$\begin{array}{ll}\\ 41.&\textrm{Jika}\: \: x=\: ^{15}\log 75\: \: \textrm{dan}\: \: y=\: ^{\displaystyle ^{\frac{3}{5}}}\log \displaystyle \frac{9}{125},\\ &\textrm{maka nilai}\: \: 5x+3y-2xy\: \: \textrm{adalah}\: ....\\\\ &\color{blue}\textrm{KOMPETISI HARDIKNAS ONLINE}\\ &\color{blue}\textrm{POSI}(\textrm{Pelatihan Olimpiade Sain Indonesia})\\ &\color{blue}\textrm{Bidang Matematika 2020}\\ &\begin{array}{llll}\\ \textrm{a}.&-1\\ \textrm{b}.&1\\ \textrm{c}.&3\\ \textrm{d}.&5\\ \color{red}\textrm{e}.&7 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{e}\\ &\color{blue}\begin{aligned}&\color{black}5x+3y-2xy\\ &=5\left ( ^{15}\log 75 \right )+3\left ( ^{\displaystyle ^{\frac{3}{5}}}\log \displaystyle \frac{9}{125} \right )\\ &\qquad -2\left ( ^{15}\log 75 \right )\left ( ^{\displaystyle ^{\frac{3}{5}}}\log \displaystyle \frac{9}{125} \right )\\ &=5\left ( \displaystyle \frac{\log 75}{\log 15} \right )+3\left ( \displaystyle \frac{\log \displaystyle \frac{9}{125}}{\log \displaystyle \frac{3}{5}} \right )\\ &\qquad -2\left ( \displaystyle \frac{\log 75}{\log 15} \right )\left ( \displaystyle \frac{\log \displaystyle \frac{9}{125}}{\log \displaystyle \frac{3}{5}} \right )\\ &=5\left ( \displaystyle \frac{\log 3.5^{2}}{\log 3.5} \right )+3\left ( \displaystyle \frac{\log -\log 125}{\log 3-\log 5} \right )\\ &\qquad -2\left ( \displaystyle \frac{\log 3.5^{2}}{\log 3.5} \right )\left ( \displaystyle \frac{\log 9-\log 125}{\log 3-\log 5} \right )\\ &=5\left ( \displaystyle \frac{\log 3+\log 5^{2}}{\log 3-\log 5} \right )+3\left ( \displaystyle \frac{\log 3^{2}-\log 5^{3}}{\log 3-\log 5} \right )\\ &\qquad -2\left ( \displaystyle \frac{\log 3+\log 5^{2}}{\log 3+\log 5} \right )\left ( \displaystyle \frac{\log 3^{2}-\log 5^{3}}{\log 3-\log 5} \right )\\ &=5\left ( \displaystyle \frac{\log 3+2\log 5}{\log 3-\log 5} \right )+3\left ( \displaystyle \frac{2\log 3-3\log 5}{\log 3-\log 5} \right )\\ &\qquad -2\left ( \displaystyle \frac{\log 3+2\log 5}{\log 3+\log 5} \right )\left ( \displaystyle \frac{2\log 3-3\log 5}{\log 3-\log 5} \right )\\\\ &\color{red}\textrm{Misalkan}\: \: \color{black}\log 3=A,\: \: \log 5=B \end{aligned} \end{array}$
$.\qquad\color{purple}\begin{aligned} &\color{red}\textrm{Selanjutnya}\\ &=5\left ( \displaystyle \frac{A+2B}{A+B} \right )+3\left ( \displaystyle \frac{2A-3B}{A-B} \right )\\ &\qquad -2\left ( \displaystyle \frac{A+2B}{A+B} \right )\left ( \displaystyle \frac{2A-3B}{A-B} \right )\\ &=\left ( \displaystyle \frac{5A+10B}{A+B} \right )+\left ( \displaystyle \frac{6A-9B}{A-B} \right )\\ &\qquad -\left ( \displaystyle \frac{2A+4B}{A+B} \right )\left ( \displaystyle \frac{2A-3B}{A-B} \right )\\ &=\displaystyle \frac{(5A+10B)(A-B)+(6A-9B)(A+B)}{A^{2}-B^{2}}\\ &\qquad -\left (\displaystyle \frac{4A^{2}-6AB+8AB-12B^{2}}{A^{2}-B^{2}} \right )\\ &=\displaystyle \frac{5A^{2}-5AB+10AB-10B^{2}}{A^{2}-B^{2}}\\ &\quad +\displaystyle \frac{6A^{2}+6AB-9AB-9B^{2}}{A^{2}-B^{2}}\\ &\qquad -\left (\displaystyle \frac{4A^{2}-6AB+8AB-12B^{2}}{A^{2}-B^{2}} \right )\\ &=\displaystyle \frac{7A^{2}-7B^{2}}{A^{2}-B^{2}}\\ &=\displaystyle \frac{7\left ( A^{2}-B^{2} \right )}{A^{2}-B^{2}}\\ &=7 \end{aligned}$
$\begin{array}{ll}\\ 42.&\textrm{Diberikan}\: \: A=\: ^{6}\log 16\: \: \textrm{dan}\: \: B=\: ^{12}\log 27\\ &\textrm{Terdapat bilangan-bilangan bulat positif}\\ &a,\: b,\: \: \textrm{dan}\: \: c\: \: \textrm{sehingga}\: \: (A+a)(B+b)=c\\ &\textrm{Nilai dari}\: \: a+b+c\: \: \textrm{adalah}\: ....\\\\ &\color{blue}\textrm{KOMPETISI HARDIKNAS ONLINE}\\ &\color{blue}\textrm{POSI}(\textrm{Pelatihan Olimpiade Sain Indonesia})\\ &\color{blue}\textrm{Bidang Matematika 2020}\\ &\begin{array}{llll}\\ \textrm{a}.&23\\ \textrm{b}.&24\\ \textrm{c}.&27\\ \textrm{d}.&30\\ \textrm{e}.&34 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{....}\\ &\color{blue}\begin{aligned}&\color{black}\textrm{Diketahui}\\ &A=\: ^{6}\log 16=\displaystyle \frac{\log 16}{\log 6}=\displaystyle \frac{\log 2^{4}}{\log 2.3}=\frac{4\log 2}{\log 2+\log 3}\\ &\Leftrightarrow \color{black}\log 2+\log 3=\displaystyle \frac{4\log 2}{A}\: ...........\color{red}(1)\\ &B=\: ^{12}\log 27=\displaystyle \frac{\log 27}{\log 12}=\frac{\log 3^{3}}{\log 2^{2}.3}=\frac{3\log 3}{2\log 2+\log 3}\\ &\Leftrightarrow \color{black}2\log 2+\log 3=\displaystyle \frac{3\log 3}{B}\: .........\color{red}(2)\\ &\color{black}\textrm{ELIMINASI}\\ &\textrm{Dari persamaan (1) dan (2) diperoleh}:\\ &\bullet \quad \log 2=\displaystyle \frac{3\log 3}{B}-\displaystyle \frac{4\log 2}{A}\\ &\qquad \Leftrightarrow \log 2=\displaystyle \frac{3A\log 3-4B\log 2}{AB}\\ &\qquad \Leftrightarrow AB\log 2=3A\log 3-4B\log 2\\ &\qquad \Leftrightarrow AB\log 2+4B\log 2=3A\log 3\\ &\qquad \Leftrightarrow (AB+4B)\log 2=3A\log 3\\ &\qquad \Leftrightarrow \displaystyle \frac{\log 2}{\log 3}=\color{purple}\displaystyle \frac{3A}{AB+4B}\: ..........\color{red}(3)\\ &\bullet \quad \log 3=\displaystyle \frac{8\log 2}{A}-\displaystyle \frac{3\log 3}{B}\\ &\qquad \Leftrightarrow \log 3=\displaystyle \frac{8B\log 2-3A\log 3}{AB}\\ &\qquad \Leftrightarrow AB\log 3=8B\log 2-3A\log 3\\ &\qquad \Leftrightarrow AB\log 3+3A\log 3=8B\log 2\\ &\qquad \Leftrightarrow (AB+3A)\log 3=8B\log 2\\ &\qquad \Leftrightarrow \frac{\log 2}{\log 3}=\color{purple}\displaystyle \frac{AB+3A}{8B}...........\color{red}(4)\\ &\color{black}\textrm{KESAMAAN}\\ &\qquad\quad \frac{\log 2}{\log 3}=\frac{\log 2}{\log 3}\\ &\color{purple}\displaystyle \frac{AB+3A}{8B}=\color{purple}\displaystyle \frac{3A}{AB+4B}\\ &\qquad \Leftrightarrow (AB+3A)(AB+4B)=(8B).(3A)\\ &\qquad \Leftrightarrow (B+3)(A+4)=24\\ &\qquad \Leftrightarrow (A+4)(B+3)=24\\ &\color{black}\textrm{KESIMPULAN}\\ &a=4,\: b=3,\: \: \textrm{dan}\: \: c=24,\\ &\color{purple}\textrm{maka}\: \: \color{black}a+b+c=4+3+24=\color{red}31 \end{aligned} \end{array}$