$\LARGE\colorbox{magenta}{CONTOH SOAL 14}$.
Perhatikanlah ilustrasi berikut
$\LARGE\colorbox{magenta}{CONTOH SOAL 14}$.
Perhatikanlah ilustrasi berikut
$\LARGE\colorbox{magenta}{CONTOH SOAL 13}$.
Diberikan dua kertas karton A dan B yang sama ukurannya diatur dengan posisi berbeda berikut
Jika lebarnya (bagian seperti tinggi) baik kertas A maupun kertas B bagian tepinya direkatkan jadilah ia sebuah tabung yang tentunya tinggi tabung dari kertas A dan B akan menyesuaikan lebar kertasnya. Tentukanlah volume terbesar dari kedua tabung tersebut dan berilah alasannya
$\LARGE\colorbox{white}{SOLUSI SOAL 13}$.
Perhatikanlah ilustrasi dari dua kertas yang sama ukurannya di atas yang dikondisikan posisinya berbeda
Materi Pendukung
A. Faktor Pembilang
Misalkan kita ingin mendaftar bilangan keliapatan genap positif $m$ yang kurang dari atau sama dengan $n$.
Jika $n$ kelipatan dari $m$, maka akan dapat dituliskan $n=k.m$. Karena $n=k.m$ selanjutnya $k=\displaystyle \frac{n}{m}$ dan oleh karenanya dapat dituliskan pula $m,\: 2m,\: \cdots ,km=n$.
Akan tetapi, jika $n$ bukan merupakan kelipatan dari $m$, maka akan terdapat suatu bilangan bulat $k$ dengan $km<n<(k+1)m$, dengan $k$ adalah bilangan bulat terbesar yang kurang dari $\displaystyle \frac{n}{m}$.
B. Fungsi Bilangan Dasar/Fungsi Tangga
Untuk suatu bilangan asli $x$, fungsi dasar $x$ dinotasikan dengan $\left \lfloor x \right \rfloor$ adalah bilangan bulat terbesar yang kurang dari atau sama dengan $x$.
Contoh:
$\left \lfloor 1,7 \right \rfloor=1,\: \: \left \lfloor \sqrt{5} \right \rfloor=2,\: \textrm{dan}\: \: \left \lfloor 4 \right \rfloor=4$.
Selanjutnya, untuk menuliskan banyaknya bilangan bulat positif $m$ yang kurang dari atau sama dengan bilangan bulat $n$ adalah $\left \lfloor \displaystyle \frac{n}{m} \right \rfloor$.
Contoh:
Untuk menuliskan banyaknya bilangan kelipatan 3 yang yang terletak di antara bilangan 5 dan 10 dapat ditentukan dengan
$\begin{aligned}&\left \lfloor \displaystyle \frac{10}{3} \right \rfloor-\left \lfloor \displaystyle \frac{5}{3} \right \rfloor=3-1=2\\ &\\ &\textrm{bukan dituliskan dengan}\\ &\color{red}\left \lfloor \displaystyle \frac{10-5}{3} \right \rfloor=\left \lfloor \displaystyle \frac{5}{3} \right \rfloor=1 \end{aligned}$.
Prinsip Inklusi Eksklusi
Hal yang berkaitan dengan jumlah hitungan dan tidaknya.
Jika diberikan $N$ objek, sebagai misal
dan misal
serta misalkan juga
Maka gabungan objek $N$ dengan sifat $\alpha$, $\beta$ serta $\gamma$ adalah:
$\begin{aligned}&\left | \color{red}N(\alpha )\color{black}\cup \color{red}N(\beta )\color{black}\cup \color{red}N(\gamma )\color{black}\cup \cdots \right |\\ &=\left | \color{red}N(\alpha )\color{black}+\color{red}N(\beta )\color{black}+\color{red}N(\gamma )\color{black}+\cdots \right |\\ &\quad -\left | \color{blue}N(\alpha,\beta )\color{black}+\color{blue}N(\alpha,\gamma )\color{black}+\color{blue}N(\beta ,\gamma )\color{black}+\cdots \right |\\ &\quad +\left | \color{purple}N(\alpha ,\beta ,\gamma )\color{black}+\cdots \right |\\ &\quad -\: \: \cdots \end{aligned}$.
$\LARGE\colorbox{magenta}{CONTOH SOAL 11}$.
Perhatikanlah tabel berikut
A. Apa itu AKM
AKM adalah singkatan dari Asesmen Kompetensi Minimum merupakan penilaian kompetensi mendasar yang diperlukan oleh semua murid untuk mampu mengembangkan kapasitas diri dan berpartisipasi positif pada masyarakat.
Ada 2 macam kompetensi mendasar yang akan diukur pada AKM ini, yaitu: literasi membaca dan literasi matematika (numerasi). Baik literasi membaca maupun literasi matematika/numerasi, kompetensi mendasar yang akan dinilai mencakup
B. 2 Persamaan Trigonometri Bentuk Kuadrat
Persamaan trigonometri terkadang juga terdapat dalam bentuk kuadrat, sehingga penyelesaiannya menyesuaikan dengan persamaan kuadrat tersebut yaitu proses faktorisasi, atau melengkapkan kudrat sempurna,dan atau dengan rumus ABC.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &\sin x-2\sin ^{2}x=0\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq x\leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &\sin x-2\sin ^{2}x=0\: \: (\textbf{lalu difaktorkan})\\ &\sin x\left ( 1-2\sin x \right )=0\\ &\sin x=0\: \: \textrm{atau}\: \: 1-2\sin x=0\\ &\textrm{selanjutnya}\\ &\begin{array}{|l|l|}\hline \begin{aligned}\sin x&=0\\ \sin x&=\sin 0^{\circ}\\ x&=0^{\circ}+k.360^{\circ}\\ &\color{red}\textrm{atau}\\ x&=180^{\circ}+k.360^{\circ}\\ \textrm{saat}&\: \: k=0\\ x&=0^{\circ}\: \: \textrm{dan}\: \: 180^{\circ}\\ \textrm{saat}&\: \: k=1\\ x&=360^{\circ}\: \: \textrm{dan}\: \: \color{red}540^{\circ} \end{aligned}&\begin{aligned}\sin x&=\displaystyle \frac{1}{2}\\ \sin x&=\sin 30^{\circ}\\ x&=30^{\circ}+k.360^{\circ}\\ &\color{red}\textrm{atau}\\ x&=\left (180^{\circ}-30^{\circ} \right )+k.360^{\circ}\\ &=150^{\circ}+k.360^{\circ}\\ \textrm{saat}&\: \: k=0\\ x&=30^{\circ}\: \: \textrm{dan}\: \: 150^{\circ}\\ \textrm{saat}&\: \: k=1\\ x&=\color{red}390^{\circ}\: \: \color{black}\textrm{dan}\: \: \color{red}510^{\circ} \end{aligned} \\\hline \end{array}\\ &\textbf{HP}=\left \{ 0^{\circ},30^{\circ},150^{\circ},180^{\circ},360^{\circ} \right \} \end{array}$
$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &2\tan ^{2}\theta -\sec \theta +1=0\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq \theta \leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &\tan ^{2}\theta -\sec \theta +1=0\\ &2\left (\sec ^{2}\theta -1 \right )-\sec \theta +1=0\\ &2\sec ^{2}\theta -\sec \theta -1=0\: \: (\textbf{lalu difaktorkan})\\ &\left (2\sec \theta +1 \right )\left ( \sec \theta -1 \right )=0\\ &\left (2\sec \theta +1 \right )=0\: \: \textrm{atau}\: \: \left (\sec \theta -1 \right )=0\\ &\sec \theta =-\displaystyle \frac{1}{2}\: \: \textrm{atau}\: \: \sec \theta =1\\ &\displaystyle \frac{1}{\cos \theta }=-\frac{1}{2}\: \: \textrm{atau}\: \: \displaystyle \frac{1}{\cos \theta }=1\\ &\cos \theta =-2\: (\textbf{tidak mungkin})\: \: \textrm{atau}\: \: \cos \theta =1\\ &\textrm{selanjutnya}\\ &\cos \theta =1\Leftrightarrow \cos \theta =\cos 0^{\circ}\\ &\Leftrightarrow \theta =\pm 0^{\circ}+k.360^{\circ}\Leftrightarrow \theta =k.360^{\circ}\\ &k=0\Rightarrow x=0^{\circ}\\ &k=1\Rightarrow x=360^{\circ}\\ &k=2\Rightarrow x=\color{red}720^{\circ}\: \: \textrm{tidak memenuhi}\\ &\textbf{HP}=\left \{ 0^{\circ},360^{\circ} \right \} \end{array}$.
$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &5\cos ^{2}\beta +3\cos \beta =2\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq \beta \leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &5\cos ^{2}\beta +3\cos \beta =2\\ &5\cos ^{2}\beta +3\cos \beta -2=0\: \: (\textbf{lalu difaktorkan})\\ &\left ( 5\cos \beta -2 \right )\left ( \cos \beta +1 \right )=0\\ &\left ( 5\cos \beta -2 \right )=0\: \: \textrm{atau}\: \: \left ( \cos \beta +1 \right )=0\\ &5\cos \beta -2=0\: \: \textrm{atau}\: \: \cos \beta +1=0\\ &\cos \beta =\displaystyle \frac{2}{5}\: \: \textrm{atau}\: \: \cos \beta =-1\\ &\cos \beta =\cos 66,4^{\circ}\: \: \textrm{atau}\: \: \cos \beta =180^{\circ}\\ &\textrm{selanjutnya}\\ &\begin{array}{|l|l|}\hline \begin{aligned}\beta &=\pm 66,4^{\circ}+k.360^{\circ}\\ k=0&\Rightarrow \beta =66,4^{\circ}\: \: \textrm{atau}\\ &\beta =-66,4^{\circ}\: \: (\textrm{tm})\\ k=1&\Rightarrow \beta =426,4^{\circ}\: \: (\textrm{tm})\\ & \textrm{atau}\: \: \beta =293,6^{\circ}\\ k=2&\Rightarrow \beta \: \: \textrm{tidak ada }\\ &\qquad\textrm{yang memenuhi} \end{aligned}&\begin{aligned}\beta &=\pm 180^{\circ}+k.360^{\circ}\\ k=0&\Rightarrow \beta =180^{\circ}\: \: \textrm{atau}\\ &\beta =-180^{\circ}\: \: (\textrm{tm})\\ k=1&\Rightarrow \beta =540^{\circ}\: \: (\textrm{tm})\\ &\textrm{atau}\: \: \beta =180^{\circ}\\ k=2&\Rightarrow \beta \: \: \textrm{tidak ada }\\ &\qquad\textrm{yang memenuhi} \end{aligned} \\\hline \end{array}\\ &\textbf{HP}=\left \{ 66,4^{\circ},180^{\circ},293,6^{\circ} \right \} \end{array}$.
$\begin{array}{ll}\\ 4.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &2\sin ^{2}\gamma +3\cos \gamma =3\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq \gamma \leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &2\sin ^{2}\gamma +3\cos \gamma =3\\ &2\left ( 1-\cos ^{2}\gamma \right ) +3\cos \gamma -3=0\\ &2-2\cos ^{2}\gamma +3\cos \gamma -3=0\\ &-2\cos ^{2}\gamma +3\cos \gamma -1=0\\ &2\cos ^{2}\gamma -3\cos \gamma +1=0\: \: (\textbf{lalu difaktorkan})\\ &\left ( 2\cos \gamma -1 \right )\left ( \cos \gamma -1 \right )=0\\ &\left ( 2\cos \gamma -1 \right )=0\: \:\textrm{ atau}\: \: \left ( \cos \gamma -1 \right )=0\\ &\cos \gamma =\displaystyle \frac{1}{2}\: \: \textrm{atau}\: \: \cos \gamma =1\\ &\cos \gamma =\cos 60^{\circ}\: \: \textrm{atau}\: \: \cos \gamma =0^{\circ}\\ &\textrm{selanjutnya}\\ &\begin{array}{|l|l|}\hline \begin{aligned}\gamma &=\pm 60^{\circ}+k.360^{\circ}\\ k=0&\Rightarrow \gamma =60^{\circ}\: \: \textrm{atau}\\ &\gamma =-60^{\circ}\: \: (\textrm{tm})\\ k=1&\Rightarrow \gamma =420^{\circ}\: \: (\textrm{tm})\\ & \textrm{atau}\: \: \gamma =300^{\circ}\\ k=2&\Rightarrow \gamma \: \: \textrm{tidak ada }\\ &\quad\textrm{yang memenuhi} \end{aligned}&\begin{aligned}\gamma &=\pm 0^{\circ}+k.360^{\circ}\\ \gamma &=0^{\circ}+k.360^{\circ}\\ k=0&\Rightarrow \gamma =0^{\circ}\\ k=1&\Rightarrow \gamma =360^{\circ}\\ k=2&\Rightarrow \gamma \: \: \textrm{tidak ada}\\ &\quad\textrm{yang memenuhi}\\ &\vdots \\ \end{aligned} \\\hline \end{array}\\ &\textbf{HP}=\left \{ 0^{\circ},60^{\circ},300^{\circ},360^{\circ} \right \} \end{array}$
B. 3 Persamaan Trigonometri Bentuk a sin x + b cos x
Selain bentuk sederhana seperti yang telah diuraikan pada materi sebelumnya (lihat di sini), terdapat persamaan trigonometri bentuk $a\sin x+b\cos x$. Bentuk $a\sin x+b\cos x$ ini dalam penyelesaiannya diubah ke dalam bentuk $k\cos (x-\alpha )$. Adapun untuk menemukan pembuktian dari kesamaan rumus ini, Anda harus mempelajari materi rumus trigonometri jumlah dan selisih dua sudut.
$\begin{aligned}a\sin x&+b\cos x=k\cos \left ( x-\theta \right )\\ \color{purple}\textrm{denga}&\color{purple}\textrm{n}:\: \: \\ &k=\sqrt{a^{2}+b^{2}}\\ &\tan \theta =\displaystyle \frac{a}{b}\\ &(a>0\: \: \textrm{dan}\: \: b>0,\: \textrm{maka}\: \theta \: \textrm{di kuadran I})\\ &(a>0\: \: \textrm{dan}\: \: b<0,\: \textrm{maka}\: \theta \: \textrm{di kuadran II})\\ &(a<0\: \: \textrm{dan}\: \: b<0,\: \textrm{maka}\: \theta \: \textrm{di kuadran III})\\ &(a<0\: \: \textrm{dan}\: \: b>0,\: \textrm{maka}\: \theta \: \textrm{di kuadran IV})\\\\ &\textrm{dengan}\: \: a\: \: \textrm{pada sumbu Y dan}\\ &\: \: \, \quad\quad\quad b\: \: \textrm{pada sumbu X} \end{aligned}$
$\begin{aligned}&\textbf{Dan ingat juga tabel nilai tangen}\\ &\textbf{berikut}\\ &\begin{array}{|c|c|c|c|c|c|}\hline \theta &0^{\circ}&30^{\circ}&45^{\circ}&60^{\circ}&90^{\circ}\\ &&&&&\\\hline \tan \theta &\color{blue}0&\displaystyle \frac{1}{3}\sqrt{3}&1&\sqrt{3}&\color{red}\textbf{TD}\\ &&&&&\\\hline \theta &120^{\circ}&135^{\circ}&150^{\circ}&180^{\circ}&\\ &&&&&\\\hline \tan \theta &-\sqrt{3}&-1&-\displaystyle \frac{1}{3}\sqrt{3}&\color{blue}0&\\ &&&&&\\\hline \end{array} \end{aligned}$.
$\begin{aligned}&\begin{array}{|c|c|c|c|c|c|}\hline \theta &180^{\circ}&210^{\circ}&225^{\circ}&240^{\circ}&270^{\circ}\\ &&&&&\\\hline \tan \theta &\color{blue}0&\displaystyle \frac{1}{3}\sqrt{3}&1&\sqrt{3}&\color{red}\textbf{TD}\\ &&&&&\\\hline \theta &300^{\circ}&315^{\circ}&345^{\circ}&360^{\circ}&\\ &&&&&\\\hline \tan \theta &-\sqrt{3}&-1&-\displaystyle \frac{1}{3}\sqrt{3}&\color{blue}0&\\ &&&&&\\\hline \end{array} \end{aligned}$.
Untuk lebih lanjut tentang bukti dan lain sebagainya akan dipelajari di subbab berikutnya setelah materi persamaan trigonometri ini.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &\sin x+\sqrt{3}\cos x=2\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq \theta \leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &\sin x+\sqrt{3}\cos x=2\quad \left (\textbf{ingat}:a=1,\: b=\sqrt{3} \right )\\ &\sin x+\sqrt{3}\cos x=k\cos \left ( x-\theta \right )=2\\ &\begin{cases} k & =\sqrt{1^{2}+\left ( \sqrt{3} \right )^{2}}=\sqrt{4}=2 \\ \tan & \theta =\displaystyle \frac{a}{b}=\displaystyle \frac{1}{\sqrt{3}}=\displaystyle \frac{1}{3}\sqrt{3}\Rightarrow \theta =30^{\circ} \end{cases}\\ &\qquad\quad\textrm{sudut}\: \: \theta \: \: \textrm{di kuadran I, karena}\: \: a,b>0\\ &\textrm{selanjutnya}\\ &\begin{aligned}&\sin x+\sqrt{3}\cos x=k\cos \left ( x-\theta \right )=2\\ &\Leftrightarrow 2\cos\left ( x-30^{\circ} \right )=2\\ &\Leftrightarrow \: \: \, \cos \left ( x-30^{\circ} \right )=1\\ &\Leftrightarrow \: \: \,\cos \left ( x-30^{\circ} \right )=\cos 0^{\circ}\\ &\Leftrightarrow \quad x-30^{\circ} =\pm 0^{\circ}+k.360^{\circ}\\ &\Leftrightarrow \quad x=30^{\circ}\pm 0^{\circ}+k.360^{\circ}\\ &\Leftrightarrow \quad x=30^{\circ}+k.360^{\circ}\\ &k=0\Rightarrow x=30^{\circ}\qquad (\color{blue}\textrm{memenuhi})\\ &k=1\Rightarrow x=390^{\circ}\qquad (\color{red}\textrm{tm})\\ \end{aligned}\\ &\textbf{HP}=\left \{30^{\circ} \right \} \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &\sin x-\sqrt{3}\cos x=\sqrt{2}\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq \theta \leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &\sin x-\sqrt{3}\cos x=\sqrt{2}\: \: \left (\textbf{ingat}:a=1,\: b=-\sqrt{3} \right )\\ &\sin x-\sqrt{3}\cos x=k\cos \left ( x-\theta \right )=\sqrt{2}\\ &\begin{cases} k & =\sqrt{1^{2}+\left ( -\sqrt{3} \right )^{2}}=\sqrt{4}=2 \\ \tan & \theta =\displaystyle \frac{a}{b}=\displaystyle \frac{1}{-\sqrt{3}}=-\displaystyle \frac{1}{3}\sqrt{3}\Rightarrow \theta =150^{\circ} \end{cases}\\ &\quad\quad\textrm{sudut}\: \: \theta \: \: \textrm{di kuadran II, karena}\: \: a>0,\: b<0\\ &\textrm{selanjutnya}\\ &\begin{aligned}&\sin x-\sqrt{3}\cos x=k\cos \left ( x-\theta \right )=\sqrt{2}\\ &\Leftrightarrow 2\cos\left ( x-150^{\circ} \right )=\sqrt{2}\\ &\Leftrightarrow \: \: \, \cos \left ( x-150^{\circ} \right )=\displaystyle \frac{\sqrt{2}}{2}=\displaystyle \frac{1}{2}\sqrt{2}\\ &\Leftrightarrow \: \: \,\cos \left ( x-150^{\circ} \right )=\cos 45^{\circ}\\ &\Leftrightarrow \quad x-150^{\circ} =\pm 45^{\circ}+k.360^{\circ}\\ &\Leftrightarrow \quad x=150^{\circ}\pm 45^{\circ}+k.360^{\circ}\\ &k=0\Rightarrow x=150^{\circ}+45^{\circ}=195^{\circ}\: \: (\color{blue}\textrm{mm})\: \: \color{black}\textrm{atau}\\ &\qquad\qquad x=150^{\circ}-45^{\circ}=105^{\circ}\: \: (\color{blue}\textrm{mm})\\ &k=1\Rightarrow x=150^{\circ}\pm 45^{\circ}+360^{\circ}\quad (\color{red}\textrm{tm})\\ \end{aligned} \\ &\textbf{HP}=\left \{105^{\circ},195^{\circ} \right \} \end{array}$.
$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &\sqrt{6}\sin x+\sqrt{2}\cos x=2\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq \theta \leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &\sqrt{6}\sin x+\sqrt{2}\cos x=2\: \: \left (\textbf{ingat}:a=\sqrt{6},\: b=\sqrt{2} \right )\\ &\sqrt{6}\sin x+\sqrt{2}\cos x=k\cos \left ( x-\theta \right )=2\\ &\begin{cases} k & =\sqrt{\left (\sqrt{6} \right )^{2}+\left ( \sqrt{2} \right )^{2}}=\sqrt{8}=2\sqrt{2} \\ \tan & \theta =\displaystyle \frac{a}{b}=\displaystyle \frac{\sqrt{6}}{\sqrt{2}}=\sqrt{3}\Rightarrow \theta =60^{\circ} \end{cases}\\ &\quad\quad\textrm{sudut}\: \: \theta \: \: \textrm{di kuadran I, karena}\: \: a>0,\: b>0\\ &\textrm{selanjutnya}\\ &\begin{aligned}&\sqrt{6}\sin x+\sqrt{2}\cos x=k\cos \left ( x-\theta \right )=2\\ &\Leftrightarrow 2\sqrt{2}\cos\left ( x-60^{\circ} \right )=2\\ &\Leftrightarrow \: \: \, \cos \left ( x-60^{\circ} \right )=\displaystyle \frac{2}{2\sqrt{2}}=\frac{1}{\sqrt{2}}=\displaystyle \frac{1}{2}\sqrt{2}\\ &\Leftrightarrow \: \: \,\cos \left ( x-60^{\circ} \right )=\cos 45^{\circ}\\ &\Leftrightarrow \quad x-60^{\circ} =\pm 45^{\circ}+k.360^{\circ}\\ &\Leftrightarrow \quad x=60^{\circ}\pm 45^{\circ}+k.360^{\circ}\\ &k=0\Rightarrow x=60^{\circ}+45^{\circ}=105^{\circ}\: \: (\color{blue}\textrm{mm})\: \: \color{black}\textrm{atau}\\ &\qquad\qquad x=60^{\circ}-45^{\circ}=15^{\circ}\: \: (\color{blue}\textrm{mm})\\ &k=1\Rightarrow x=60^{\circ}\pm 45^{\circ}+360^{\circ}\quad (\color{red}\textrm{tm})\\ \end{aligned} \\ &\textbf{HP}=\left \{15^{\circ},105^{\circ} \right \} \end{array}$.
$\begin{array}{ll}\\ 4.&\textrm{Tentukanlah himpunan penyelesaian dari}\\ &\cos x-\sqrt{3}\sin x=1\: \: \: \textrm{untuk}\: \: 0^{\circ}\leq \theta \leq 360^{\circ}\\\\ &\textrm{Jawab}:\\ &-\sqrt{3}\sin x+\cos x=1\: \: \left (\textbf{ingat}:a=-\sqrt{3},\: b=1 \right )\\ &-\sqrt{3}\sin x+\cos x=k\cos \left ( x-\theta \right )=1\\ &\begin{cases} k & =\sqrt{\left ( -\sqrt{3} \right )^{2}+\left ( 1 \right )^{2}}=\sqrt{4}=2 \\ \tan & \theta =\displaystyle \frac{a}{b}=\displaystyle \frac{-\sqrt{3}}{1}=-\sqrt{3}\Rightarrow \theta =300^{\circ} \end{cases}\\ &\quad\quad\textrm{sudut}\: \: \theta \: \: \textrm{di kuadran IV, karena}\: \: a<0,\: b>0\\ &\textrm{selanjutnya}\\ &\begin{aligned}&-\sqrt{3}\sin x+\cos x=k\cos \left ( x-\theta \right )=1\\ &\Leftrightarrow 2\cos\left ( x-300^{\circ} \right )=1\\ &\Leftrightarrow \: \: \, \cos \left ( x-300^{\circ} \right )=\displaystyle \frac{1}{2}\\ &\Leftrightarrow \: \: \,\cos \left ( x-300^{\circ} \right )=\cos 60^{\circ}\\ &\Leftrightarrow \quad x-300^{\circ} =\pm 60^{\circ}+k.360^{\circ}\\ &\Leftrightarrow \quad x=300^{\circ}\pm 60^{\circ}+k.360^{\circ}\\ &k=0\Rightarrow x=300^{\circ}+60^{\circ}=360^{\circ}=0^{\circ}\: \: (\color{blue}\textrm{mm})\: \: \color{black}\textrm{atau}\\ &\qquad\qquad x=300^{\circ}-60^{\circ}=240^{\circ}\: \: (\color{blue}\textrm{mm})\\ &k=1\Rightarrow x=300^{\circ}\pm 60^{\circ}+360^{\circ}\quad (\color{red}\textrm{tm})\\ \end{aligned} \\ &\textbf{HP}=\left \{0^{\circ},240^{\circ},360^{\circ} \right \} \end{array}$
DAFTAR PUSTAKA
A. Persamaan Eksponen
Berikut bentuk persamaan eksponen yang sering digunakan terangkum dalam tabel berikut beserta cara penyelesaiannya
$\begin{array}{|c|l|l|}\hline \textbf{No}&\textbf{Persamaan Eksponen}&\textbf{Penyelesaian}\\\hline 1&a^{f(x)}=1,\: \: a>0,a\neq 1&f(x)=0\\\hline 2&a^{f(x)}=a^{p},\: \: a>0,a\neq 1&f(x)=p\\\hline 3&a^{f(x)}=a^{g(x)},\: \: a>0,a\neq 1&f(x)=g(x)\\\hline 4&a^{f(x)}=b^{f(x)},\: \: a>0,a\neq 1&f(x)=0\\ &\qquad\quad \textrm{dan}\: \: b>0,\: b\neq 1&\\\hline 5&h(x)^{f(x)}=h(x)^{g(x)}&\begin{aligned}(1)\: &f(x)=g(x)\\ (2)\: &h(x)=1\\ (3)\: &h(x)=0\\ &\textrm{dengan syarat}\\ &f(x)> 0\: \: \textrm{dan}\\ &g(x)> 0\\ (4)\: &h(x)=-1\\ &\textrm{dengan syarat}\\ &f(x)\: \textrm{dan}\: g(x)\\ &\textrm{keduanya}\\ &\textrm{genap atau}\\ &\textrm{keduanya}\\ &\textrm{ganjil}\\ &\color{red}\textrm{atau}\\ &\textrm{dapat juga}\\ &\textrm{ditunjukkan}\\ &\color{blue}(-1)^{f(x)}=(-1)^{g(x)} \end{aligned}\\\hline 6&g(x)^{f(x)}=h(x)^{f(x)}&\begin{aligned}(1)\: &g(x)=h(x)\\ (2)\: &f(x)=0\\ &\textrm{dengan syarat}\\ &g(x)\neq 0\: \: \textrm{dan}\\ &h(x)\neq 0\\ \end{aligned}\\\hline 7&f(x)^{g(x)}=1&\begin{aligned}(1)\: &f(x)=1\\ (2)\: &f(x)=-1\\ &\textrm{dengan syarat}\\ &g(x)\: \: \textrm{genap}\\ (3)\: &g(x)=0\\ &\textrm{dengan syarat}\\ &f(x)\neq 0 \end{aligned}\\\hline 8&A\left ( a^{f(x)} \right )^{2}+B\left ( a^{f(x)} \right )+C=0&\begin{aligned}&\textrm{ubah}\: \: a^{f(x)}=y\\ &\textrm{sehingga}\\ &Ay^{2}+By+C=0\\ &\textrm{selanjutnya}\\ &\textrm{substitusikan}\\ &\textrm{nilai}\: \: y\: \: \textrm{ke}\\ &\textrm{persamaan}\\ &a^{f(x)}=y \end{aligned}\\\hline \end{array}$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Tentukan himpunan penyelesaian dari}\\ &\textrm{a}.\quad 2^{2x-2021}=1\\ &\textrm{b}.\quad \left ( \displaystyle \frac{1}{2} \right )^{2x-2021}=1\\ &\textrm{c}.\quad \sqrt{2}^{2x-2021}=1\\\\ &\textbf{Jawab}:\\ &\begin{array}{|c|c|c|}\hline \textrm{a}&\textrm{b}&\textrm{c}\\\hline \begin{aligned} 2^{2x-2021}&=1\\ 2^{2x-2021}&=2^{0}\\ 2x-2021&=0\\ 2x&=2021\\ x&=\displaystyle \frac{2021}{2}\\ & \end{aligned}&\begin{aligned} \left ( \displaystyle \frac{1}{2} \right )^{2x-2021}&=1\\ \left ( \displaystyle \frac{1}{2} \right )^{2x-2021}&=\left ( \frac{1}{2} \right )^{0}\\ 2x-2021&=0\\ 2x&=2021\\ x&=\displaystyle \frac{2021}{2} \end{aligned}&\begin{aligned} \sqrt{2}^{2x-2021}&=1\\ \sqrt{2}^{2x-2021}&=\sqrt{2}^{0}\\ 2x-2021&=0\\ 2x&=2021\\ x&=\displaystyle \frac{2021}{2}\\ & \end{aligned}\\\hline \textbf{HP}=\left \{ \displaystyle \frac{2021}{2} \right \}&\textbf{HP}=\left \{ \displaystyle \frac{2021}{2} \right \}&\textbf{HP}=\left \{ \displaystyle \frac{2021}{2} \right \}\\\hline \end{array}\\ \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Tentukan himpunan penyelesaian dari}\\ &\textrm{a}.\quad 2^{2x-2021}=128\\ &\textrm{b}.\quad \left ( \displaystyle \frac{1}{2} \right )^{2x-2021}=128\\ &\textrm{c}.\quad \sqrt{2}^{2x-2021}=128\\\\ &\textbf{Jawab}:\\ &\begin{array}{|c|c|c|}\hline \textrm{a}&\textrm{b}&\textrm{c}\\\hline \begin{aligned} 2^{2x-2021}&=128\\ 2^{2x-2021}&=2^{7}\\ 2x-2021&=7\\ 2x=7&+2021\\ x=\displaystyle \frac{2028}{2}&=1014\\ & \end{aligned}&\begin{aligned} \left ( \displaystyle \frac{1}{2} \right )^{2x-2021}&=128\\ \left ( \displaystyle \frac{1}{2} \right )^{2x-2021}&=\left ( \displaystyle \frac{1}{2} \right )^{-7}\\ 2x-2021&=-7\\ 2x=2021&-7\\ x=\displaystyle \frac{2014}{2}&=1007 \end{aligned}&\begin{aligned} \sqrt{2}^{2x-2021}&=128\\ \sqrt{2}^{2x-2021}&=\sqrt{2}^{256}\\ 2x-2021&=256\\ 2x=2021&+256\\ x&=\displaystyle \frac{2277}{2}\\ & \end{aligned}\\\hline \textbf{HP}=\left \{ 1014 \right \}&\textbf{HP}=\left \{ \displaystyle 1007 \right \}&\textbf{HP}=\left \{ \displaystyle \frac{2277}{2} \right \}\\\hline \end{array}\\ \end{array}$.
$\begin{array}{ll}\\ 3.&(\textbf{SPMB 04})\textrm{Nilai}\: \: x\: \: \textrm{yang memenuhi}\\ &\displaystyle \frac{27}{3^{2x-1}}=81^{-0,125} \: \: \textrm{adalah... .}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\displaystyle \frac{27}{3^{2x-1}}&=81^{-0,125}\\ 3^{3-(2x-1)}&=3^{4(\frac{1}{8})}\\ 3-2x+1&=-\displaystyle \frac{1}{2}\\ -2x+4&=-\displaystyle \frac{1}{2}\\ -x+2&=-\displaystyle \frac{1}{4}\\ -x&=-2-\displaystyle \frac{1}{4}\\ -x&=-2\displaystyle \frac{1}{4}\\ x&=2\displaystyle \frac{1}{4} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 4.&(\textbf{UMPTN 00})\\ &\textrm{Bentuk}\: \: \left (\sqrt[3]{\displaystyle \frac{1}{243}} \right )^{3x}=\left ( \displaystyle \frac{3}{3^{x-2}} \right )^{2}\sqrt[3]{\displaystyle \frac{1}{9}}\\ &\textrm{Jika}\: \: x_{0}\: \: \textrm{memenuhi persamaan, maka nilai}\\ &1-\displaystyle \frac{3}{4}x_{0}=\: ....\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\left (\sqrt[3]{\displaystyle \frac{1}{243}} \right )^{3x}&=\left ( \displaystyle \frac{3}{3^{x-2}} \right )^{2}\sqrt[3]{\displaystyle \frac{1}{9}}\\ 3^{-5x}&=3^{2(1-(x-2))}.3^{-\frac{2}{3}}\\ -5x&=2(1-(x-2))+\left ( -\displaystyle \frac{2}{3} \right ),\: \: \textrm{dikali}\: \: 3\\ -15x&=6(3-x)+(-2)\\ -15x&=18-6x-2\\ 6x-15x&=16\\ -9x&=16\\ x&=\displaystyle \frac{16}{-9}\\ x_{0}&=-\displaystyle \frac{16}{9},\: \: \textrm{selanjutnya}\\ 1-\displaystyle \frac{3}{4}x_{0}&=1-\displaystyle \frac{3}{4}\times \left (-\frac{16}{9} \right )\\ &=1+\frac{4}{3}\\ &=1+1\displaystyle \frac{1}{3}\\ &=2\displaystyle \frac{1}{3} \end{aligned} \end{array}$.
$\begin{array}{l}\\ 5.&\textrm{Jumlah akar-akar persamaan}\\ & 5^{x+1}+5^{2-x}-30=0\: \: \textrm{adalah}\: ....\\\\ &\textbf{Jawab}:\\ &\begin{aligned}5^{x+1}+5^{2-x}-30&=0\\ \left (5^{x} \right ).5^{1}+\displaystyle \frac{5^{2}}{5^{x}}-30&=0\\ 5\left ( 5^{x} \right )^{2}+25-30\left ( 5^{x} \right )&=0\\ \textrm{Persamaan kuadrat}&\: \textrm{dalam}\: \: 5^{x},\: \textrm{maka}\\ 5(5^{x})^{2}-30(5^{x})+25&=0\begin{cases} a & =5 \\ b & =-30 \\ c & =25 \end{cases}\\ (5^{x_{1}}).\left ( 5^{x_{2}} \right )&=\displaystyle \frac{c}{a}\\ 5^{x_{1}+x_{2}}&=\displaystyle \frac{25}{5}=5\\ 5^{x_{1}+x_{2}}&=5^{1}\\ x_{1}+x_{2}&=1 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 6.&\textrm{Jumlah akar-akar persamaan}\\ &2023^{x^{2}-7x+7}=2024^{x^{2}-7x+7}\: \: \textrm{adalah}\: ....\\\\ &\textbf{Jawab}:\\ &\begin{aligned}2023^{x^{2}-7x+7}&=2024^{x^{2}-7x+7}\\ \textrm{Karena basis}&\: \textrm{tidak sama},\\ \textrm{maka harusl}&\textrm{ah pangkatnya}=0,\\ x^{2}-7x+7&=0\\ \textrm{dan jumlah}\: &\textrm{akar-akarnya adalah}:\\ x_{1}+x_{2}&=-\displaystyle \frac{b}{a}, \: \: \textrm{dari persamaan}\\ x^{2}-7x+7&=0\begin{cases} a &=1 \\ b &=-7 \\ c &=7 \end{cases}\\ \textrm{maka}\: \: x_{1}+x_{2}&=-\displaystyle \frac{b}{a}=-\frac{-7}{1}=7 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 7.&\textrm{Tentukan himpunan penyelesaian dari}\\ &(x-2)^{x^{2}-7x+6}=1\: \: \textrm{adalah}\: ....\\\\ &\textbf{Jawab}:\\ &\textrm{Ingat bentuk}\: \: \: f(x)^{g(x)}=1\begin{cases} f(x) & =x-2 \\ g(x) & =x^{2}-7x+5 \end{cases}\\ &\begin{array}{|l|l|l|}\hline f(x)=1&f(x)=-1&g(x)=0\\ &\textrm{Syarat}\: \: g(x)\: \: \textrm{genap}&\textrm{Syarat}\: \: f(x)\neq 0\\\hline \begin{aligned}x&-2=1\\ x&=3\\ & \end{aligned}&\begin{aligned}x&-2=-1\\ x&=2-1=1\\ & \end{aligned}&\begin{aligned}x^{2}&-7x+6=0\\ \Leftrightarrow &(x-1)(x-6)\\ \Leftrightarrow &\: x=1\: \: \textrm{atau}\: \: x=6 \end{aligned}\\\hline &\begin{aligned}\textrm{S}&\textrm{yaratnya}\: \: x\\ \textrm{u}&\textrm{ntuk}\: \: x=1\\ g&(1)=1^{2}-7+6\\ &=0\: \: (\textrm{memenuhi}) \end{aligned}&\begin{aligned}f(1)&=1-2=-1\neq 0\\ f(6)&=6-2=4\neq 0\\ &\\ & \end{aligned}\\ &\textbf{Catatan}:\: 0&\\ &\textrm{paritasnya genap}&\\\hline \end{array}\\ &\textbf{HP}=\left \{ 1,3,6 \right \} \end{array}$.
$\begin{array}{ll}\\ 8.&\textrm{Tentukan himpunan penyelesaian dari}\\ &(x^{2}-9x+19)^{2x+3}=(x^{2}-9x+19)^{x-1}\: \: \textrm{adalah}\: ....\\\\ &\textbf{Jawab}:\\ &\textrm{Ingat bentuk}\: \: \: h(x)^{f(x)}=h(x)^{g(x)}\begin{cases} h(x) & =x^{2}-9x+19 \\ f(x) & =2x+3\\ g(x)&=x-1 \end{cases}\\ &\begin{array}{|l|l|}\hline \begin{aligned}&\textrm{Syarat-syaratnya}\\ &\bullet \: \: f(x)=g(x)\\ &\Leftrightarrow 2x+3=x-1\\ &\Leftrightarrow x=-4\\ &\bullet \: \: h(x)=1\\ &\Leftrightarrow x^{2}-9x+19=1\\ &\Leftrightarrow x^{2}-9x+18=0\\ &\Leftrightarrow (x-3)(x-6)=0\\ &\Leftrightarrow x=3\: \: \textrm{atau}\: \: x=6\\ &\bullet \: \: h(x)=0\\ &\Leftrightarrow x^{2}-9x+19=0\\ &\Leftrightarrow x_{1,2}=\displaystyle \frac{9\pm \sqrt{5}}{2}\\ &\quad \textrm{gunakan rumus ABC}\\ &\textrm{Setelah diuji keduanya}\\ &\textrm{positif, maka}\\ &x=\displaystyle \frac{9\pm \sqrt{5}}{2}\: \: \textrm{merupakan}\\ &\textbf{penyelesaian} \end{aligned} &\begin{aligned}&\textrm{lanjutannya}\\ &\bullet \: \: h(x)=-1\\ &\Leftrightarrow x^{2}-9x+19=-1\\ &\Leftrightarrow x^{2}-9x+20=0\\ &\Leftrightarrow (x-4)(x-5)=0\\ &\Leftrightarrow x=4\: \: \textrm{atau}\: \: x=5\\ &\textrm{Uji nilanya}\\ &\color{red}\textrm{untuk}\: \: x=4\\ &\blacklozenge \: \: f(4)=2(4)+3\: \: \textrm{ganjil}\\ &\blacklozenge \: \: g(4)=4-1\: \: \textrm{ganjil}\\ &\textrm{karena}\: f(4),g(4)\: \textrm{keduanya }\\ &\textrm{ganjil, maka}\: \: x=4\\ &\textrm{adalah}\: \textbf{penyelesaian} \\ &\color{red}\textrm{untuk}\: \: x=5\\ &\blacklozenge \: \: f(5)=2(5)+3\: \: \textrm{ganjil}\\ &\blacklozenge \: \: g(5)=5-1\: \: \textrm{genapl}\\ &\textrm{karena}\: f(4)\neq g(4),\: \textrm{maka}\: \: x=5\\ &\textrm{adalah}\: \textbf{bukan penyelesaian}\\ &\\ \end{aligned}\\\hline \end{array}\\ &\textbf{HP}=\left \{ -4,3,4,6,\displaystyle \frac{9-\sqrt{5}}{2},\frac{9+\sqrt{5}}{2} \right \} \end{array}$.
DAFTAR PUSTAKA
C. 1 Sudut antara Garis dengan Bidang
Secara definisi jika garis $g$ menembus bidang $\alpha$ secara tidak tegak lurus, maka sudut antara garis $g$ dan bidang $\alpha$ adalah sudut lancip yang dibentuk oleh garis $g$ dan proyeksi garis $g$ pada bidang $\alpha$.
Perhatikanlah ilustrasi berikut
C. 2 Sudut antara Bidang dengan Bidang
Sudut antara bidang dua yang berpotongan adalah sudut yang terbentuk oleh dua garis pada masing-masing bidang tersebut di mana setiap garis itu tegak lurus pada garis potong kedua bidang tersebut di satu titik.B. 1 Persamaan Trigonometri Sederhana
Dalam penyelesaian persamaan trigonometri sederhana dapat digunakan salah satu rumus berikut, yaitu:
$\begin{aligned}(1).\quad\sin x&=\sin \alpha ^{\circ}\\ &\left\{\begin{matrix} x=\alpha ^{\circ}+k.360^{\circ}\qquad\qquad\\ \color{red}\textrm{atau}\qquad\qquad\\ x=\left ( 180^{\circ}-\alpha ^{\circ} \right )+k.360^{\circ} \end{matrix}\right.\\ (2).\quad\cos x&=\cos \alpha ^{\circ}\\ &\left\{\begin{matrix} x=\alpha ^{\circ}+k.360^{\circ}\: \: \: \\ \color{red}\textrm{atau}\\ x=-\alpha ^{\circ}+k.360^{\circ} \end{matrix}\right.\\ (3).\quad\tan x&=\tan \alpha ^{\circ}\\ &x=\alpha ^{\circ}+k.180^{\circ} \end{aligned}$.
Jika sudutnya dinyatakan dalam phi radian $\left (\pi \quad \textrm{dibaca}:\: \: phi \right )$, maka persamaan trigonometri sederhananya adalah:
$\begin{aligned}(1).\quad\sin x&=\sin \alpha ^{\circ}\\ &\left\{\begin{matrix} x=\alpha ^{\circ}+k.2\pi \qquad\quad\\ \color{red}\textrm{atau}\qquad\qquad\\ x=\left ( \pi -\alpha ^{\circ} \right )+k.2\pi \end{matrix}\right.\\ (2).\quad\cos x&=\cos \alpha ^{\circ}\\ &\left\{\begin{matrix} x=\alpha ^{\circ}+k.2\pi \: \: \: \\ \color{red}\textrm{atau}\\ x=-\alpha ^{\circ}+k.2\pi \end{matrix}\right.\\ (3).\quad\tan x&=\tan \alpha ^{\circ}\\ &x=\alpha ^{\circ}+k.\pi \end{aligned}$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah akar-akar persamaan trigonometri}\\ &\textrm{berikut dan tentukan pula himpunan}\\ &\textrm{penyelesaiannya untuk}\: \: 0^{\circ}\leq x\leq 360^{\circ}\\ &\textrm{a}.\quad \sin x=\sin 50^{\circ}\\ &\textrm{b}.\quad \cos x=\cos 50^{\circ}\\ &\textrm{c}.\quad \tan x=\tan 50^{\circ}\\\\ &\textbf{Jawab}:\\ &\color{black}\begin{aligned}.\: \quad\textrm{a}.\quad\sin x&=\sin 50^{\circ}\\ x&=\begin{cases} 50^{\circ} & +k.360^{\circ}\\ \left (180^{\circ}-50^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 50^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \\ 130^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \end{cases}\\ k=1&\: \: \textrm{tidak ada yang memenuhi}\\ \textrm{HP}&=\left \{ 50^{\circ},130^{\circ} \right \} \end{aligned}\\ &\color{black}\begin{aligned}.\: \quad\textrm{b}.\quad\cos x&=\cos 50^{\circ}\\ x&=\begin{cases} 50^{\circ} & +k.360^{\circ}\\ -50^{\circ} & +k.360^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 50^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \\ -50^{\circ}\: \: (\color{red}\textrm{tidak memenuhi}) & \end{cases}\\ k=1&\\ x&=\begin{cases} 50^{\circ}+360^{\circ}=410^{\circ}\: \: (\color{red}\textrm{tidak memenuhi}) & \\ -50^{\circ}+360^{\circ}=310^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \end{cases}\\ \textrm{HP}&=\left \{ 50^{\circ},310^{\circ} \right \} \end{aligned} \\ &\color{black}\begin{aligned}.\: \quad\textrm{c}.\quad\tan x&=\tan 50^{\circ}\\ x&=50^{\circ}+k.180^{\circ}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=50^{\circ}\: \: \color{magenta}\textrm{memenuhi}\\ k=1&\\ x&=50^{\circ}+180^{\circ}=230^{\circ}\: \: \color{magenta}\textrm{memenuhi}\\ k=2&\\ x&=50^{\circ}+360^{\circ}=410^{\circ}\: \: \color{red}\textrm{tidak memenuhi}\\ \textrm{HP}&=\left \{ 50^{\circ},230^{\circ} \right \} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah himpunan penyelesaian dari }\\ &\textrm{persamaan-persamaan trigonometri berikut}\\ &\textrm{ini untuk}\: \: 0^{\circ}\leq x\leq 360^{\circ}\\ &\begin{array}{lllllll}\\ \textrm{a}.& \sin x=\displaystyle \frac{1}{2}&\textrm{f}.& \tan x=-\displaystyle \frac{1}{3}\sqrt{3}&\textrm{k}.& \sin 2x=\displaystyle \frac{1}{2}\\ \textrm{b}.& \cos x=\displaystyle \frac{1}{2}\sqrt{3}&\textrm{g}& 2\cos x=-\sqrt{3}&\textrm{l}.& \cos 2x=-\displaystyle \frac{1}{2}\sqrt{3}\\ \textrm{c}.& \tan x=\sqrt{3}&\textrm{h}& 3\tan x=\sqrt{3}&\textrm{m}.& \tan 2x=\sqrt{3}\\ \textrm{d}.& \sin x=-1&\textrm{i}.& \sin x=\sin 46^{\circ}&\textrm{n}.& \sin \left ( 2x-30^{\circ} \right )=\sin 45^{\circ}\\ \textrm{e}.& \cos x=-\displaystyle \frac{1}{2}\sqrt{2}&\textrm{j}.& \cos x=\cos 93^{\circ}&\textrm{o}.& \sin \left ( 2x+60^{\circ} \right )=\sin 90^{\circ}\\ \end{array}\\ \end{array}$
$.\: \quad\color{blue}\textrm{Jawab}:$
$\color{black}\begin{aligned}.\: \quad\textrm{a}.\quad\sin x&=\displaystyle \frac{1}{2}\\ \sin x&=\sin 30^{\circ}\\ x&=\begin{cases} 30^{\circ} & +k.360^{\circ}\\ \left (180^{\circ}-30^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 30^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \\ 150^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \end{cases}\\ k=1&\: \: \textrm{tidak ada yang memenuhi}\\ \textrm{HP}&=\left \{ 30^{\circ},150^{\circ} \right \} \end{aligned}$
$\color{black}\begin{aligned}.\: \quad\textrm{b}.\quad\cos x&=\displaystyle \frac{1}{2}\sqrt{3}\\ \cos x&=\cos 30^{\circ}\\ x&=\begin{cases} 30^{\circ} & +k.360^{\circ}\\ -30^{\circ} & +k.360^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 30^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \\ -30^{\circ}\: \: (\color{red}\textrm{tidak memenuhi}) & \end{cases}\\ k=1&\\ x&=\begin{cases} 30^{\circ}+360^{\circ}=390^{\circ}\: \: (\color{red}\textrm{tidak memenuhi}) & \\ -30^{\circ}+360^{\circ}=330^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \end{cases}\\ \textrm{HP}&=\left \{ 30^{\circ},330^{\circ} \right \} \end{aligned}$
$\color{purple}\begin{aligned}.\: \quad\textrm{c}.\quad\tan x&=\sqrt{3}\\ \tan x&=\tan 60^{\circ}\\ x&=60^{\circ}+k.180^{\circ}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=60^{\circ}\: \: \color{magenta}\textrm{memenuhi}\\ k=1&\\ x&=60^{\circ}+180^{\circ}=240^{\circ}\: \: \color{magenta}\textrm{memenuhi}\\ k=2&\\ x&=60^{\circ}+360^{\circ}=420^{\circ}\: \: \color{red}\textrm{tidak memenuhi}\\ \textrm{HP}&=\left \{ 60^{\circ},240^{\circ} \right \} \end{aligned}$
$\color{black}\begin{aligned}.\: \quad\textrm{d}.\quad\sin x&=-1\\ \sin x&= \sin 270^{\circ}\\ x&=\begin{cases} 270^{\circ} & +k.360^{\circ} \\ \left ( 180^{\circ}-270^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}\\ x&=\begin{cases} 270^{\circ} & \color{magenta}\textrm{memenuhi} \\ -90^{\circ} & \color{red}\textrm{tidak memenuhi} \end{cases}\\ k=1&\: \: \textrm{tidak memenuhi semuanya}\\ \textrm{HP}&=\left \{ 270^{\circ} \right \} \end{aligned}$.
$\color{black}\begin{aligned}.\: \quad\textrm{k}.\quad\sin 2x&=\displaystyle \frac{1}{2}\\ \sin 2x&=\sin 30^{\circ}\\ 2x&=\begin{cases} 30^{\circ} & +k.360^{\circ}\\ \left (180^{\circ}-30^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ \color{red}\textrm{sehin}&\color{red}\textrm{gga}\\ x&=\begin{cases} 15^{\circ} & +k.180^{\circ}\\ \left (90^{\circ}-15^{\circ} \right ) & +k.180^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 15^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \\ 75^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \end{cases}\\ k=1&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 15^{\circ}+180^{\circ}=195^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \\ 75^{\circ}+180^{\circ}=255^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \end{cases}\\ k=2&\: \: \textrm{tidak ada yang memenuhi}\\ \textrm{HP}&=\left \{ 15^{\circ},75^{\circ},195^{\circ},255^{\circ} \right \} \end{aligned}$.
$\color{black}\begin{aligned}.\: \quad\textrm{l}.\quad\cos 2x&=-\displaystyle \frac{1}{2}\sqrt{3}\\ \cos 2x&=-\cos 30^{\circ}=\cos \left ( 180^{\circ}-30^{\circ} \right )=\cos 150^{\circ}\\ 2x&=\begin{cases} 150^{\circ} & +k.360^{\circ}\\ -150^{\circ} & +k.360^{\circ} \end{cases}\\ \color{red}\textrm{sehin}&\color{red}\textrm{gga}\\ x&=\begin{cases} 75^{\circ} & +k.180^{\circ}\\ -75^{\circ} & +k.180^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 75^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \\ -75^{\circ}\: \: (\color{red}\textrm{tidak memenuhi}) & \end{cases}\\ k=1&\\ x&=\begin{cases} 75^{\circ}+180^{\circ}=255^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \\ -75^{\circ}+180^{\circ}=105^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \end{cases}\\ k=2&\\ x&=\begin{cases} 75^{\circ}+360^{\circ}=435^{\circ}\: \: (\color{red}\textrm{tidak memenuhi}) & \\ -75^{\circ}+360^{\circ}=285^{\circ}\: \: (\color{blue}\textrm{memenuhi}) & \end{cases}\\ k=3&\: \: \textrm{tidak ada yang memenuhi}\\ \textrm{HP}&=\left \{ 75^{\circ},105^{\circ},255^{\circ},285^{\circ} \right \} \end{aligned}$.
$\color{black}\begin{aligned}.\: \quad\textrm{m}.\quad\tan 2x&=\sqrt{3}\\ \tan 2x&=\tan 60^{\circ}\\ 2x&=60^{\circ}+k.180^{\circ}\\ \color{red}\textrm{sehin}&\color{red}\textrm{gga}\\ x&=30^{\circ}+k.90^{\circ}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=30^{\circ}\: \: \color{blue}\textrm{memenuhi}\\ k=1&\\ x&=30^{\circ}+90^{\circ}=120^{\circ}\: \: \color{blue}\textrm{memenuhi}\\ k=2&\\ x&=30^{\circ}+180^{\circ}=210^{\circ}\: \: \color{blue}\textrm{memenuhi}\\ k=3&\\ x&=30^{\circ}+270^{\circ}=300^{\circ}\: \: \color{blue}\textrm{memenuhi}\\ k=4&\\ x&=30^{\circ}+360^{\circ}=390^{\circ}\: \: \color{red}\textrm{tidak memenuhi}\\ \textrm{HP}&=\left \{ 30^{\circ},120^{\circ},210^{\circ},300^{\circ} \right \} \end{aligned}$.
$\color{black}\begin{aligned}.\: \quad\textrm{n}.\quad\sin \left ( 2x-30^{\circ} \right )&=\sin 45^{\circ}\\ \left ( 2x-30^{\circ} \right )&=\begin{cases} 45^{\circ} & +k.360^{\circ} \\ \left ( 180^{\circ}-45^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ 2x&=\begin{cases} 45^{\circ}+30^{\circ} &+k.360^{\circ} \\ 135^{\circ}+30^{\circ} &+ k.360^{\circ} \end{cases}\\ x&=\begin{cases} 37,5^{\circ} & +k.180^{\circ} \\ 82,5^{\circ} & +k.180^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}\\ x&=\begin{cases} 37,5^{\circ} & \\ 82,5^{\circ} & \end{cases}\\ k=1&\: \: \textrm{diperoleh}\\ x&=\begin{cases} 37,5^{\circ}+180^{\circ} &=217,5^{\circ} \\ 82,5^{\circ}+180^{\circ} &=262,5^{\circ} \end{cases}\\ k=2&\: \: \color{red}\textrm{tidak ada yang memenuhi}\\ \textrm{HP}&=\left \{ 37,5^{\circ},82,5^{\circ},217,5^{\circ},262,5^{\circ} \right \} \end{aligned}$.
$\color{black}\begin{aligned}.\: \quad\textrm{o}.\quad\sin \left ( 2x+60^{\circ} \right )&=\sin 90^{\circ}\\ \left ( 2x+60^{\circ} \right )&=\begin{cases} 90^{\circ} & +k.360^{\circ} \\ \left ( 180^{\circ}-90^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ 2x&=\begin{cases} 90^{\circ}-60^{\circ} &+k.360^{\circ} \\ 90^{\circ}-60^{\circ} &+ k.360^{\circ} \end{cases}\\ x&=15^{\circ}+k.180^{\circ}\\ k=0&\: \: \textrm{diperoleh}\\ x&=15^{\circ}\\ k=1&\: \: \textrm{diperoleh}\\ x&=15^{\circ}+180^{\circ}=195^{\circ}\\ k=2&\: \: \color{red}\textrm{tidak ada yang memenuhi}\\ \textrm{HP}&=\left \{ 15^{\circ},195^{\circ} \right \} \end{aligned}$