Contoh 2 Soal dan Pembahasan Materi Vektor

 $\begin{array}{ll}\\ 6.&\textrm{Diketahui titik}\: \: P(n,2),\: Q(1,-2),\: n>0\\ &\textrm{dan panjang}\: \: \overline{PQ}=5,\: \: \textrm{maka nilai}\: \: n\\ & \textrm{adalah}....\\ &\textrm{a}.\quad 1\\ &\textrm{b}.\quad 2\\ &\textrm{c}.\quad 3\\ &\textrm{d}.\quad \color{red}4\\ &\textrm{e}.\quad 5\\\\ &\textrm{Jawab}\\ &\begin{aligned}\overline{PQ}&=5\\ \sqrt{(x_{Q}-x_{P})^{2}+(y_{Q}-y_{P})^{2}}&=5\\ (x_{Q}-x_{P})^{2}+(y_{Q}-y_{P})^{2}&=25\\ (1-n)^{2}+(-2-2)^{2}&=25\\ (1-n)^{2}+16&=25\\ (1-n)^{2}-3^{2}&=0\\ (1+3-n)(1-3-n)&=0\\ \color{red}n=4\: \: \color{black}\textrm{atau}\: \: \color{red}n=-2& \end{aligned} \end{array}$

$\begin{array}{ll}\\ 7.&\textrm{Diketahui vektor}\: \: \vec{u}=\begin{pmatrix} 3\\ 4 \end{pmatrix}\: \: \textrm{dan}\: \: \vec{v}=\begin{pmatrix} 2\\ -1 \end{pmatrix}.\\ & \textrm{Nilai}\: \: \left | \vec{u}+\vec{v} \right |\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \sqrt{28}\\ &\textrm{b}.\quad \sqrt{30}\\ &\textrm{c}.\quad \color{red}\sqrt{34}\\ &\textrm{d}.\quad \sqrt{44}\\ &\textrm{e}.\quad \sqrt{50}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{u}+\vec{v}&=\begin{pmatrix} 3\\ 4 \end{pmatrix} + \begin{pmatrix} 2\\ -1 \end{pmatrix}\\ &=\begin{pmatrix} 3+2\\ 4+(-1) \end{pmatrix}\\ &=\begin{pmatrix} 5\\ 3 \end{pmatrix}\\ \left | \vec{u}+\vec{v} \right |&=\sqrt{5^{2}+3^{2}}\\ &=\sqrt{25+9}\\ &=\color{red}\sqrt{34} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 8.&\textrm{Vektor satuan}\: \: \vec{u}=\begin{pmatrix} -5\\ -12 \end{pmatrix}\: \: \textrm{adalah}.... \\ &\textrm{a}.\quad \color{red}\displaystyle -\frac{1}{13}\begin{pmatrix} 5\\ 12 \end{pmatrix}\\ &\textrm{b}.\quad \displaystyle \frac{1}{15}\begin{pmatrix} -5\\ -12 \end{pmatrix}\\ &\textrm{c}.\quad \displaystyle -\frac{1}{17}\begin{pmatrix} 5\\ 12 \end{pmatrix}\\ &\textrm{d}.\quad \displaystyle -\frac{1}{17}\begin{pmatrix} 5\\ 12 \end{pmatrix}\\ &\textrm{e}.\quad \displaystyle \frac{1}{2} \begin{pmatrix} 5\\ 12 \end{pmatrix}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{e}_{\vec{u}}&=\displaystyle \frac{\vec{u}}{\left | \vec{u} \right |},\quad \textrm{maka}\\ \vec{e}_{\begin{pmatrix} -5\\ -12 \end{pmatrix}}&=\displaystyle \frac{\begin{pmatrix} -5\\ -12 \end{pmatrix}}{\left | \begin{pmatrix} -5\\ -12 \end{pmatrix} \right |}\\ &=\displaystyle \frac{\begin{pmatrix} -5\\ -12 \end{pmatrix}}{\sqrt{(-5)^{2}+(-12)^{2}}}\\ &=\displaystyle \frac{-\begin{pmatrix} 5\\ 12 \end{pmatrix}}{\sqrt{169}}\\ &=\color{red}-\displaystyle \frac{1}{13}\begin{pmatrix} 5\\ 12 \end{pmatrix} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 9.&\textrm{Jika vektor}\: \: \vec{p}=\begin{pmatrix} 8\\ 7 \end{pmatrix}\: \: \textrm{dan}\: \: \vec{q}=\begin{pmatrix} -3\\ 9 \end{pmatrix}\\ & \textrm{Hasil dari}\: \: \vec{p}+\vec{q}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \begin{pmatrix} 6\\ 14 \end{pmatrix}\\ &\textrm{b}.\quad \begin{pmatrix} 6\\ 13 \end{pmatrix}\\ &\textrm{c}.\quad \begin{pmatrix} 6\\ 15 \end{pmatrix}\\ &\textrm{d}.\quad \color{red}\begin{pmatrix} 5\\ 16 \end{pmatrix}\\ &\textrm{e}.\quad \begin{pmatrix} 5\\ 48 \end{pmatrix}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{p}+\vec{q}&=\begin{pmatrix} 8\\ 7 \end{pmatrix}+\begin{pmatrix} -3\\ 9 \end{pmatrix}\\ &=\begin{pmatrix} 8-3\\ 7+9 \end{pmatrix}\\ &=\color{red}\begin{pmatrix} 5\\ 16 \end{pmatrix} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 10.&\textrm{Jika vektor}\: \: \vec{p}=\begin{pmatrix} ^{2}\log 32\\ -\, ^{3}\log \displaystyle \frac{1}{81} \end{pmatrix}\: \: \textrm{dan}\: \: \vec{q}=\begin{pmatrix} -9\\ -21 \end{pmatrix}\\ & \textrm{Hasil dari}\: \: \vec{p}+\vec{q}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \begin{pmatrix} 6\\ 17 \end{pmatrix}\\ &\textrm{b}.\quad \begin{pmatrix} -6\\ -17 \end{pmatrix}\\ &\textrm{c}.\quad \begin{pmatrix} 4\\ 17 \end{pmatrix}\\ &\textrm{d}.\quad \color{red}\begin{pmatrix} -4\\ -17 \end{pmatrix}\\ &\textrm{e}.\quad \begin{pmatrix} 5\\ -16 \end{pmatrix}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{p}+\vec{q}&=\begin{pmatrix} ^{2}\log 32\\ -\, ^{3}\log \displaystyle \frac{1}{81} \end{pmatrix}+\begin{pmatrix} -9\\ -21 \end{pmatrix}\\ &=\begin{pmatrix} 5-9\\ 4-21 \end{pmatrix}\\ &=\color{red}\begin{pmatrix} -4\\ -17 \end{pmatrix} \end{aligned} \end{array}$

Tidak ada komentar:

Posting Komentar

Informasi