Lanjutan Materi Operasi Polinom

$\color{blue}\textrm{C. Operasi Pada Polinom}$

$\textbf{1. Kesamaan dua buah polinom}$

Dua buah polinom dikatakan sama jika keduanya memiliki pangkat/derajat  sama dan koefisien-koefisien suku yang sejenis juga sama.

$\LARGE\colorbox{magenta}{CONTOH SOAL}$

$\begin{aligned}x^{4}+Ax^{3}-4x^{2}-10x+3&=(x^{2}+2x+3)(x^{2}+Bx+1)\\ x^{4}+Ax^{3}-4x^{2}-10x+3&=x^{4}+(B+2)x^{3}+(2B+4)x^{2}\\ &+(3B+2)x+3\\ \textrm{Elemen yang bersesuaian}&\\ \textrm{untuk}\: \: x^{1}\: :\: \color{blue}-10&=3B+2\\ \textrm{maka}\: \: \: B& =4\\ \textrm{untuk}\: \: x^{3}\: :\: \color{blue}A&=B+2\\ A&=-2 \end{aligned}$

$\textbf{2. Penjumlahan}$

 Dua polinom dapat dijumlahkan jika hanya jika suku-sukunya sejenis, jika tidak maka tidak bisa

$\textbf{3. Pengurangan}$

Pada operasi pengurangan juga juga berlaku seperti pada operasi penjumlahan, yaitu pengurangan hanya bisa terjadi pada suku-suku yang sejenis saja yang lainnya tidak dapat dilakukan.

$\textbf{4. Perkalian}$

Pada jenis operasi ini dilakukan seperti mengalikan biasa yaitu mengalikan semua suku-suku secara distribusi dari kedua polinom tersebut.

$\LARGE\colorbox{magenta}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Diketahui 2 suku banyak berikut}\\ &\begin{cases} p(x) &=x^{3}+2x^{2}+x-1 \\ q(x) &=x^{4}+5x+2 \end{cases}\\ &\textrm{Tentukanlah}\\ &\textrm{a}.\quad \textrm{penjumlahan keduanya}\\ &\textrm{b}.\quad \textrm{pengurangan}\: \: p(x)\: \: \textrm{oleh}\: \: q(x)\\\\ &\textrm{Jawab}:\\ &\begin{array}{lllllllllll}\\ p(x)=&&x^{3}&+&2x^{2}&+&x&-&1&\\ q(x)=&x^{4}&&&&+&5x&+&2&(+)\\\hline &\color{red}x^{4}\: +&\color{red}x^{3}&+&\color{red}2x^{2}&+&\color{red}6x&+&\color{red}1& \end{array}\\ &\textrm{poin b Silahkan dicoba sebagai latihan} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah hasil kali perkalian}\\ &\textrm{dari dua polinom berikut}\\ &\textrm{a}.\quad 3x(-5x^{2})\\ &\textrm{b}.\quad 2a(7a-3)\\ &\textrm{c}.\quad (x+2)(x-5)\\ &\textrm{d}.\quad (3t-2)(2t^{2}-5t+3)\\ &\textrm{e}.\quad (5a^{2}+2)(5a^{2}-2)\\ &\textrm{f}.\quad (x^{3}-2x)(x^{2}+3x-4)\\ &\textrm{g}.\quad (2a^{3}+1)(-a-3)^{2}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&3x(-5x^{2})=-3.5x^{1+2}=\color{red}-15x^{3}\\ \textrm{b}.\quad&2a(7a-3)=2.7a^{1+1}-2.3a=\color{red}14a^{2}-6a\\ &\color{blue}\textrm{Selanjutnya kita langsungkan saja}\\ \textrm{c}.\quad&(x+2)(x-5)=x^{2}+(2-5)x-2.5\\ &\qquad\qquad \qquad\: =\color{red}x^{2}-3x-10\\ \textrm{d}.\quad&(3t-2)(2t^{2}-5t+3)\\ &\qquad = 6t^{3}-15t^{2}+9t-4t^{2}+10t-6\\ &\qquad = \color{red}6t^{3}-19t^{2}+19t-6\\ \textrm{e}.\quad&(5a^{2}+2)(5a^{2}-2)\\ &\qquad = 25a^{4}-10x^{2}+10a^{2}-4\\ &\qquad =\color{red}25a^{4}-4\\ \textrm{f}.\quad&(x^{3}-2x)(x^{2}+3x-4)\\ &x^{5}+3x^{4}-4x^{3}-2x^{3}-6x^{2}+8x\\ &\qquad =\color{red}x^{5}+3x^{4}-6x^{3}-6x^{2}+8x\\ \textrm{g}.\quad&(2a^{2}+1)(-a-3)^{2}\\ &\qquad =(2a^{2}+1)(a^{2}+6a+9)\\ &\qquad =2a^{4}+12a^{3}+18a^{2}+a^{2}+6a+9\\ &\qquad =\color{red}2a^{4}+12a^{3}+19a^{2}+6a+9 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah hasil dari perkalian}\\ &\textrm{dua polinom berikut}\\ &\textrm{a}.\quad \begin{cases} p(x) &=x^{2}-x-1 \\ q(x) &=x^{2}+x+1 \end{cases}\\\\ &\textrm{b}.\quad \begin{cases} p(x) &=x^{5}+3x^{3}-x-1 \\ q(x) &=x^{4}+2x+1 \end{cases}\\\\ &\textrm{c}.\quad \begin{cases} p(x) &=x^{6}+3x-6 \\ q(x) &=x^{3}-6x+3 \end{cases}\\\\ &\textrm{d}.\quad \begin{cases} p(x) &=x^{2020}-x \\ q(x) &=x^{2}+x-1 \end{cases}\\\\ &\textrm{e}.\quad \begin{cases} p(x) &=x^{2021}-1 \\ q(x) &=x^{2019}+1 \end{cases}\\\\ &\textrm{Jawab}:\\ &\textrm{Poin a sampai d silahkan dicoba}\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Diketahui bahwa}\\ &\begin{cases} p(x) &=x^{2021}-1 \\ q(x) &=x^{2019}+1 \end{cases}\\ &\textrm{maka}\: \: p(x)\times q(x)\\ &=\left ( x^{2021}-1 \right )\times \left ( x^{2019}+1 \right )\\ &=x^{2021+2019}+1\times x^{2021}-1\times x2019-1\times 1\\ &=\color{red}x^{4040}+x^{2021}-x^{2019}-1 \end{aligned} \end{array}$

$\textbf{5. Pembagian}$

Perhatikanlah ilustrasi pembagian bersusun panjang berikut

Misalkan untuk pembagian  $x^{3}+4x^{2}-2x+4$  oleh   $x-1$ adalah sebagai berikut:

Selanjutnya dari caontoh di atas kita mendapatkan, 
$\begin{aligned}x^{3}&+4x^{2}-2x+4\\ &=(x-1)(x^{2}+5x+3)+7 \end{aligned}$
Sehingga dari uraian di atas secara umum pembagian polinom dapat dinyatakan bahwa:
$\textrm{Polinomial}=\textrm{Pembagi}\times \textrm{Hasil bagi}+\textrm{Sisa}$

$\textbf{a. Pembagian bentuk}\:  (x-h)$
$\textbf{b. Pembagian bentuk}\: (ax+b)$
$\textbf{c. Pembagian bentuk}\: (ax^{2}+bx+c)$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$
$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah hasil bagi dan sisa pembagian}\\ &\textrm{jika}\: \: x^{3}+4x^{2}-2x+4\: \: \textrm{oleh}\: \: x-1\\\\ &\color{blue}\textrm{Jawab}:\\ & \end{array}$
$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah hasil bagi dan sisa pembagian}\\ &\textrm{jika}\: \: 4x^{3}-8x^{2}-x+5\: \: \textrm{oleh}\: \: 2x-1\\\\ &\color{blue}\textrm{Jawab}:\\ & \end{array}$
$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah hasil bagi dan sisa pembagian}\\ &\textrm{jika}\: \: x^{4}-2x^{2}-13x-19\: \: \textrm{oleh}\: \: x^{2}-2x-3\\\\ &\color{blue}\textrm{Jawab}:\\ & \end{array}$

Catatan hasil bagi adalah pada contoh no.1 s.d 3 adalah pada tiap pembahasan di tiap nomornya adalah terletak di bagian atas (berwarna biru) dan sisa pembagiannya adalah yang terletak di bagian paling bawah (berwarna merah).

TAMBAHAN

Pembagian Horner - Kino
Perhatikanlah bagan berikut



Sebagai tambahan penjelasan dari bagan di atas adalah

$\LARGE\colorbox{yellow}{CONTOH SOAL}$
$\begin{array}{ll}\\ 1.&\textrm{Dengan metode Horner, tentukanlah}\\ & \textrm{nilai suku banyak berikut ini}!\\ &\textrm{a})\quad 4x^{4}-7x^{3}+8x^{2}-2x+3\: \: \: \textrm{jika}\: \: x=2\\ &\textrm{b})\quad 2x^{5}+3x^{3}-x+1\: \: \: \textrm{jika}\: \: x=-3\\ &\textrm{c})\quad 2x^{3}+x^{2}-2x+3\: \: \: \textrm{jika}\: \: x=\displaystyle \frac{1}{3}\\\\ &\textrm{Jawab}:\\ &\textrm{Diketahui bahwa}\\ &f(x)=\color{red}4x^{4}-7x^{3}+8x^{2}-2x+3\\ &\textbf{Cara biasa (Substitusi)}\\ &\begin{aligned}f(2)&=4(2)^{4}-7(2)^{3}+8(2)^{2}-2(2)+3\\ &=64-56+32-4+3\\ &=39\\ \textrm{Seba}&\textrm{gai catatan bahwa}:\\ &\: \textrm{Polinom}\: \: f(x)\: \: \textrm{tersebut di atas }\\ &\textrm{jika dibagi}\: (x-2)\: \textrm{bersisa 39} \end{aligned}\\ &\textbf{Cara Horner}\\ & \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Hitunglah nilai}\: \: a,\: b,\: c,\: \: \textrm{dan}\: \: d,\: \: \textrm{jika}\\ &\textrm{a})\quad -3x+4\equiv a(x-7)-b(2x-3)\\ &\textrm{b})\quad a(x-1)^{2}-b(x+4)\equiv 2x^{2}-5x-7\\ &\textrm{c})\quad 3x^{2}+2x-5\equiv (ax+1)(x+b)-c(x+1)+2(ab-c)\\ &\textrm{d})\quad x^{4}-8x^{3}+15x-20\equiv x^{4}+ax^{3}+(a+b)x^{2}+(2b-c)x+d\\ &\textrm{e})\quad \displaystyle \frac{a}{x-1}+\frac{b}{x+3}\equiv \displaystyle \frac{8}{x^{2}+2x-3}\\ &\textrm{f})\quad \displaystyle \frac{a}{x-1}+\frac{b}{x-4}\equiv \displaystyle \frac{3}{x-1}+\frac{20}{x-4}+\frac{x+17}{x^{2}-5x+4}\\ &\textrm{g})\quad \displaystyle \frac{5x-4}{x^{2}-1}\equiv \displaystyle \frac{a}{x-1}+\frac{b}{x+1}-\frac{3}{x^{2}-1}\\ &\textrm{h})\quad \displaystyle \frac{2x^{2}+x+2}{x^{3}-1}\equiv \displaystyle \frac{a}{x-1}+\frac{bx+c}{x^{2}+x+1}\\ &\textrm{i})\quad \displaystyle \frac{3x^{2}+2x-5}{x^{2}+5x+6}\equiv \displaystyle \frac{a(x-3)}{x+3}+\frac{b(x-5)}{x+2}+\frac{4c}{(x+2)(x+3)}\\ &\textrm{j})\quad x^{3}+ax^{2}+bx+c=0\: \: \textrm{dengan akar-akar}\: \: x_{1}=x_{2}=-1\: \: \textrm{dan}\: \: x_{3}=-3\\ &\textrm{k})\quad x^{3}+ax^{2}+bx+c=0\: \: \textrm{dengan akar-akar}\: \: 1,\: 2,\: \: \textrm{dan}\: \: 3 \end{array}$

$.\: \qquad\begin{aligned}\color{blue}\textrm{Yang diba}&\color{blue}\textrm{has hanya no. 6 d}\\ x^{4}-8x^{3}+&15x-20\\ \equiv \color{red}x^{4}\color{black}+a\color{red}x^{3}&+(a+b)\color{red}x^{2}\color{black}+(2b-c)\color{red}x\color{black}+d\\ \textrm{koefisien}\: \: \color{red}x^{4}&:\: \: 1=1\\ \textrm{koefisien}\: \: \color{red}x^{3}&:\: \: -8=a,\: \: \textrm{maka}\: \: a=-8\\ \textrm{koefisien}\: \: \color{red}x^{2}&:\: \: 0=a+b,\: \: \textrm{maka}\: \: b=-a=-(-8)=8\\ \textrm{koefisien}\: \: \color{red}x^{1}&:\: \: 15=2b-c,\: \: \textrm{maka}\: \: c=2b-15=2(8)-15=1\\ \textrm{koefisien}\: \: \color{red}x^{0}&:\: \: -20=d,\: \: \textrm{maka}\: \: d=-20\\ \end{aligned}$

$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah hasil bagi dan sisanya}!\\ &\begin{array}{ll}\\ \textrm{a})\quad (3x^{3}-2x^{2}+x-4):(x-1)&\textrm{k})\quad (x^{7}+3x^{5}+1):(x^{2}-1)\\ \textrm{b})\quad (2x^{4}-3x^{3}+x^{2}-5x+3):(x-2)&\textrm{l})\quad (x^{4}-3x^{3}-5x^{2}+x-6):(x^{2}-x-2)\\ \textrm{c})\quad (3-x+4x^{2}-x^{3}):(x-3)&\textrm{m})\quad (2x^{4}-3x^{2}-x+2):(x^{2}-2x+1)\\ \textrm{d})\quad (x^{4}-x^{2}+11):(x+4)&\textrm{n})\quad (3x^{6}+4x^{4}-2x-1):(x-1)(x^{2}-4)\\ \textrm{e})\quad (x^{3}-10x+9):(x+5)&\textrm{o})\quad (x^{4}-4x^{3}+2x^{2}-x+1):(2x+1)(x^{2}-3x+2)\\ \textrm{f})\quad (2x^{3}-5x^{2}-11x+8):(3x+1)&\textrm{p})\quad (x^{7}-7x^{4}+3x):(x^{3}-4x)\\ \textrm{g})\quad (5x^{3}+11x^{2}+7x-4):(5x+1)&\textrm{q})\quad (2x^{3}+x^{2}-4x+5):(x^{2}+x+1)\\ \textrm{h})\quad (2x^{3}+5x^{2}-4x+5):(2x+3)&\textrm{r})\quad (2x^{4}+x^{3}-3x+6):(x^{2}+x+2)\\ \textrm{i})\quad (2x^{3}+7x^{2}-5x+4):(2x-1)&\textrm{s})\quad (x^{4}-3x^{2}+7x-4):(x^{2}-2x-1)\\ \textrm{j})\quad (6x^{3}-x^{2}+3):(2x-3)&\textrm{t})\quad (3x^{3}+4x-8):(3x^{2}+x+2) \end{array} \end{array}$

$.\qquad\begin{aligned}&\textrm{Untuk pembahasan no. 3 i} \end{aligned}$
$.\qquad\begin{aligned}&\begin{array}{|l|l|}\hline \textrm{Pembagi}&\begin{aligned}&\textrm{Sisa}\\ &s(x)=\displaystyle \frac{7}{2} \end{aligned}\\\hline \begin{aligned}&2x-1=2(x-\frac{1}{2}) \end{aligned}&\begin{aligned}&\textrm{Hasil bagi}\\ &\displaystyle \frac{h(x)}{2}=\frac{2x^{2}+8x-1}{2}=x^{2}+4x-\frac{1}{2}\ \end{aligned}\\\hline \end{array} \end{aligned}$

$.\qquad\begin{aligned}&\textrm{Dan untuk pembahasan no. 3 m} \end{aligned}$
$.\qquad\begin{array}{|l|l|}\hline \textrm{Pembagi}&\begin{aligned}&\textrm{Sisa}\\ &s_{2}(x-p)+s_{1}\\ &1(x-1)+0=x-1 \end{aligned}\\\hline \begin{aligned}(x-p)(x-q)&=(x-1)(x-1)\\ &=(x-1)^{2} \end{aligned}&\begin{aligned}&\textrm{Hasil bagi}\\ &2x^{2}+4x+3 \end{aligned}\\\hline \end{array}$
$.\qquad\begin{aligned}&\textrm{Coba bandingkan dengan cara Horner-Kino berikut} \end{aligned}$
$.\qquad\begin{cases} \textrm{Suku banyak}: & f(x)=2x^{4}-3x^{2}-x+2 \\ \textrm{Pembagai}: & p(x)=x^{2}-2x+1 \\ &: -1\: \: \textrm{dari}\: -\frac{1}{1},\: \: \textrm{sedang}\: \: 2=-\left ( \frac{-2}{1} \right )\\ \textrm{Hasil bagi}:&h(x)=2x^{2}+4x+3\\ \textrm{Sisa bagi}:&s(x)=x-1 \end{cases}$.
$.\qquad \textrm{Sehingga},\\\\ 2x^{4}-3x^{2}-x+2=\color{red}\left ( x^{2}-2x+1 \right )\left ( 2x^{2}+4x+3 \right )+x-1$

$\begin{array}{ll}\\ 4.&\textrm{Jika diketahui akar-akar persamaan}\: \: x^{2}+4x-5=0\\ &\textrm{juga akar-akar untuk persamaan}\: \: 2x^{3}+9x^{2}-6x-5=0,\\ &\textrm{maka akar ketiga untuk persamaan yang kedua adalah}\: ...\\\\ &\textrm{Jawab}:\\ \end{array}$
$.\qquad \begin{cases} \textrm{Suku banyak}: & f(x)=2x^{3}+9x^{2}-6x-5 \\ \textrm{Pembagai}: & p(x)=x^{2}+4x-5 \\ &: 5\: \: \textrm{dari}\: -\left (\frac{-5}{1} \right ),\: \: \textrm{sedang}\: \: -4=\left ( \frac{4}{1} \right )\\ \textrm{Hasil bagi}:&h(x)=2x+1\\ \textrm{Sisa bagi}:&s(x)=0 \end{cases}$
$.\qquad\begin{aligned}&\textrm{Sehingga}\\ &2x^{3}+9x^{2}-6x-5=\left ( x^{2}+4x-5 \right )\left ( 2x+1 \right )\\ &\textrm{Jadi, akar yang lain (yang ketiga) adalah}\\ & (2x+1)\Rightarrow x=\color{red}-\displaystyle \frac{1}{2} \end{aligned}$

$\LARGE\colorbox{yellow}{LATIHAN SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah hasil bagi dan sisanya}!\\ &\begin{array}{ll}\\ \textrm{a})\quad (x^{7}+3x^{5}+1):(x^{2}-1)\\ \textrm{b})\quad (x^{4}-3x^{3}-5x^{2}+x-6):(x^{2}-x-2)\\ \textrm{c})\quad (2x^{3}+x^{2}-4x+5):(x^{2}+x+1)\\ \textrm{d})\quad (2x^{4}+x^{3}-3x+6):(x^{2}+x+2)\\ \textrm{e})\quad (x^{4}-3x^{2}+7x-4):(x^{2}-2x-1)\\ \textrm{f})\quad (3x^{3}+4x-8):(3x^{2}+x+2) \end{array} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Jika}\: \: a\: \: \textrm{dan}\: \: b\: \: \textrm{bilangan bulat yang menyebabkan}\\ & x^{2}-x-1\: \: \textrm{merupakan faktor dari}\: \: ax^{3}+bx^{2}+1,\\ &\textrm{maka harga}\: \: b\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&-2&&&\textrm{d}.&1\\ \textrm{b}.&-1&\textrm{c}.&0&\textrm{e}.&2 \end{array}\\ &\qquad\qquad\qquad\quad\qquad\qquad\qquad (\textrm{AHSME 1988})\end{array}$.

$\color{blue}\textrm{Pembagian Istimewa}$
Aturan pembagian istimewa adalah
$\begin{aligned}1.\quad &\displaystyle \frac{x^{n}-a^{n}}{x-a}=x^{n-1}a^{0}+x^{n-2}a^{1}+\cdots +x^{1}a^{n-2}+x^{0}a^{n-1}\\ &\qquad =\displaystyle \sum_{k=1}^{n}x^{n-k}a^{k-1}\\ &\textrm{dengan suku ke}-k\: \: \textrm{hasil bagi}=\color{red}x^{n-k}a^{k-1}\\ 2.\quad&\displaystyle \frac{x^{2n}-a^{2n}}{x+a}=x^{2n-1}a^{0}-x^{2n-2}a^{1}+\cdots +x^{1}a^{2n-2}-x^{0}a^{2n-1}\\ &\qquad =\displaystyle \sum_{k=1}^{2n}(-1)^{k+1}x^{2n-k}a^{k-1}\\ &\textrm{dengan suku ke}-k\: \: \textrm{hasil bagi}=\color{red}(-1)^{k+1}x^{2n-k}a^{k-1}\\ 3.\quad&\displaystyle \frac{x^{2n+1}+a^{2n+1}}{x+a}=x^{2n}a^{0}-x^{2n-1}a^{1}+\cdots -x^{1}a^{2n-1}+x^{0}a^{2n}\\ &\qquad =\displaystyle \sum_{k=1}^{2n+1}(-1)^{k+1}x^{2n+1-k}a^{k-1}\\ &\textrm{dengan suku ke}-k\: \: \textrm{hasil bagi}=\color{red}(-1)^{k+1}x^{2n+1-k}a^{k-1} \end{aligned}$

$\LARGE\colorbox{magenta}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah hasil bagi polinom}\\ &\textrm{untuk tiap pembagian istimewa berikut}\\ &\textrm{a}.\quad \left ( x^{3}-a^{3} \right ):(x-a)\\ &\textrm{b}.\quad \left ( x^{4}-a^{4} \right ):(x+a)\\ &\textrm{c}.\quad \left ( x^{5}+a^{5} \right ):(x+a)\\\\ &\textrm{Jawab}:\\ &\textrm{a}.\quad \displaystyle \frac{\left ( x^{3}-a^{3} \right )}{(x-a)}=x^{2}+xa+a^{2}\: \: ....(\textrm{rumus}\: 1)\\ &\textrm{b}.\quad \displaystyle \frac{\left ( x^{4}-a^{4} \right )}{(x+a)}=x^{3}-x^{2}a+xa^{2}-a^{3}\: \: ....(\textrm{rumus}\: 2)\\ &\textrm{c}.\quad \displaystyle \frac{\left ( x^{5}+a^{5} \right )}{(x+a)}=x^{4}-x^{3}a+x^{2}a^{2}-xa^{3}+a^{4}\: \: ....(\textrm{rumus}\: 3) \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah hasil bagi polinom}\\ &\textrm{untuk tiap pembagian istimewa berikut}\\ &\textrm{a}.\quad \left ( m^{8}-n^{8} \right ):(m+n)\\ &\textrm{b}.\quad \left ( x^{10}-y^{10} \right ):(x+y)\\\\ &\textrm{Jawab}:\\ &\textrm{a}.\quad \displaystyle \frac{\left ( m^{8}-n^{8} \right )}{(m+n)}=m^{7}-m^{6}n+m^{5}n^{2}-\cdots +mn^{6}-n^{7}\\ &\textrm{b}.\quad \displaystyle \frac{\left ( x^{10}-y^{10} \right )}{(x+y)}=x^{9}-x^{8}y+x^{7}y^{2}-\cdots +xy^{8}-y^{9}\\ \end{array}$







































Tidak ada komentar:

Posting Komentar

Informasi