Lanjutan Materi Kaidah Pencacahan

 B. Kaidah Pencacahan

Dalam kombinatorial kita harus melakukan perhitungan (counting) untuk mendapatkan semua kemungkinan dari pengaturan objekgar hasilnya didaptkan valid. Dua kaidah dasar yang digunakan dalam hal ini adalah adalah kaidah perkalian (rule of product) dan kaidah penjumlahan (rule of sum). Kedua kaidah tersebut nantinya akan selalu digunakan secara terpisah atau secara gabungan tergantung kondisi yang diinginkan dalam penentuan aturan pengisian tempat.

 B. 1 Kaidah Perkalian

{Kaidah PerkalianJika percobaan 1 mendapat hasilm,percobaan 2 mendapatkan hasiln,maka jika percobaan 1 dan 2 dilakukan,maka akan mendapatkan hasilm×nkemungkinanKaidah PenjumlahJika percobaan 1 mendapat hasilm,percobaan 2 mendapatkan hasiln,maka jika hanyasatu percobaansajayang dilakukan (percobaan 1 atau percobaan 2),maka akan mendapatkan hasilm+nkemungkinan

CONTOH SOAL

1.Sekumpulan pelajar terdiri dari 5 anak putradan 4 anak putri. Tentukanlah jumlah cara memilihsatu orang wakil siswa dan satu orang wakil siswi?Jawab:ada 5 kemungkinan memilih seorang wakil siswadan ada 4 kemungkinan memilih wakil siswi.Jika 2 orang wakil harus dipilih yang terdiridari 1 siswa dan 1 siswi, maka jumlahkemungkinan perwakilan tersebut adalah yangdapat dipilih adalah 5 x 4 = 20 cara

2.Tentukanlah ruang sampel dan banyaknyaanggota untuk percobaana.melambungkan sebuah koin sebanyak 3 kalib.melambungkan dua buah dadu sebanyak sekaliJawab:Jika S adalah ruang sampel dan n(S) adalahbanyak anggota ruang sampel, makaa.karena muka koin ada 2, maka n(S)n(S)=2×2×2=23=8b.karena muka dadu ada 6, maka n(S)n(S)=6×6=62=36Dan berikut ilustrasi untuk seluruh ruangsampelnya untuk kedua kasus di atasab{A{A{A=AAAG=AAGG{A=AGAG=AGGG{A{A=GAAG=GAGG{A=GGAG=GGG1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)n(S)=8n(S)=36

Catatan :

Sebuah koin di lempar 3 kali sama dengan hasilnya untuk ruang sampel 3 buah koin dilempar sekali. Demikian juga sebuah dadu diundi 2 kali akan sama hasilnya dengan 2 buah dadi diundi sekali.

3.Sekumpulan pelajar terdiri dari 5 anak putra dan4 anak putri. Tentukanlah jumlah cara memilih satuorang wakil pelajar tersebut(tidak masalah putra atau putri)?Jawab:ada 5 kemungkinan memilih seorang wakil siswa danada 4 kemungkinan memilih wakil siswi. Jikahanya 1 orang wakil yang harus dipilih(tidak peduli putra atau putri),maka banyak cara memilih adalah 5 + 4 = 9 cara

4.Sebuah bilangan dibentuk dari angka-angka1, 2, 3, 4, 5, 6, 7, 8, dan 9. Jika pengulangantidak diperbolehkan, tentukan banyaknya bilangana.yang terdiri dari 1 angka dan kurang dari 5b.yang terdiri dari 2 angka dan kurang dari 50c.yang terdiri dari 3 angka dan kurang dari 500d.yang terdiri dari 4 angka dan kurang dari 5000e.yang terdiri dari 5 angka dan kurang dari 50000f.yang terdiri dari 6 angka dan kurang dari 500000 dan habis dibagi 5Jawab:a.jelas ada 4 angka yang memenuhi, yaitu: 1, 2, 3, dan 4b.2 angka misalkan AB, posisi A dapat diisi dengan 4 cara dan posisi B dapatdiisi dengan 8 cara, karena setelah diisikan ke A angka tinggal 8 buah dansemuanya memiliki kesempatan yang sama untuk diisikan ke B.sehingga AB dapat diisi dengan 4 x 8 = 32 cara.c.3 angka misalkan ABC, posisi A dapat diisi dengan 4 cara, posisi B dapatdiisi dengan 8 cara, dan posisi C dapat diisi dengan 7 cara.sehingga ABC dapat diisi dengan 4 x 8 x 7 = 224 cara.Untuk jawaban d, e, dan f silahkan dicoba sendiri sebagai latihan



Tidak ada komentar:

Posting Komentar

Informasi