Notasi Faktorial, Permutasi dan Kombinasi

 C. Faktorial

Perhatikanlah tabel berikut yang berisi perkalian bilangan terurut pada bilangan asli

n!=1×2×3×4××(n2)×(n1)×nataun!=n×(n1)×(n2)××4×3×2×1dengan(n+1)!=(n+1)×n!untukn1,nNserta didefinisikan bahwa0!=1!=1CONTOH0!=11!=12!=2×1=23!=3×2×1=64!=4×3×2×1=245!=5×4×3×2×1=1206!=6×5×4×3×2×1=720n!=n×(n1)×(n2)××4×3×2×1

CONTOH SOAL

1.Tentukanlah nilaia.3!e.6!4!i.2!0!+3!1!+4!2!b.5!f.10!6!j.2!0!×3!1!+4!2!c.0!+1!+2!+3!g.7!3!×4!k.3×4!3!(5!5!)d.(2!)!+(3!)!h.13!12!+12!l.3!+5!+7!4!+6!Jawab:a.3!=3.2.1=6b.5!=5.4.3.2.1=120c.0!+1!+2!+3!=1+1+2+6=10d.(2!)!+(3!)!=2!+6!=2+720=722e.6!4!=72024=30atau6!4!=6.5.4.3.2.14.3.2.1=6.5=30f.10!6!=10.9.8.7.6.5.4.3.2.16.5.4.3.2.1=....(silahkan diselesaikan sendiri)g.7!3!×4!=7.6.5.4.3.2.1(3.2.1)×(4.3.2.1)=....(silahkan juga diselesaikan sendiri)(silahkan selanjutnya diselesaikan sendiri)

2.Sederhanakanlaha.n!(n1)!e.1n!+n(n+1)!1(n1)!b.(n+2)!(n+1)!f.(4n)!(4n+1)!+(4n)!(4n1)!c.(2n)!(2n+1)!g.1nn!(n1).(n2)!d.(n+2)!(n2+3n+2)h.1.1!+2.2!+3.3!+4.4!+5.5!+...+n.n!Jawab:a.n!(n1)!=n.(n1)!(n1)!=nb.(n+2)!(n+1)!=(n+2).(n+1)!(n+1)!=n+2c.(2n)!(2n+1)!=(2n)!(2n+1).(2n)!=12n+1d.(n+2)!n2+3n+2=(n+2)!(n+2).(n+1)=(n+2).(n+1).n!(n+2).(n+1)=n!(silahkan selanjutnya diselesaikan sendiri sebagai latihan)h.1.1!+2.2!+3.3!+4.4!+5.5!+...+n.n!=(21).1!+(31).2!+(41).3!+(51).4!+...+(n+11).n!=2.1!+3.2!+4.3!+5.4!+...+(n+1).n!1!2!3!4!...n!=2!+3!+4!+5!+...+(n+1)!(1!+2!+3!+4!+...+n!)=(n+1)!1

3.Sederhanakanlah bentuk penjumlahan berikut31!+2!+3!+42!+3!+4!+53!+4!+5!++10098!+99!+100!Jawab:Perhatikanbahwa31!+2!+3!=31+2+6=39=13×22=21×2×3=23!=313!=33!13!=32!×313!=12!13!sehingga31!+2!+3!=12!13!42!+3!+4!==13!14!53!+4!+5!==14!15!10098!+99!+100!==199!1100!=12!1100!

D. Permutasi dan Kombinasi

IstilahPermutasiKombinasiDefinisiPermutasi r unsur dari n unsur adalahbanyaknya kemungkinan urutan r buahunsur yang dipilih dari n unsuryang tersedia.Tiap unsur berbeda danrnKombinasi r unsur dan n unsur adalahbanyaknya kemungkinan tidak terurutdalam pemilihan r unsur yang diambildari n unsur yang tersedia.Tiap unsurberbeda danrnTipeBentuk khusus kaidah perkalianBentuk khusus permutasiNotasinPr,Pnr,atauP(n,k)nCr,Crn,(nr),atauC(n,r)RumusP(n,r)=n!(nr)!(nr)=C(n,r)=n!r!(nr)!

Selanjutnya perhatikanlah tabel berikut

PermutasiPermutasidengan unsur yang samaSiklisP(n;n1,n2,n3,...,nk)=P(n,n)n1!n2!n3!...nk!=n!n1!n2!n3!...nk!{Siklis=(n1)!Kalung=(n1)!2

dan

KombinasiKombinasi dalamdengan pengulanganBinom NewtonC(n+r1,r)=C(n+r1,n1)(n+r1r)=(n+r1n1)(x+y)n=k=on(nr)xnkykKoefisien untukxnkyk,yaitusuku ke(k+1)adalah(nr)

serta


CONTOH SOAL

1.Jika di suatu kelas terdapat 4 orang akan dipilih 3 orang untuk menjadi ketua, sekretaris, dan bendahara.Tentukanlah banyak cara memilih 3 orang tersebut?Jawab:Karena ada 4 orang, misal A, B, C, dan D yangakan dipilih 3 orang untuk menduduki posisiketua, sekretaris, dan bendahara, maka kita tinggalbuat permutasinya, yaitu posisi ketua dapat dipilih dengan 4 cara, sekretaris dapat dipilih dengan 3 cara,dan bendahara dapat dipilih dengan 2 cara. atauP(4,3)=4!(43)!=4!1!=4×3×2×11=24caraBerikut ilustrasinya dengan diagram pohon
{A{B{CABCDABDC{BACBDACDD{BADBCADCB{A{CBACDBADC{ABCADBCDD{ABDACBDCC{A{BCABDCADB{ACBADCBDD{ACDABCDBD{A{BDABCDACB{ADBACDBCC{ADCABDCB
2.Seorang anak akan mengambil 4 buah bola dari10 warna yang berbeda. Berapakah banyakkombinasi warna yang berbeda yang diambiloleh AndiJawab:n=10danr=4C(n,r)=n!r!(nr)!C(10,4)=10!4!(104)!=10!4!×6!=10×9×8×7×6!(4×3×2×1)×6!=420kombinasi warna bola berbeda

3.Berapa banyak cara dapat memilih untuk3 perwakilan dari 10 anggota suatukelompok, jikaa. tanpa perlakuan khususb. salah seorang harus terpilihJawab:a.Dengan tanpa perlakuanmemilih 3 orang dari 10 orang adalah:C(10,3)=10!3!(103)!=10!3!×7!=120b.Dengan perlakuan 1 orang terpilih(1 orang ini artinya tidak perlu diperhitungkan)memilih 2 orang dari 9 orang adalah:C(9,2)=9!2!(92)!=9!2!×8!=36

4.Berapa banyak cara dapat memilih 2 bukumatematika dan 3 buku fisika serta 4 bukuekonomi pada suatu lemari buku yangdi dalamnya terdapat 10 buku matematika,11 buku fisika dan 12 buku ekonomiJawab:Banyakcara pemilihan tersebut adalah:=C(10,2)×C(11,3)×C(12,4)=10!2!×8!×11!3!×8!×12!4!×8!=10×91×2×11×10×91×2×3×12×11×10×91×2×3×4=3675375

DAFTAR PUSTAKA
  1. Johnaes, Kastolan, & Sulasim. 2004. Kompetensi Matematika SMA Kelas 2 Semester 1 Program Ilmu Sosial KBK 2004. Jakarta: YUDHISTIRA.
  2. Kartini, Suprapto, Subandi, & Setiyadi, U. 2005. Matematika Program Studi Ilmu Alam Kelas XI untuk SMA dan MA. Klaten: INTAN PARIWARA.
  3. Sobirin. 2006. Kompas Matematika Strategi Praktis Menguasai Tes Matematika. Jakarta: KAWAN PUSTAKA.











Tidak ada komentar:

Posting Komentar

Informasi