$\begin{array}{ll}\\ 6.&\textrm{Diketahui matriks}\\ &\textrm{M}=\begin{pmatrix} -6 & 9&-15\\ 3 & -6&12 \end{pmatrix}\\ &\textrm{dan}\: \: \textrm{N}=\begin{pmatrix} 2 & -3&5\\ -1 & 2&-4 \end{pmatrix}.\\ &\textrm{Nilai}\: \: k\: \: \textrm{yang memenuhi jika}\\ &\textrm{M}=k\textrm{N}\: \: \textrm{adalah}....\\ &\begin{array}{llllllll}\\ \textrm{a}.&-\displaystyle \frac{1}{3}\\ \textrm{b}.&\displaystyle \frac{1}{3}\\ \textrm{c}.&-1\\ \color{red}\textrm{d}.&-3\\ \textrm{e}.&3 \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{d}\\ &\color{blue}\begin{aligned}&\textrm{Diketahu bahwa}\\ &\textrm{M}=k\textrm{N}\\ &(\color{red}\textrm{perkalian suatu matrik dengan skalar})\\ &\begin{pmatrix} -6 & 9&-15\\ 3 & -6&12 \end{pmatrix}\\ &=\begin{pmatrix} \color{red}-3.\color{black}2 & \color{red}-3.\color{black}-3 & \color{red}-3.\color{black}5\\ \color{red}-3.\color{black}-1 & \color{red}-3.\color{black}2 & \color{red}-3.\color{black}-4 \end{pmatrix}\\ &=\color{red}-3\color{black}\begin{pmatrix} 2 & -3 & 5\\ -1 & 2 & -4 \end{pmatrix}\\ &=k\begin{pmatrix} 2 & -3&5\\ -1 & 2&-4 \end{pmatrix}\\ &\textrm{sehingga dari kesamaan tersebut}\\ &\textrm{maka}\quad \color{red}k=-3 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 7.&\textrm{Hasil dari}\: \: \begin{pmatrix} 1&2&3\\ 4&5&6 \end{pmatrix}\times \begin{pmatrix} 1 &2 \\ 3 &4 \\ 5 & 6 \end{pmatrix}\\ & \textrm{adalah}...\\ &\begin{array}{llllllll}\\ \color{red}\textrm{a}.&\begin{pmatrix} 22 & 28\\ 49&64 \end{pmatrix}\\ \textrm{b}.&\begin{pmatrix} 22&49\\ 28&64 \end{pmatrix}\\ \textrm{c}.&\begin{pmatrix} 64&28\\ 49&22 \end{pmatrix}\\ \textrm{d}.&\begin{pmatrix} 2 & 8&18\\ 4&15 & 30 \end{pmatrix}\\ \textrm{e}.&\begin{pmatrix} 1&4&6\\ 4&15&30 \end{pmatrix} \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{a}\\ &\color{blue}\begin{aligned}&\begin{pmatrix} 1&2&3\\ 4&5&6 \end{pmatrix}_{\color{red}2\times \color{black}3}\times \begin{pmatrix} 1 &2 \\ 3 &4 \\ 5 & 6 \end{pmatrix}_{\color{black}3\times \color{red}2}\\ &=\begin{pmatrix} 1.1+2.3+3.5 & 1.2+2.4+3.6\\ 4.1+5.3+6.5 &4.2+5.4+6.6 \end{pmatrix}_{\color{red}2\times 2}\\ &=\begin{pmatrix} 1+6+15 & 2+8+18\\ 4+15+30 & 8+20+36 \end{pmatrix}_{\color{red}2\times 2}\\ &=\begin{pmatrix} 22 & 28\\ 49 & 64 \end{pmatrix}_{\color{red}2\times 2} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 8.&\textrm{Jika diketahui matriks}\\ & \textrm{A}=\begin{pmatrix} 0&1\\ 3&2 \end{pmatrix}.\\ &\textrm{maka hasil dari}\: \: \textrm{A}^{3}\: \: \textrm{adalah}....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\begin{pmatrix} 5 & 8\\ 20&22 \end{pmatrix}\\ \color{red}\textrm{b}.&\begin{pmatrix} 6&7\\ 21&20 \end{pmatrix}\\ \textrm{c}.&\begin{pmatrix} 6&7\\ 20&22 \end{pmatrix}\\ \textrm{d}.&\begin{pmatrix} 7 & 8\\ 20 & 23 \end{pmatrix}\\ \textrm{e}.&\begin{pmatrix} 7&9\\ 20&23 \end{pmatrix} \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{b}\\ &\color{blue}\begin{aligned}\textrm{Dike}&\textrm{tahui bahwa}\\ \textrm{A}&=\begin{pmatrix} 0&1\\ 3&2 \end{pmatrix}\\ \textrm{mak}&\textrm{a}\\ \textrm{A}^{2}&=\textrm{A}\times \textrm{A}\\ &=\begin{pmatrix} 0&1\\ 3&2 \end{pmatrix}\times \begin{pmatrix} 0&1\\ 3&2 \end{pmatrix}\\ &=\begin{pmatrix} 0+3&0+2\\ 0+6&3+4 \end{pmatrix}\\ &=\color{purple}\begin{pmatrix} 3 & 2\\ 6 & 7 \end{pmatrix}\\ \textrm{A}^{3}&=\textrm{A}^{2}\times \textrm{A}\\ &=\begin{pmatrix} 3 & 2\\ 6 &7 \end{pmatrix}\times \begin{pmatrix} 0 & 1\\ 3 & 2 \end{pmatrix}\\ &=\begin{pmatrix} 0+6 & 3+4\\ 0+21 & 6+14 \end{pmatrix}\\ &=\color{red}\begin{pmatrix} 6 & 7\\ 21 & 20 \end{pmatrix} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 9.&(\textbf{SBMPTN Mat IPA 2014})\\ &\textrm{Jika}\: \: \textrm{A}\: \: \textrm{adalah matriks yang berordo}\\ & 2\times 2\: \: \textrm{dan memenuhi}\\ &\: \: \begin{pmatrix} x & 1 \end{pmatrix}\times \textrm{A}\times \begin{pmatrix} x\\ 1 \end{pmatrix}=x^{2}-5x+8,\\ & \textrm{maka matriks A yang mungkin adalah}....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\begin{pmatrix} 1 & -5\\ 8&0 \end{pmatrix}\\ \textrm{b}.&\begin{pmatrix} 1&5\\ 8&0 \end{pmatrix}\\ \textrm{c}.&\begin{pmatrix} 1&8\\ -5&0 \end{pmatrix}\\ \color{red}\textrm{d}.&\begin{pmatrix} 1 & 3\\ -8&8 \end{pmatrix}\\ \textrm{e}.&\begin{pmatrix} 1&-3\\ 8&-8 \end{pmatrix} \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{d}\\ &\color{blue}\begin{aligned}\begin{pmatrix} x & 1 \end{pmatrix}\times \textrm{A}\times \begin{pmatrix} x\\ 1 \end{pmatrix}&=\color{red}x^{2}-5x+8\\ \begin{pmatrix} x & 1 \end{pmatrix}\times \begin{pmatrix} p & q\\ r & s \end{pmatrix}\times \begin{pmatrix} x\\ 1 \end{pmatrix}&=\color{red}x^{2}-5x+8\\ \begin{pmatrix} xp+r & xq+s \end{pmatrix}\times \begin{pmatrix} x\\ 1 \end{pmatrix}&=\color{red}x^{2}-5x+8\\ \begin{pmatrix} x^{2}p+xr+xq+s \end{pmatrix}&=\color{red}x^{2}-5x+8\\ px^{2}+(q+r)x+s&=\color{red}x^{2}-5x+8\\ \end{aligned}\\ &\color{blue}\begin{aligned}&\begin{cases} \color{red}p &=1 \\ q+r &=-5 \\ \color{red}s &=8 \end{cases}\quad\Rightarrow\quad \begin{pmatrix} 1 & ...\\ ... & 8 \end{pmatrix}\\ &\textrm{Sehingga yang paling mungkin}\\ & \textrm{adalah}\: \: \color{red}\begin{pmatrix} 1 & 3\\ -8 & 8 \end{pmatrix} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 10.&\textrm{Diketahui}\\ &\begin{pmatrix} ^{x}\log a & \log (2a-6)\\ \log (b-2) & 1 \end{pmatrix}=\begin{pmatrix} \log b & 1\\ \log a & 1 \end{pmatrix}\\ &\textrm{maka nilai}\: \: x\: \: \textrm{adalah}....\\ &\begin{array}{llllllll}\\ \textrm{a}.&1\\ \textrm{b}.&2\\ \textrm{c}.&4\\ \textrm{d}.&6\\ \color{red}\textrm{e}.&8 \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{e}\\ &\color{blue}\begin{aligned}&\begin{pmatrix} ^{x}\log a & \log (2a-6)\\ \log (b-2) & 1 \end{pmatrix}=\begin{pmatrix} \log b & 1\\ \log a & 1 \end{pmatrix}\\ &\color{black}\textrm{maka}\\ &\begin{cases} ^{x}\log a & =\log b \quad.........\color{red}(1)\\ \log (2a-6) &=1\quad..............\color{red}(2) \\ \log (b-2) &=\log a\quad.........\color{red}(3) \end{cases}\\ &\textrm{Sehingga}\: \textrm{dari persamaan}\: \: (2)\\ &\color{black}\textrm{akan didapatkan}\\ &\log (2a-6)=1=\log 10\\ &(2a-6)=10\\ &a=8\quad...........................(4)\\ &\textrm{persamaan}\: (4)\: \: \textrm{ke persamaan}\: \: (3),\\ & \color{black}\textrm{maka}\\ &\log (b-2) =\log a\\ &b-2=a=8\\ &b=10\quad.................................(5)\\ &\textrm{Selanjutnya dari persamaan}\: \: (5)\\ &\color{black}\textrm{akan diperoleh}\\ &^{x}\log a =\log b\\ &^{x}\log 8 =\log 10=1\\ &\qquad x^{1}=8\\ &\Leftrightarrow \: \: \color{red}x=8 \end{aligned} \end{array}$
Tidak ada komentar:
Posting Komentar
Informasi