MENGINGAT KEMBALI
$\color{blue}\textrm{E. Sifat-Sifat Eksponen dan Logaritma}$
$\color{blue}\textrm{E.1 Persamaan Eksponen dan Logaritma}$
$\color{blue}\begin{array}{|l|l|}\hline \color{red}\textrm{Eksponens}&\color{black}\textrm{Logaritma}\\\hline \displaystyle a^{n}=\underset{n\: \: faktor}{\underbrace{a\times a\times a\times \cdots \times a}}&\color{black}^{a}\log b=c\: \Rightarrow \: a^{c}=b\\\hline \bullet \quad a^{p}\times a^{q}=a^{p+q}&\bullet \quad \color{black}^{a}\log x+\: ^{a}\log y=\: ^{a}\log xy\\\hline \bullet \quad a^{p}: a^{q}=a^{p-q}&\bullet \quad \color{black}^{a}\log x-\: ^{a}\log y=\: ^{a}\log \displaystyle \frac{x}{y}\\\hline \bullet \quad \left ( a^{p} \right )^{q}=a^{p.q}&\bullet \quad ^{a}\log x=\: \displaystyle \frac{^{m}\log x}{^{m}\log a}\\\hline \bullet \quad \displaystyle \sqrt[q]{a^{p}}=\displaystyle a^{ \left (\frac{p}{q} \right )}&\bullet \quad ^{a}\log b\: \times \: ^{b}\log c=\: ^{a}\log c\\\hline \bullet \quad \left ( a\times b \right )^{p}=a^{p}\: \times \: b^{p}&\bullet \quad ^{a^{m}}\log b^{n}=\displaystyle \frac{n}{m}\times \: ^{a}\log b\\\hline \bullet \quad \left ( \displaystyle \frac{a}{b} \right )^{p}=\displaystyle \frac{\displaystyle a^{p}}{\displaystyle b^{p}}&\bullet \quad \displaystyle a^{\: {^{a}}\log b}=b\\\hline \bullet \quad a^{-p}=\displaystyle \frac{1}{\displaystyle a^{p}}&\bullet \quad ^{a}\log b=\displaystyle \frac{1}{^{b}\log a}\\\hline \bullet \quad a^{0}=1,\: \: \: \: \: a\neq 0&\bullet \quad ^{a}\log 1=0\\\hline \bullet \quad a^{1}=1&\bullet \quad \color{black}^a\log a=1\\\hline \begin{cases} a,b\: \in \mathbb{R} \\ p,q\: \in \mathbb{Q} \end{cases}&\begin{cases} a\neq 0 &\\ a>0&(\textrm{bilangan pokok}) \\ x,y>0 & (\textrm{numerus}) \end{cases}\\\hline \end{array}$
Selanjutnya
$\color{blue}\begin{array}{|l|l|l|}\hline \textrm{No}&\qquad\textrm{Bentuk}&\qquad\qquad\color{red}\textrm{Syarat}\\\hline 1.&a^{f(x)}=1&a\neq 0,\quad \textrm{maka}\: \: \color{red}f(x)=0\\\hline 2.&a^{f(x)}=a^{p}&a>0,\: \: a\neq 1,\quad \textrm{maka}\: \: \color{red}f(x)=p\\\hline 3.&a^{f(x)}=a^{g(x)}&a>0,\: \: a\neq 1,\quad \textrm{maka}\: \: \color{red}f(x)=g(x)\\\hline 4.&a^{f(x)}=b^{f(x)}&a\neq 0,\: b\neq 0\: ,\quad \textrm{maka}\: \: \color{red}f(x)=0\\\hline 5.&f(x)^{g(x)}=1&\begin{cases} f(x)=1 & \\ g(x)=0, & \textrm{jika}\: \: f(x)\neq 0 \\ f(x)=-1, & \textrm{jika}\: \: g(x)=\: \textrm{genap} \end{cases}\\\hline 6.&\color{black}f(x)^{g(x)}=f(x)^{h(x)}&\color{red}\begin{cases} (i).\quad g(x)=h(x)& \\ (ii).\quad f(x)=1& \\ (iii).\quad f(x)=0,&g(x)>0,\: \: h(x)>0 \\ (iv).\quad f(x)=-1,&g(x)\: \textrm{dan}\: h(x)\: \: \\ &\color{black}\textrm{keduanya ganjil}\\ &\color{black}\textrm{atau genap} \end{cases}\\\hline 7.&g(x)^{f(x)}=h(x)^{f(x)}&\begin{cases} (i).\quad g(x) =h(x)& \\ (ii).\quad f(x)=0, & g(x)\neq 0,\: h(x)\neq 0 \end{cases}\\\hline 8.&\begin{aligned}&\color{black}A\left ( a^{f(x)} \right )^{2}\\ &\quad \color{black}+B\left ( a^{f(x)} \right )\\ &\qquad \color{black}+C=0 \end{aligned}&\color{red}a>0,\: \: a\neq 1\\\hline \end{array}$
$\color{blue}\textrm{E.2 Pertidaksamaan Eksponen dan Logaritma}$
Berikut sifat pertidaksamaan Eksponen
$\color{blue}\begin{array}{|l|l|}\hline \qquad\qquad \color{red}a>1&\qquad\qquad \color{black}0<a<1\\\hline a^{f(x)}\leq a^{g(x)}\Rightarrow f(x)\leq g(x)&a^{f(x)}\leq a^{g(x)}\Rightarrow f(x)\geq g(x)\\\hline a^{f(x)}< a^{g(x)}\Rightarrow f(x)< g(x)&a^{f(x)}< a^{g(x)}\Rightarrow f(x)> g(x)\\\hline a^{f(x)}\geq a^{g(x)}\Rightarrow f(x)\geq g(x)&a^{f(x)}\geq a^{g(x)}\Rightarrow f(x)\leq g(x)\\\hline a^{f(x)}> a^{g(x)}\Rightarrow f(x)> g(x)&a^{f(x)}> a^{g(x)}\Rightarrow f(x)< g(x)\\\hline \end{array}$
Untuk pertidaksamaan logaritma (dengan syarat $\left (f(x)>0\: \: \textrm{dan}\: \: g(x)>0 \right )$ ) adalah sebagai berikut:
$\color{blue}\begin{array}{|l|l|}\hline \qquad\qquad \color{red}a>1&\qquad \color{black}0<a<1\\\hline \begin{aligned}&^a\log f(x)\leq \: ^a\log g(x)\\ &\Rightarrow f(x)\leq g(x) \end{aligned}&\begin{aligned}&^a\log f(x)\leq \: ^a\log g(x)\\ &\Rightarrow f(x)\geq g(x) \end{aligned}\\\hline \begin{aligned}&^a\log f(x)< \: ^a\log g(x)\\ &\Rightarrow f(x)< g(x) \end{aligned}&\begin{aligned}&^a\log f(x)< \: ^a\log g(x)\\ &\Rightarrow f(x)> g(x) \end{aligned}\\\hline \begin{aligned}&^a\log f(x)\geq \: ^a\log g(x)\\ &\Rightarrow f(x)\geq g(x) \end{aligned}&\begin{aligned}&^a\log f(x)\geq \: ^a\log g(x)\\ &\Rightarrow f(x)\leq g(x) \end{aligned}\\\hline \begin{aligned}&^a\log f(x)> \: ^a\log g(x)\\ &\Rightarrow f(x)> g(x) \end{aligned}&\begin{aligned}&^a\log f(x)> \: ^a\log g(x)\\ &\Rightarrow f(x)< g(x) \end{aligned}\\\hline \end{array}$
Tidak ada komentar:
Posting Komentar
Informasi