berikut} \end{array}$.
menjadi
$\begin{aligned}&\textrm{Diketahui}\: \textrm{bahwa titik}\: \: O\: \: \textrm{ke garis}\: \: k\: \: \textrm{adalah}\\ &r=OA=\displaystyle \left |\frac{ax_{1}+by_{1}+c}{\sqrt{a^{2}+b^{2}}} \right |\\ &=\displaystyle \left | \frac{2(0)+(0)-5}{\sqrt{2^{2}+1^{2}}} \right |\\ &=\displaystyle \left | \frac{-5}{\sqrt{5}} \right |\\ &=\left | -\sqrt{5} \right |\\ &=-(-\sqrt{5})=\sqrt{5}\\ &\textrm{(ingat, nilai mutlak bilangan negatif adalah bilngan positif)}\\ &\textrm{Sehingga persamaan lingkarannya adalah}:\\ &\qquad L\equiv x^{2}+y^{2}=r^{2}\Leftrightarrow \color{red}x^{2}+y^{2}=5\end{aligned}$.
$\begin{array}{ll}\\ 4.&\textrm{Tentukanlah pusat dan jari-jari lingkaran berikut?}\\ &\textrm{a}.\quad L\equiv (x+1)^{2}+(y+2)^{2}=9\\ &\textrm{b}.\quad L\equiv (x+1)^{2}+(y-2)^{2}=9\\ &\textrm{c}.\quad L\equiv (x-1)^{2}+(y+2)^{2}=9\\ &\textrm{d}.\quad L\equiv (x-1)^{2}+(y-2)^{2}=9\\ &\textrm{e}.\quad L\equiv (x+3)^{2}+(y-3)^{2}=9\\ &\textrm{f}.\quad L\equiv (x-1)^{2}+(y-2)^{2}=25\\ &\textrm{g}.\quad L\equiv (x-1)^{2}+y^{2}=27\\ &\textrm{h}.\quad L\equiv x^{2}+(y-1)^{2}=27\\\\ &\textrm{Jawab}:\\ &L\equiv (x+1)^{2}+(y+2)^{2}=9,\: \: \textrm{pusat di}\: \: (-1,-2)\\ &\textrm{dan jari-jarinya adalah}\: \: \sqrt{9}=3\\ &\textrm{Soal yang belum dibahas silahkan }\\ &\textrm{diselesaikan sendiri sebagai latihan} \end{array}$.
$\begin{array}{ll}\\ 5.&\textrm{Tentukanlah persamaan lingkaran yang }\\ &\textrm{berpusat di}\: \: A(2,-1)\: \: \textrm{dan menginggung}\\ &\textrm{garis}\: \: 4y+3x-12=0\: \: \textrm{di titik}\: \: P\\\\ &\textbf{Jawab}:\\ &\textrm{Perhatikan ilustrasi berikut} \end{array}$.
$\begin{aligned}&\textrm{Sehingga}\\ &r=AP=\left | \frac{3(2)+4(1)-12}{\sqrt{3^{2}+4^{2}}} \right |\\ &\: \: =\left | \frac{-10}{5} \right |=\left | -2 \right |=2\\ &\textrm{Sehingga persamaan lingkarannya adalah}\\\ &L\equiv (x-2)^{2}+(y+1)^{2}=\color{red}4 \end{aligned}$.
$\begin{array}{ll}\\ 6.&\textrm{Tentukanlah pusat dan jari-jari dari }\\ &\textrm{persamaan lingkaran}\\\ & L\equiv 2x^{2}+2y^{2}-2x+6y-3=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Persamaan lingkaran}\\\ & L\equiv 2x^{2}+2y^{2}-2x+6y-3=0\\ &\Leftrightarrow \color{blue}x^{2}+y^{2}-x+3y-\displaystyle \frac{3}{2}=0\color{red}\begin{cases} A & =-1 \\ B & =3 \\ C & =-\displaystyle \frac{3}{2} \end{cases}\\ &\textrm{maka}\: \: \begin{cases} \textrm{Pusat} & =\left ( -\displaystyle \frac{-1}{2},- \frac{3}{2}\right )=\left ( \displaystyle \frac{1}{2},-\frac{3}{2} \right ) \\ \textrm{Jari-jari} & =r=\sqrt{\displaystyle \frac{(-1)^{2}}{4}+\frac{3^{2}}{4}-\left ( -\frac{3}{2} \right )}\\ &=\sqrt{\displaystyle \frac{1}{4}+\frac{9}{4}+\frac{6}{4}}=\sqrt{4}=2 \end{cases}\\ &\textrm{Jadi, lingkaran}\: \: 2x^{2}+2y^{2}-2x+6y-3=0\\\ & \textrm{berpusat di} \: \: \left ( \displaystyle \frac{1}{2},-\frac{3}{2} \right )\: \: \textrm{dan berjari-jari}\: \: 2\end{aligned} \end{array}$.
$\begin{array}{ll}\\ 7.&\textrm{Diketahui persamaan lingkaran}\\\ &L\equiv 2x^{2}+2y^{2}-4x+3py-30=0\\ & \textrm{dan melalui titik}\: \: (-2,1).\: \textrm{Tentukanlah }\\ &\textrm{persamaan lingkaran baru yang} \\ &\textrm{kosentris(sepusat) dan panjang jari-jarinya}\\ &\textrm{dua kali panjang jari-jari lingkaran semula?}\\\\ &\textbf{Jawab}\\ &\begin{aligned}&\textrm{Diketahui persamaan lingkaran}\\ &2x^{2}+2y^{2}-4x+3py-30=0,\: \: \textrm{melalui}\\ &(-2,1), \: \: \textrm{maka}\\ &\begin{aligned}&\textrm{kita tentukan harga}\: \: p\: \: \textrm{dulu, yaitu}:\\ &2(-2)^{2}+2(1)^{2}-4(-2)+3p(1)-30=0\\ &\Leftrightarrow \: \: 8+2+8+3p-30=0\\ &\Leftrightarrow \: \: 3p=12\\ &\Leftrightarrow \: \: \color{red}p=4 \end{aligned}\\ &\textrm{Akibatnya persamaan lingkaran menjadi}\\ &\begin{aligned}&2x^{2}+2y^{2}-4x+12y-30=0\\ &\Leftrightarrow \: \: x^{2}+y^{2}-2x+6y-15=0 \end{aligned}\\ &\begin{aligned}&\begin{cases} \color{blue}\textrm{Pusat}: \\ \left ( -\displaystyle \frac{1}{2}A,-\frac{1}{2}B \right )\\ =\left ( -\displaystyle \frac{1}{2}.(-2),-\frac{1}{2},6 \right )\\ =(1,-3) \\\\ \color{blue}\textrm{Jari-jari }:\\ \begin{aligned}r&=\sqrt{\left ( -\frac{1}{2}A \right )^{2}+\left ( -\frac{1}{2}B \right )-C}\\ &=\sqrt{1^{2}+(-3)^{2}-(-15)}\\ &=\sqrt{1+9+15}=5 \end{aligned} \end{cases} \\ & \end{aligned}\\ &\textrm{Selanjutnya}\\ &\begin{aligned}&\textrm{Persamaan}\: \textrm{lingkaran baru }\\ &\textrm{dengan pusat}\: \: (1,-3)\: \: \textrm{dan jari-jari}\\ & r_{\textrm{baru}}=2r=2.5=10\\ &(x-1)^{2}+(y+3)^{2}=(10)^{2}\\ &\Leftrightarrow \: \: x^{2}-2x+1+y^{2}+6x+9=100\\ &\Leftrightarrow \: \: \color{red}x^{2}+y^{2}-2x+6y-90=0\end{aligned} \end{aligned} \end{array}$
Berikut ilustrasi gambarnya
$\begin{array}{ll}\\ 8.&\textrm{Tentukanlah nilai}\: \: p\: \: \textrm{supaya lingkaran}\\ & x^{2}+y^{2}-px-10y+4=0 \\ &\textrm{a}.\quad \textrm{menyinggung sumbu x}\\ &\textrm{b}.\quad \textrm{memotong sumbu x di dua titik}\\ &\textrm{c}.\quad \textrm{tidak memotong dan tidak menyinggung }\\ &\quad\: \: \: \: \textrm{sumbu x}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\\ &\textrm{Persamaan lingkaran}:\\ &x^{2}+y^{2}-px-10y+4=0\\ &\textrm{saat menyinggung}\: \: \textrm{sumbu x},\: \: \textrm{maka}\: \: y=0\\ &\textrm{adalah gar}\textrm{is yang sejajar sumbu x, maka}\\ &y=0\Rightarrow \: \: x^{2}+y^{2}-px-10y+4=0\\ &\: \qquad \Leftrightarrow \: \: x^{2}+0^{2}-px-0+4=0\\ &\: \qquad \Leftrightarrow \: \: \color{red}x^{2}-px+4 \end{aligned}\\ &\textrm{Selanjutnya}\\ &\begin{array}{|c|c|c|}\hline \textrm{Menyinggung}&\textrm{memotong}&\textrm{Tidak keduanya}\\\hline \begin{aligned}D&= b^{2}-4ac=0\\ &\Leftrightarrow p^{2}-4.1.4=0\\ &\Leftrightarrow p^{2}=16\\ &\Leftrightarrow p=\pm 4\\ & \end{aligned}&\begin{aligned}D&>0\\ &\Leftrightarrow b^{2}-4ac>0\\ &\Leftrightarrow p^{2}-16>0\\ &\Leftrightarrow (p+4)(p-4)>0\\ &\therefore \quad p<-4\: \: \textrm{atau}\: \: p>4 \end{aligned}&\begin{aligned}D&<0\\ &\Leftrightarrow b^{2}-4ac<0\\ &\Leftrightarrow p^{2}-16<0\\ &\Leftrightarrow (p+4)(p-4)<0\\ &\therefore \quad -4<p<4 \end{aligned}\\\hline \end{array} \end{array}$.
$\begin{array}{ll}\\ 9.&\textrm{Tentukanlah nilai}\: \: a\: \: \textrm{supaya lingkaran}\\ & x^{2}+y^{2}=1\: \: \textrm{dan garis}\: \: y=ax+2 \\ &\textrm{a}.\quad \textrm{bersinggungan}\\ &\textrm{b}.\quad \textrm{berpotongan}\\ &\textrm{c}.\quad \textrm{tidak berpotongan maupun bersinggungan}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Di sini yang kita bahas adalah yang poin b, }\\ &\textrm{yaitu untuk}\: \: y=ax+2,\: \: \textrm{maka}\\ &x^{2}+y^{2}=1\\ &x^{2}+(ax+2)^{2}=1\\ &x^{2}+a^{2}x^{2}+4ax+4=1\\ &(1+a^{2})x^{2}+4ax+3=0\\ &\textrm{syarat berpotongan}\: \: D=b^{2}-4ac\geq 0\\ &(\textrm{artinya bersinggungan sekaligus berpotongan di 2 titik})\\ &(4a)^{2}-4(1+a^{2})(3)\geq 0\\ &16a^{2}-12a^{2}-12\geq 0\\ &4a^{2}-12\geq 0\\ &a^{2}-3\geq 0\\ &(a+\sqrt{3})(a-\sqrt{3})\geq 0\\ &\therefore \: \: \: \: a\leq -\sqrt{3}\: \: \textrm{atau}\: \: a\geq \sqrt{3} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 10.&\textrm{Tentukanlah persamaan garis singgung lingkaran}\\ & x^{2}+y^{2}=12\: \: \textrm{dan melalui titik}\: \: P(0,4)\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui persamaan lingkaran}\\ &x^{2}+y^{2}=12\\ &\textrm{Persamaan garis singgung lingkaran}\\ &\textrm{melalui titik}\: \: (x_{1},y_{1})\: \: \textrm{adalah}:\\ &\begin{aligned}x^{2}+y^{2}&=12\\ xx+yy&=12\\ x_{1}x+y_{1}y&=12\\ \textrm{garis ini melalui}&\: \: \textrm{titik}\\ P(0,4)&, \textrm{maka}\\ x_{1}.0+y_{1}.4&=12\\ y_{1}&=3\: ......(1)\end{aligned}\\ &\textrm{Karena titik}\: \: (x_{1},y_{1})\: \: \textrm{pada lingkaran}\\ &\textrm{maka},\\ &x_{1}^{2}+y_{1}^{2}=12\: ......(2)\\ &\textrm{Selanjutnya dari persamaan}\: \: (1)\: \&\: (2)\\ &\textrm{akan diperoleh}\\ &\begin{aligned}&x_{1}^{2}+y_{1}^{2}=12\\ y_{1}=3\Rightarrow \: \: &x_{1}^{2}+(3)^{2}=12\\ \Leftrightarrow \: \: &x_{1}^{2}+9=12\\ \Leftrightarrow \: \: &x_{1}^{2}=3\\ \Leftrightarrow \: \: &x_{1}=\pm \sqrt{3}\end{aligned}\\ &\begin{aligned}& \textrm{Sehingga persa}\textrm{maan garis singgungnya}\\ &\left ( x_{1}x+y_{1}y=12 \right )\: \: \textrm{adalah}:\\ &\begin{cases} \textrm{di titik} & (x_{1},y_{1})=(\sqrt{3},3)\: \: \, \, \Rightarrow \color{red}\sqrt{3}x+3y=12\\ \textrm{di titik} & (x_{1},y_{1})=(-\sqrt{3},3)\Rightarrow \color{red}-\sqrt{3}x+3y=12 \end{cases}\\ &\end{aligned} \end{aligned} \end{array}$
Berikut ilustrasi gambarnya
DAFTAR PUSTAKA
- Kartini, Suprapto, Subandi, Setiadi, U. 2005. Matematika Program Studi Ilmu Alam Kelas XI untuk SMA dan MA. Klaten: INTAN PARIWARA.
- Sobirin. 2006. Kompas Matematika Strategi Praktis Menguasai Tes Matematika SMA Kelas 2. Jakarta: KAWAN PUSTAKA.
- Wirodikromo, S. 2007. Matematika Jilid 2 IPA untuk Kelas XI. Jakarta: ERLANGGA.