Contoh Soal 2 Peluang Kejadian

 $\begin{array}{ll}\ 6.&\textrm{Sebuah kantong berisi 7 kelereng merah,}\\ &\textrm{5 kelereng hijau, dan 4 kelereng biru}\\ &\textrm{Diambil sebuah kelereng secara acak.}\\ &\textrm{Peluang yang terambil merah atau hijau}\\ &\textrm{adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle \frac{5}{16}&&&\textrm{d}.&\color{red}\displaystyle \frac{3}{4}\\\\ \textrm{b}.&\displaystyle \frac{7}{16}&\textrm{c}.&\displaystyle \frac{1}{2}&\textrm{e}.&\displaystyle \frac{2}{3} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Kejadian di atas adalah contoh}\\ &\textrm{kejadian}\: \: \textbf{saling lepas}.\: \textrm{Misalkan}\\ &A=\textrm{kejadian terambil 1 kelereng merah}\\ &n(A)=C(7,1)=\begin{pmatrix} 7\\ 1 \end{pmatrix}=7\\ &B=\textrm{kejadian terambil 1 kelereng hijau}\\ &n(B)=C(5,1)=\begin{pmatrix} 5\\ 1 \end{pmatrix}=5\\ &S=\textrm{semua dianggap identik}\\ &n(S)=C(16,1)=\begin{pmatrix} 16\\ 1 \end{pmatrix}=16\\ &\textrm{maka}\\ &P(A\cup B)=P(A)+P(B)\\ &\: \qquad\qquad =\displaystyle \frac{n(A)}{n(S)}+\frac{n(B)}{n(S)}\\ &\: \qquad\qquad =\displaystyle \frac{7}{16}+\frac{5}{16}=\frac{12}{16}=\color{red}\displaystyle \frac{3}{4} \end{aligned} \end{array}$

$\begin{array}{ll}\ 7.&\textrm{Dari 100 orang yang mengikuti kegiatan}\\ &\textrm{jalan santai terdapat 60 orang memakai}\\ &\textrm{topi dan 45 orang yang berkacamata.}\\ &\textrm{Peluang bahwa seorang yang dipilih dari}\\ &\textrm{kelompok orang itu memakai topi dan}\\ &\textrm{kacamata adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\color{red}\displaystyle \frac{1}{20}&&&\textrm{d}.&\displaystyle \frac{11}{20}\\\\ \textrm{b}.&\displaystyle \frac{2}{5}&\textrm{c}.&\displaystyle \frac{9}{20}&\textrm{e}.&\displaystyle \frac{3}{5} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\textrm{Perhatikanlah ilustrasi}\: \: \textbf{Diagram Venn}\\ &\textrm{berikut ini}\\ &\begin{array}{|ccl|}\hline \color{red}\begin{array}{|l|}\hline \textrm{S}=100\\\hline \end{array}&&\\ &\color{blue}\textrm{A}\qquad\qquad \textrm{B}&\\ &\begin{array}{|l|c|r|}\hline 60-n&n&45-n\\\hline \end{array}&\\ &&\\\hline \end{array} \\ &\begin{aligned}&\textrm{Kejadian di atas adalah contoh}\\ &\textrm{kejadian}\: \: \textbf{tidak saling lepas}.\\ &A=\textrm{kejadian terpilih seorang bertopi}\\ &n(A)=C(60,1)=\begin{pmatrix} 60\\ 1 \end{pmatrix}=60\\ &B=\textrm{kejadian terpilih seorang berkacamata}\\ &n(B)=C(45,1)=\begin{pmatrix} 45\\ 1 \end{pmatrix}=45\\ &A\cap B=\textrm{terpilih seorang bertopi dan}\\ &\qquad\qquad\textrm{berkacamata}\\ &n(A\cap B)=x\\ &S=\textrm{semua dianggap identik}\\ &n(S)=C(100,1)=\begin{pmatrix} 100\\ 1 \end{pmatrix}=100\\ &\textrm{maka}\\ &P(A\cup B)=P(A)+P(B)-P(A\cap B)\\ &\displaystyle \frac{n(A\cup B)}{n(S)}=\displaystyle \frac{n(A)}{n(S)}+\frac{n(B)}{n(S)}-\displaystyle \frac{n(A\cap B)}{n(S)}\\ &\: \: \: \qquad \displaystyle \frac{100}{100}=\frac{60}{100}+\frac{45}{100}-\frac{x}{100}\\ &\: \: \: \qquad \displaystyle \frac{x}{100}=\displaystyle \frac{105}{100}-\frac{100}{100}\\ &\, \: \qquad\qquad =\color{red}\displaystyle \frac{5}{100}=\frac{1}{20} \end{aligned} \end{array}$

$\begin{array}{ll}\ 8.&\textrm{Diketahui dua buah kotak A dan B}\\ &\textrm{berisi 5 bola putih dan 3 bola merah.}\\ &\textrm{Kotak B berisi 4 bola putih dan 2 bola}\\ &\textrm{merah. Jika diambil secara acak 1 kotak,}\\ &\textrm{kemudian diambil secara acak 1 bola dari}\\ &\textrm{kotak tersebut, maka peluang terambilnya}\\ &\textrm{bola putih adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle \frac{5}{16}&&&\textrm{d}.&\displaystyle \frac{1}{2}\\\\ \textrm{b}.&\displaystyle \frac{1}{3}&\textrm{c}.&\displaystyle \frac{7}{16}&\textrm{e}.&\color{red}\displaystyle \frac{31}{48} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Kejadian di atas adalah kejadian}\\ &\textbf{saling lepas}\: \: \textrm{dari dua kejadian Q}\\ &\textrm{dan R. Misalkan}:\\ &\color{red}\textrm{Pada kotak A}\\ &Q=\textrm{Terambil 1 bola putih di kotak A}\\ &n(Q)=C(5,1)=\begin{pmatrix} 5\\ 1 \end{pmatrix}=5\\ &S_{Q}=\textrm{Terambil 1 bola saja di kotak A}\\ &n(S_{Q})=C(8,1)=\begin{pmatrix} 8\\ 1 \end{pmatrix}=8\\ &\color{red}\textrm{Pada kotak B}\\ &R=\textrm{Terambil 1 bola putih di kotak B}\\ &n(R)=C(4,1)=\begin{pmatrix} 4\\ 1 \end{pmatrix}=4\\ &S_{R}=\textrm{Terambil 1 bola saja di kotak B}\\ &n(S_{R})=C(6,1)=\begin{pmatrix} 6\\ 1 \end{pmatrix}=6\\ &\color{red}\textrm{Karena kejadian pengambilan sebuah}\\ &\textrm{bola putih di atas adalah dari pilihan}\\ &\textrm{dua buah kotak yang ada, maka peluang}\\ &\textrm{pengambilannya adalah 1 dari 2 kotak}\\ &\textrm{peluang kejadian ini adalah}=\color{blue}\displaystyle \frac{1}{2}.\\ &\color{red}\textrm{Sehingga peluang kasus di atas adalah}:\\ &\displaystyle \frac{1}{2}P(Q\cup R)=\displaystyle \frac{1}{2}\left (P(Q)+P(R) \right )\\ &\quad\qquad\qquad =\displaystyle \frac{1}{2}\left (\displaystyle \frac{n(Q)}{n(S_{Q})}+\frac{n(R)}{n(S_{R})} \right )\\ &\quad\qquad\qquad =\displaystyle \frac{1}{2}\left ( \displaystyle \frac{5}{8}+\frac{4}{6} \right )\\ &\quad\qquad\qquad =\color{red}\displaystyle \frac{1}{2}\left ( \displaystyle \frac{31}{24} \right )=\displaystyle \frac{31}{48} \end{aligned} \end{array}$

$\begin{array}{ll}\ 9.&\textrm{Kotak I berisi 3 bola merah dan 2 bola }\\ &\textrm{putih. Kotak II berisi 3 bola hijau dan 5}\\ &\textrm{biru. Dari tiap-tiap kotak diambil 2 bola}\\ &\textrm{sekaligus secara acak. Peluang terambil 2}\\ &\textrm{bola merah pada kotak I dan 2 bola biru}\\ &\textrm{dari kotak II adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle \frac{1}{10}&&&\textrm{d}.&\displaystyle \frac{3}{8}\\\\ \textrm{b}.&\color{red}\displaystyle \frac{3}{28}&\textrm{c}.&\displaystyle \frac{4}{15}&\textrm{e}.&\displaystyle \frac{57}{140} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Kejadian di atas adalah kejadian}\\ &\textbf{saling bebas}\: \: \textrm{dari dua kejadian A}\\ &\textrm{dan B. Misalkan}:\\ &\color{red}\textrm{Pada kotak I}\\ &A=\textrm{Terambil 2 bola merah di kotak I}\\ &n(A)=C(3,2)=\begin{pmatrix} 3\\ 2 \end{pmatrix}=3\\ &S=\textrm{Terambil 2 bola saja di kotak I}\\ &n(S)=C(5,2)=\begin{pmatrix} 5\\ 2 \end{pmatrix}=10\\ &\color{red}\textrm{Pada kotak II}\\ &B=\textrm{Terambil 2 bola biru di kotak II}\\ &n(B)=C(5,2)=\begin{pmatrix} 5\\ 2 \end{pmatrix}=10\\ &S=\textrm{Terambil 2 bola saja di kota II}\\ &n(S)=C(8,2)=\begin{pmatrix} 8\\ 2 \end{pmatrix}=28\\ &\color{red}\textrm{Sehingga peluang kasus di atas adalah}:\\ &\displaystyle P(A\cap B)=P(A)\times P(B) \\ &\: \qquad\qquad =\displaystyle \frac{n(A)}{n(S)}\times \frac{n(B)}{n(S)} \\ &\: \qquad\qquad = \displaystyle \frac{3}{10}\times \frac{10}{28}\\ &\quad\qquad\qquad =\color{red}\displaystyle \frac{3}{28} \end{aligned} \end{array}$

$\begin{array}{ll}\ 10.&\textrm{Jika kejadian}\: \: A\: \: \textrm{dan}\: \: B\: \: \textrm{dapat terjadi secara}\\ &\textrm{bersamaan. Jika}\: \: P(A)=0,6,\: P(B)=0.75,\\ &\textrm{dan}\: \: P(A\cap B)=0,43,\: \textrm{maka}\: \: P(A\cup B)=\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle 0,98&&&\textrm{d}.&\color{red}\displaystyle 0,92\\\\ \textrm{b}.&\displaystyle 0,96&\textrm{c}.&\displaystyle 0,94&\textrm{e}.&\displaystyle 0,91 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Kejadian di atas adalah contoh}\\ &\textrm{kejadian}\: \: \textbf{tidak saling lepas}.\\ &\color{red}\textrm{Diketahui bahwa}\\ &P(A)=0,6,\: P(B)=0,75,\: P(A\cap B)=0,43\\ &\color{red}\textrm{Ditanyakan nilai}\: \: P(A\cup B)=\: ...?\\ &\color{purple}\textrm{maka}\\ &P(A\cup B)=P(A)+P(B)-P(A\cap B)\\ &\: \qquad\qquad =0,6+0,75-0,43\\ &\: \qquad\qquad =\color{red}0,92 \end{aligned} \end{array}$

Tidak ada komentar:

Posting Komentar

Informasi