$\begin{array}{ll}\\ 36.&\textrm{Persamaan}\: \: ^{x}\log 2+\: ^{x}\log (3x-4)=2\\ &\textrm{mempunyai akar}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2},\: \: \textrm{maka}\\ &\textrm{nilai}\: \: x_{1}+x_{2}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&2\\ \textrm{b}.&3\\ \textrm{c}.&4\\ \color{red}\textrm{d}.&6\\ \textrm{e}.&8 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\color{blue}\begin{aligned}&\color{purple}\textrm{Alternatif 1}\\ &^{x}\log 2+\: ^{x}\log (3x-4)=2\\ &\Leftrightarrow \: ^{x}\log 2(3x-4)=2\\ &\Leftrightarrow \: ^{x}\log 6x-8=2\\ &\Leftrightarrow \: \color{black}6x-8=x^{2}\\ &\Leftrightarrow \: \color{black}x^{2}-6x+8=0,\: \: \color{purple}\textrm{dengan}\: \begin{cases} a &=1 \\ b &=-6 \\ c &=8 \end{cases}\\ &\Leftrightarrow \: x_{1}+x_{2}=-\displaystyle \frac{b}{a}\\ &\Leftrightarrow \: x_{1}+x_{2}=\color{red}-\displaystyle \frac{-6}{1}=6\\ &\color{purple}\textrm{Alternatif 2}\\ &\Leftrightarrow \: \color{black}x^{2}-6x+8=0\\ &\Leftrightarrow \: (x-2)(x-4)\\ &\Leftrightarrow \: x_{1}=2\: \: \textrm{atau}\: \: x_{2}=4\\ &\Leftrightarrow \: x_{1}+x_{2}=\color{red}2+4=6 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 37.&\textrm{Jika}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\: \: \textrm{memenuhi}\\ &(\log x)(2\log x-3)=\log 100\\ &\textrm{maka}\: \: x_{1}\times x_{2}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&100\\ \color{red}\textrm{b}.&10\sqrt{10}\\ \textrm{c}.&\sqrt{10}\\ \textrm{d}.&-\sqrt{10}\\ \textrm{e}.&-10\sqrt{10} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\color{blue}\begin{aligned}&(\log x)(2\log x-3)=\color{red}\log 100\\ &\Leftrightarrow (\log x)\left ( 2\log x-3 \right )=\color{red}2\\ &\color{black}\Leftrightarrow 2\log ^{2}x-3\log x-2=0\: \color{purple}\begin{cases} a &=2 \\ b &=-3 \\ c &=-2 \end{cases}\\ &\Leftrightarrow \log x_{1}+\log x_{2}=-\displaystyle \frac{-3}{2}=\frac{3}{2}\\ &\Leftrightarrow \log \left ( x_{1}\times x_{2} \right )=1\displaystyle \frac{1}{2}\\ &\Leftrightarrow \color{red}\left ( x_{1}\times x_{2} \right )=10^{1\frac{1}{2}}=10\sqrt{10} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 38.&\textrm{Persamaan}\\ & 10^{\,^{\, ^{2}}\log x^{2} }-7\left ( 10^{\,^{\, ^{2}}\log x } \right )+10=0\\ & \textrm{mempunyai dua akar yaitu}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\\ &\textrm{Nilai}\: \: x_{1}\times x_{2}=\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&-2\\ \textrm{b}.&-5\\ \color{red}\textrm{c}.&2\\ \textrm{d}.&5\\ \textrm{e}.&10 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\color{blue}\begin{aligned}&10^{\,^{\, ^{2}}\log x^{2} }-7\left ( 10^{\,^{\, ^{2}}\log x } \right )+10=0\\ &10^{\, 2^{\, ^{2}}\log x }-7\left ( 10^{\,^{\, ^{2}}\log x } \right )+10=0\\ &\color{black}\textrm{adalah persamaan kuadrat dalam}\: \: \color{red}10^{\,^{\, ^{2}}\log x }\\ &\color{black}\textrm{Misalkan}\: \: \color{red}p=10^{\,^{\, ^{2}}\log x },\: \: \textrm{maka persamaan}\\ &\color{black}\textrm{menjadi}\: \: \color{purple}p^{2}-7p+10=0\: \begin{cases} a & =1 \\ b & =-7 \\ c & =10 \end{cases}\\ & \color{red}\textrm{Karena nilai}\: \: \color{black}p_{1}\times p_{2}=\displaystyle \frac{c}{a}\: \: \textrm{maka}\\ &10^{\,^{\, ^{2}}\log x_{1} }\times 10^{\,^{\, ^{2}}\log x_{2} }=\displaystyle \frac{10}{1}=10\\ &10^{\,^{\, ^{2}}\log x_{1}\: +\: ^{2}\log x_{2} }=10\\ &10^{\,^{\, ^{2}}\log x_{1}\: +\: ^{2}\log x_{2} }=10^{1}\\ &\Leftrightarrow \: ^{2}\log x_{1}\: +\: ^{2}\log x_{2}=1\\ &\Leftrightarrow \: ^{2}\log x_{1}\times x_{2}=1\\ &\Leftrightarrow \: \color{red}x_{1}\times x_{2}=2^{1}=2\\ \end{aligned} \end{array}$
$\begin{array}{ll}\\ 39.&\textrm{Nilai}\: \: x\: \: \: \: \textrm{yang memenuhi}\\ &^{x}\log (x+12)-3.\: ^{x}\log 4+1=0\\ &\textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle \frac{1}{2}\\ \textrm{b}.&2\\ \color{red}\textrm{c}.&4\\ \textrm{d}.&8\\ \textrm{e}.&16 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\color{blue}\begin{aligned}&^{x}\log (x+12)-3.\: ^{x}\log 4+1=0\\ &^{x}\log (x+12)-\: ^{x}\log 4^{3}=-1\\ &^{x}\log \displaystyle \frac{x+12}{64}=-1\\ &\displaystyle \frac{x+12}{64}=x^{-1}=\frac{1}{x}\\ &x+12=\displaystyle \frac{64}{x}\\ &\color{purple}x^{2}+12x-64=0\\ &\color{purple}(x+16)(x-4)=0\\ &x=-16\: \: \color{black}\textrm{atau}\: \: \color{red}x=4 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 40.&\textrm{Nilai}\: \: x\: \: \: \: \textrm{yang memenuhi}\\ &\displaystyle \frac{^{2}\log (2x-3)}{^{2}\log x}-\: ^{x}\log (x+6)+\displaystyle \frac{1}{^{(x+2)}\log x}=1\\ &\textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&-1\: \: \textrm{dan}\: \: 6\\ \textrm{b}.&-2\: \: \textrm{dan}\: \: 6\\ \textrm{c}.&-1\\ \textrm{d}.&-2\\ \color{red}\textrm{e}.&6 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{e}\\ &\color{blue}\begin{aligned}&\displaystyle \frac{^{2}\log (2x-3)}{^{2}\log x}-\: ^{x}\log (x+6)+\displaystyle \frac{1}{^{(x+2)}\log x}=1\\ &^{x}\log (2x-3)-\: ^{x}\log (x+6)+\: ^{x}\log (x+2)=1\\ &^{x}\log (2x-3)(x+2)=1+\log (x+6)\\ &^{x}\log \displaystyle \frac{\left ( 2x^{2}+x-6 \right )}{(x+6)}=1\\ &\displaystyle \frac{\left ( 2x^{2}+x-6 \right )}{(x+6)}=x^{1}\\ &\left ( 2x^{2}+x-6 \right )=x^{2}+6x\\ &\color{purple}x^{2}-5x-6=0\\ &\color{purple}(x+1)(x-6)=0\\ &x=-1\: \: \color{black}\textrm{atau}\: \: \color{red}x=6 \end{aligned} \end{array}$