Contoh Soal 2 Sistem Pertidaksamaan Dua Variabel-Linear-Linear (Kelas X Matematika Wajib)

$\begin{array}{ll}\\ 6.&\textrm{Bentuk sederhana dari}\\ & 2y-5>2x+4y+3\: \: \textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&y-x>4\\ \textrm{b}.&y-x<4\\ \textrm{c}.&y+x+4>0\\ \color{red}\textrm{d}.&y+x+4<0\\ \textrm{e}.&y+x<1 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\color{blue}\begin{aligned}&2y-5>2x+4y+3\\ &2y-4y-2x-5-3>0\\ &-2y-2x-8>0\: \: \color{black}\textrm{dibagi}\: \left ( -\displaystyle \frac{1}{2} \right )\\ &y+x+4<0 \end{aligned} \end{array}$

$\begin{array}{l}\\ 7.&\textrm{Jika}\: \: 3x-4>5x-17\\ &\textrm{maka sebuah bilangan prima}\\ &\textrm{yang mungkin adalah}\: ....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&3\\ \textrm{b}.&7\\ \textrm{c}.&11\\ \textrm{d}.&13\\ \textrm{e}.&17 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\color{blue}\begin{aligned}&3x-4>5x-17\\ &\Leftrightarrow 3x-5x>-17+4\\ &\Leftrightarrow -2x>-13\quad \color{black}\textrm{tiap ruas}\: (\times -1)\\ &\Leftrightarrow 2x<13\\ &\Leftrightarrow x<\displaystyle \frac{13}{2}=6\frac{1}{2}\\ &\color{black}\textrm{Jadi, yang memenuhi adalah 3 dan 5} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 8.&\textrm{Jika}\: \: \displaystyle \frac{1}{5}<\frac{1}{x}\: \: \textrm{dan}\: \: x<0\\ &\textrm{maka}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&0<x<\displaystyle \frac{1}{5}\\ \color{red}\textrm{b}.&-5<x<0\\ \textrm{c}.&0<x<5\\ \textrm{d}.&x<-5\\ \textrm{e}.&-\displaystyle \frac{1}{5}<x<0 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\color{blue}\begin{aligned}\textrm{Dike}&\textrm{tahui}\\ \displaystyle \frac{1}{5}&<\frac{1}{x}\: \: \: \textrm{dan}\: \: x<0\\ \displaystyle \frac{1}{5}&<\displaystyle \frac{1}{x}\\ x&<5 \\ x&>-5\qquad \color{black}\textrm{karena}\: \: x<0\\ \textrm{Sehi}&\textrm{ngga}\\ \color{red}-5<&\color{red}x<0 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 9.&\textrm{Jika}\: \: a,b,c\: \: \textrm{dan}\: \: d\: \: \textrm{bilangan real}\\ &\textrm{dengan}\: \: a>b\: \: \textrm{dan}\: \: c>d\\ &\textrm{maka berlaku}\\ &(1)\quad ac>bd\\ &(2)\quad a+c>b+d\\ &(3)\quad ad>bc\\ &(4)\quad ac+bd>ad+bc\\ &\textrm{Pernyataan-pernyataan di atas}\\ & \textrm{yang tepat adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&(1),(2),\: \: \textrm{dan}\: \: (3)\\ \textrm{b}.&(1)\: \: \textrm{dan}\: \: (3)\\ \color{red}\textrm{c}.&(2)\: \: \textrm{dan}\: \: (4)\\ \textrm{d}.&(4)\\ \textrm{e}.&\textrm{Semua benar} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\color{blue}\begin{aligned}&\textrm{Diketahui}:\: \color{black}a,b,c\: \: \textrm{dan}\: \: d\: \: \color{blue}\textrm{bilangan real}\\ &\color{red}\textrm{Jelas bahwa baik bilangan positif maupun} \\ &\color{red}\textrm{negatif termasuk semunya dibolehkan}\\ &\textrm{dengan}\: \: \color{black}a>b\: \: \textrm{dan}\: \: c>d\\ &\bullet \quad\textrm{Sehingga pernyataan (1)}\quad ac>bd\\ &\qquad\textrm{salah saat kita coba bilangan negatif}\\ &\bullet \quad \textrm{Pernyataan (2) benar karena}\\ &\qquad \color{blue}\begin{array}{llll} \color{black}a&>&\color{black}b&\\ \color{black}c&>&\color{black}d&\color{red}+\\\hline \color{red}a+c&>&\color{red}b+d\\ \end{array}\\ &\bullet \quad \textrm{Kasusnya sama dengan poin (1)}\\ &\qquad \textrm{saat dicoba dengan bilangan positif}\\ &\qquad \color{red}\textrm{tidak semuanya memenuhi}\\ &\bullet \quad \textrm{Pernyataan (4) tepat juga karena}\\ &\qquad \color{blue}\begin{array}{ll}\\ a-b>0\\ c-d>0\qquad \color{black}\textrm{Saat dikalikan}\\\hline \color{red}(a-b)\times \color{red}(c-d)>0\\ \Leftrightarrow \color{red}ac\color{black}-ad-bc\color{red}+bd>0\\ \Leftrightarrow \color{red}ac+bd>\color{black}ad+bc \end{array} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 10.&\textrm{Jika}\: \: -2<y<3\: \: \textrm{maka}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&9<(y-2)^{2}<16\\ \textrm{b}.&4<(y-2)^{2}<16\\ \textrm{c}.&1<(y-2)^{2}<16\\ \color{red}\textrm{d}.&0\leq (y-2)^{2}<16\\ \textrm{e}.&-1<(y-2)^{2}<16 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\color{blue}\begin{aligned}&\textrm{Diketahui}:\: -2<y<3\\ &\color{red}\bullet \quad \textrm{saat dikurangi}\: \: 2\\ &\qquad \Leftrightarrow \: -2-2<y-2<3-2\\ &\qquad -4<y-2<1\\ &\color{red}\bullet \quad \textrm{Saat}\: \: -4<y-2<0\\ &\qquad (-4)^{2}<(y-2)^{2}<0^{2}\quad \textrm{dikuadratkan}\\ &\qquad 16>(y-2)^{2}>0\\ &\qquad 0<(y-2)^{2}<16\\ &\color{red}\bullet \quad \textrm{Saat}\: \: 0\leq y-2<1\\ &\qquad 0^{2}\leq (y-2)^{2}<1^{2}\\ &\qquad 0<(y-2)^{2}<1\\ &\textrm{Jadi}\: ,\: \: \color{red}0\leq (y-2)<16 \end{aligned} \end{array}$

Tidak ada komentar:

Posting Komentar

Informasi