$\color{blue}\textrm{A. Definisi Lingkaran}$.
Secara definisi lingkaran adalah tempat kedudukam titik-titik yang berjarak sama terhadap satu titik tertentu. Selanjutnya titik tertentu disebut sebagai pusat lingkaran sedangkan jarak yang salalu sama terhadapa titik tertentu tersebut disebut sebagai jari-jari atau radius (r).
Sebagai ilustrasi berikut diberikan gambar berkaitan kedudukan titik-titik tersebut
$\color{blue}\textrm{B. Persamaan Lingkaran Berpusat di O(0,0) }$.
Persamaan sebuah lingkaran dengan dengan jari-jari $r$ dan berpusat di titik pusat koordinat dapat dilustrasikan sebagai berikut
$\color{blue}\textrm{C. Persamaan Lingkaran Berpusat di (a,b)}$.
Perhatikanlah ilustrasi berikut
Pada ilustrasi gambar di atas ditunjukkan sebuah lingkaran berpusat di $N(a,b)$ dengan jari-jari $r$, misalkan kita ambil sebuah titik $P(x,y)$ pada keliling lingkaran, maka $NP=r$.
$\begin{aligned}&\sqrt{(x-a)^{2}+(y-b)^{2}}=r^{2}\\ &\color{red}(x-a)^{2}+(y-b)^{2}=r^{2}\\ &\textrm{persamaan di atas adalah}\: \: \textbf{Bentuk Umum}\\ &\textrm{dari}\: \: \textbf{Persamaan Lingkaran}\: \: \textrm{yang}\\ &\textrm{berpusat di}\: \: (a,b) \end{aligned}$
Selanjutnya perhatikanlah rangkuman berikut
$\begin{array}{|l|c|c|}\hline \textrm{Lingkaran} &x^{2}+y^{2}=r^{2}&(x-p)^{2}+(y-q)^{2}=r^{2}\\\hline \textrm{Pusat}&(0,0)&(p,q)\\\hline \textrm{Jari-jari}&r&r\\\hline \begin{aligned}&\textrm{Pesamaan garis}\\ &\textrm{singgung melalui}\\ &\textrm{titik}\: \: (x_{1},y_{1})\\ &\textrm{pada lingkaran} \end{aligned}&x_{1}x+y_{1}y=r^{2}&\begin{aligned}&(x_{1}-p)(x-p)\\ &\: +(y_{1}-q)(y-q)=r^{2} \end{aligned}\\\hline \begin{aligned}&\textrm{Persamaan garis}\\ &\textrm{singgung dengan}\\ &\textrm{gradien}\: \: m \end{aligned}&\begin{aligned}&y=mx\\ &\: \pm r\sqrt{m^{2}+1} \end{aligned}&\begin{aligned}&(y-q)=m(x-a)\\ &\: \pm r\sqrt{m^{2}+1} \end{aligned}\\\hline \end{array}$.
Kusus untuk yang pusat $(a,b)$ adalah:
$\begin{array}{|l|c|}\hline \textrm{Lingkaran} &x^{2}+y^{2}+Ax+By+C=0\\\hline \textrm{Pusat}&\left ( -\frac{1}{2}A,-\frac{1}{2}B \right )\\\hline \textrm{Jari-jari}&r=\sqrt{\displaystyle \frac{1}{4}\left ( A^{2}+B^{2} \right )-C}\\\hline \begin{aligned}&\textrm{Pesamaan garis}\\ &\textrm{singgung melalui}\\ &\textrm{titik}\: \: (x_{1},y_{1})\\ &\textrm{pada lingkaran} \end{aligned}&\begin{aligned}&x_{1}x+y_{1}y\\ &\: +\displaystyle \frac{A}{2}(x_{1}+x)\\ &\: +\displaystyle \frac{B}{2}(y_{1}+y)+C=0 \end{aligned}\\\hline \begin{aligned}&\textrm{Persamaan garis}\\ &\textrm{singgung dengan}\\ &\textrm{gradien}\: \: m \end{aligned}&\begin{aligned}&y+\frac{1}{2}B=m(x+\frac{1}{2}A)\\ &\: \pm \sqrt{\displaystyle \frac{1}{4}\left ( A^{2}+B^{2} \right )-C}.\sqrt{m^{2}+1} \end{aligned}\\\hline \end{array}$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Tentukan persamaan lingkaran yang }\\ & \textrm{berpusat di (0,-2) dan berjari-jari}\: \: 5\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui pusat lingkaran berpusat}\\ &\textrm{di}\: \: (0,-2)\: \: \textrm{dan berjari-jari}\: r=5\\ &\textrm{Persamaan lingkarannya adalah}:\\ &\color{red}(x-a)^{2}+(y-b)^{2}=r^{2}\\ &\Leftrightarrow \: (x-0)^{2}+(y-(-2))^{2}=\left ( 5 \right )^{2}\\ &\Leftrightarrow \: x^{2}+(y+2)^{2}=25,\quad \textrm{atau}\\ &\Leftrightarrow \: x^{2}+y^{2}+4y+4=25\\ &\textrm{Jadi, persamaan lingkarannya}\\ &\textrm{adalah}\: \: \: x^{2}+y^{2}+4y-21=0 \end{aligned} \end{array}$,
$\begin{array}{ll}\\ 2.&\textrm{Tentukan persamaan lingkaran}\\ & \textrm{yang berpusat di titik}\: \: M(1,3)\\ &\textrm{dan melalui titik}\: \: N(-2,5)\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui jari-jari lingkaran}\\ &r=MN=\sqrt{(x_{M}-x_{N})^{2}+()^{2}}\\ &\Leftrightarrow \: \: =\sqrt{(-2-1)^{2}+(5-3)^{2}}\\ &\Leftrightarrow \: \: =\sqrt{(-3)^{2}+2^{2}}\\ &\Leftrightarrow \: \: =\sqrt{9+4}=\sqrt{13}\\ &\textrm{maka}\\ &\textrm{persamaan lingkarannya adalah}\\ &(x-1)^{2}+(y-3)^{2}=r^{2}\\ &\Leftrightarrow \: (x-1)^{2}+(y-3)^{2}=\left ( \sqrt{13} \right )^{2}\\ &\Leftrightarrow \: (x-1)^{2}+(y-3)^{2}=13\\ &\textrm{Jadi, jari-jari lingkarannya}\\ &\textrm{adalah}\: \: \sqrt{13}\: .\: \textrm{Dan persamaan}\\ &\textrm{lingkarannya adalah}:\: (x-1)^{2}+(y-3)^{2}=13 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah pusat dan jari-jari lingkaran berikut?}\\ &\textrm{a}.\quad L\equiv (x+1)^{2}+(y+2)^{2}=9\\ &\textrm{b}.\quad L\equiv (x+1)^{2}+(y-2)^{2}=9\\ &\textrm{c}.\quad L\equiv (x-1)^{2}+(y+2)^{2}=9\\ &\textrm{d}.\quad L\equiv (x-1)^{2}+(y-2)^{2}=9\\ &\textrm{e}.\quad L\equiv (x+3)^{2}+(y-3)^{2}=9\\ &\textrm{f}.\quad L\equiv (x-1)^{2}+(y-2)^{2}=25\\ &\textrm{g}.\quad L\equiv (x-1)^{2}+y^{2}=27\\ &\textrm{h}.\quad L\equiv x^{2}+(y-1)^{2}=27\\\\ &\textrm{Jawab}:\\ &L\equiv (x+1)^{2}+(y+2)^{2}=9,\: \: \textrm{pusat di}\: \: (-1,-2)\\ &\textrm{dan jari-jarinya adalah}\: \: \sqrt{9}=3\\ &\textrm{Selanjutnya, perhatikantabel berikut}\\ &\begin{array}{|c|l|c|l|}\hline 3.\textrm{a}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (-1,2)\\ \textrm{Jar-jari}:\sqrt{9}=3 \end{matrix}\right.&3.\textrm{b}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (-1,-2)\\ \textrm{Jar-jari}:\sqrt{9}=3 \end{matrix}\right.\\\hline 3.\textrm{c}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (1,-2)\\ \textrm{Jar-jari}:\sqrt{9}=3 \end{matrix}\right.&3.\textrm{d}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (1,2)\\ \textrm{Jar-jari}:\sqrt{9}=3 \end{matrix}\right.\\\hline 3.\textrm{e}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (-3,3)\\ \textrm{Jar-jari}:\sqrt{9}=3 \end{matrix}\right.&3.\textrm{f}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (1,2)\\ \textrm{Jar-jari}:\sqrt{25}=5 \end{matrix}\right.\\\hline 3.\textrm{g}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (1,0)\\ \textrm{Jar-jari}:\sqrt{27}=3\sqrt{3} \end{matrix}\right.&3.\textrm{h}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (0,1)\\ \textrm{Jar-jari}:\sqrt{27}=3\sqrt{3} \end{matrix}\right.\\\hline \end{array} \end{array}$
Tidak ada komentar:
Posting Komentar
Informasi