Contoh Soal 6 Matriks

$\begin{array}{ll}\\ 26.&(\textbf{UM UGM 2004})\\ &\textrm{Nilai-nilai}\: \: x\: \: \textrm{agar matriks}\\ &\qquad\quad\quad\begin{pmatrix} 5x & 5\\ 4 & x \end{pmatrix}\\ &\textrm{tidak memiliki invers adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&4\: \: \textrm{atau}\: \: 5\\ \color{red}\textrm{b}.&-2\: \: \textrm{atau}\: \: 2\\ \textrm{c}.&-4\: \: \textrm{atau}\: \: 5\\ \textrm{d}.&-6\: \: \textrm{atau}\: \: 4\\ \textrm{e}.&0 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\color{blue}\begin{aligned}&\textrm{supaya matriks}\: \: \color{black}\begin{pmatrix} 5x & 5\\ 4 & x \end{pmatrix}\\ &\textrm{tidak memiliki invers},\: \textrm{maka}\\ &\textrm{determinan matriks}\: \: \color{black}\begin{pmatrix} 5x & 5\\ 4 & x \end{pmatrix}=0\\ &\color{red}\textrm{Sehingga}\\ &\begin{vmatrix} 5x & 5\\ 4 & x \end{vmatrix}=0\\ &\Leftrightarrow 5x^{2}-20=0\\ &\Leftrightarrow x^{2}=\color{red}4\\ &\Leftrightarrow x=\color{red}\pm 2 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 27.&(\textbf{UM UGM 2005})\\ &\textrm{Matriks}\: \: \begin{pmatrix} x & 1\\ -2 & 1-x \end{pmatrix}\\ &\textrm{tidak memiliki invers untuk}\\ &\textrm{nilai}\: \: x=\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&-1\: \: \textrm{atau}\: \: -2\\ \textrm{b}.&-1\: \: \textrm{atau}\: \: 0\\ \textrm{c}.&-1\: \: \textrm{atau}\: \: 1\\ \color{red}\textrm{d}.&-1\: \: \textrm{atau}\: \: 2\\ \textrm{e}.&1\: \: \textrm{atau}\: \: 2 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\textrm{Mirip dengan pembahasan no. 26}\\ &\color{blue}\begin{aligned}&\textrm{Nilai}\: \: \color{black}\begin{vmatrix} x & 1\\ -2 & 1-x \end{vmatrix}=0\\ &\Leftrightarrow x-x^{2}-(-2)=0\\ &\Leftrightarrow 2+x-x^{2}=0\\ &\Leftrightarrow x^{2}-x-2=0\\ &\Leftrightarrow (x-2)(x+1)=0\\ &\Leftrightarrow \color{red}x=2\: \: \color{blue}\textrm{atau}\: \: \color{red}x=-1 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 28.&(\textbf{Mat Das SIMAK UI 2014})\\ &\textrm{Jika matriks}\: \: \textrm{A}\: \: \textrm{adalah invers}\\ &\textrm{dari matriks}\: \: \displaystyle \frac{1}{3}.\begin{pmatrix} -1 & -3\\ 4 & 5 \end{pmatrix}\: \: \textrm{dan}\\ &\textrm{A}\begin{pmatrix} x\\ y \end{pmatrix}=\begin{pmatrix} 1\\ 3 \end{pmatrix}\: \: \textrm{maka nilai}\: \: 2x+y\: \: \textrm{adalah}....\\ &\begin{array}{llllllll}\\ \textrm{a}.&-\displaystyle \frac{10}{3}\\ \color{red}\textrm{b}.&-\displaystyle \frac{1}{3}\\ \textrm{c}.&1\\ \textrm{d}.&\displaystyle \frac{9}{7}\\ \textrm{e}.&\displaystyle \frac{20}{3} \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{b}\\ &\color{blue}\begin{aligned}&\textrm{Misalkan diketahui matriks}\\ &\textrm{B}=\displaystyle \frac{1}{3}.\begin{pmatrix} -1 & -3\\ 4 & 5 \end{pmatrix},\\ &\textrm{maka}\: \: \textrm{A}=\left ( \displaystyle \frac{1}{3}.\begin{pmatrix} -1 & -3\\ 4 & 5 \end{pmatrix} \right )^{-1}\\ &\textrm{selanjutnya}\: \: \textrm{A}\begin{pmatrix} x\\ y \end{pmatrix}=\begin{pmatrix} 1\\ 3 \end{pmatrix}\\ &\begin{pmatrix} x\\ y \end{pmatrix}=A^{-1}\begin{pmatrix} 1\\ 3 \end{pmatrix},\\ & \textrm{ingat bahwa}\: \: \left (\textbf{A}^{-1} \right )^{-1}=\textbf{A}\\ &\begin{pmatrix} x\\ y \end{pmatrix}=\left ( \left ( \displaystyle \frac{1}{3}.\begin{pmatrix} -1 & -3\\ 4 & 5 \end{pmatrix} \right )^{-1} \right )^{-1}\begin{pmatrix} 1\\ 3 \end{pmatrix}\\ &\begin{pmatrix} x\\ y \end{pmatrix}=\displaystyle \frac{1}{3}.\begin{pmatrix} -1 & -3\\ 4 & 5 \end{pmatrix}\begin{pmatrix} 1\\ 3 \end{pmatrix}\\ &\begin{pmatrix} x\\ y \end{pmatrix}=\displaystyle \frac{1}{3}\begin{pmatrix} -1-9\\ 4+15 \end{pmatrix}=\begin{pmatrix} \displaystyle -\frac{10}{3}\\ \displaystyle \frac{19}{3} \end{pmatrix}\\ &2x+y=2\left ( -\displaystyle \frac{10}{3} \right )+\frac{19}{3}\\ &\qquad\: \: \: \, =\color{red}\displaystyle \frac{-20+19}{3}=-\displaystyle \frac{1}{3} \end{aligned} \end{array}$

Tidak ada komentar:

Posting Komentar

Informasi