Persamaan Polinom

 $\color{blue}\textbf{1. Pencarian akar-akar persamaan polinom}$

Persamaan suku banyak/polinom  $a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots +a_{1}x+a_{0}=0$  dengan  $n>1\: \: \textrm{dan}\: \: a_{n}\neq 0$  paling sedikit memiliki sebuah akar riil atau imajiner. Pada bahasan ini untuk mendapatkan akar-akar rasional perlu dilakukan cara coba-coba. Misalkan  $x=h$  kita pilih, selanjutnya tinggal kita buktikan bahwa apakah  $x=h$ apakah akar polinom tersebut atau tidak, jika $f(h)=0$, maka $x=h$ adalah termasuk akar dari polinom tersebut, tetapi jika tidak  atau  $f(h) \neq 0$, maka $x=h$ bukan akar yang diinginkan.

Beberapa petunjuk agar  $x=h$  terarah sebagai akar polinom

  • Misalkan  $f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots +a_{1}x+a_{0}$  dengan  $r$  adalah faktor dari  $a_{0}$, dan  $s$  adalah faktor dari  $a_{n}$, maka akar-akar rasional jika ada adalah  $x=h=\color{red}\displaystyle \frac{r}{s}$.
  • Jika pada langkah pertama di atas ditemukan sebuah akar rasional katakanlah  $x=h_{1}$, maka tentukan hasil bagi  $f(x)$  dengan  $x=h_{1}$  ini. Misalkan hasil baginya adalah  $h_{1}(x)$  atau  $\color{blue}f(x)=(x-h_{1})h_{1}(x)$, maka langkah berikutnya carilah akar dari  $h_{1}(x)$ ini. Dan jika didapatkan akar dari  $h_{1}(x)$  adalah  $x=h_{2}$, maka tentukanlah hasil bagi  dari  $h_{1}(x)$  oleh  $x=h_{2}$, katakanlah hasilnya  $h_{2}(x)$, maka  $\color{blue}f(x)=(x-h_{1})(x-h_{2})h_{2}(x)$ demikian seterusnya.

$\color{blue}\textbf{2. Jumlah dan hasil kali akar-akar polinom}$

Untuk fungsi  derajat 2 maka berlaku seperti menentukan rumus jumlah dan selisih pada persamaan kuadrat. Tetapi untuk polinom berderajat tiga  $f(x)=ax^{3}+bx^{2}+cx+d$  saat  $f(x)=0$, maka berlaku

$\begin{aligned}f(x)&=\color{red}ax^{3}+bx^{2}+cx+d\: \: \color{black}\textrm{dengan}\\ &x_{1},\: x_{2},\: x_{3}\: \: \textrm{adalah akar-akarnya, maka}\\ \bullet \: \: &x_{1}+x_{2}+x_{3}=-\displaystyle \frac{b}{a}\\ \bullet \: \: &x_{1}x_{2}+x_{1}x_{3}+x_{2}x_{3}=\displaystyle \frac{c}{a}\\ \bullet \: \: &x_{1}\times x_{2}\times x_{3}=-\displaystyle \frac{d}{a}\\ \end{aligned}$

$\begin{aligned}\textrm{Unt}&\textrm{uk yang berderajat empat}\\ f(x)&=\color{red}ax^{4}+bx^{3}+cx^{2}+dx+e\: \: \color{black}\textrm{saat}\: \: f(x)=0\\ &\textrm{dengan}\: \: \: x_{1},\: x_{2},\: x_{3},\: x_{4}\: \textrm{adalah akar-akarnya},\\ &\textrm{maka}\\ \bullet \: \: &x_{1}+x_{2}+x_{3}+x_{4}=-\displaystyle \frac{b}{a}\\ \bullet \: \: &x_{1}x_{2}+x_{1}x_{3}+x_{1}x_{3}+...+x_{3}x_{4}=\displaystyle \frac{c}{a}\\ \bullet \: \: &x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1}x_{3}x_{4}+x_{2} x_{3} x_{4}=-\displaystyle \frac{d}{a}\\ \bullet \: \: &x_{1} x_{2} x_{3}x_{4}=\displaystyle \frac{e}{a} \end{aligned}$

$\begin{aligned}&\color{blue}\textbf{Rumus Tambahan}\\ &\bullet \: \: \: x_{1}^{2}+x_{2}^{2}=\left ( x_{1}+x_{2} \right )^{2}-2x_{1}x_{2}\\ &\bullet \: \: \: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\\ &\qquad =\left ( x_{1}+x_{2}+x_{3} \right )^{2}-2\left ( x_{1}x_{2}+x_{1}x_{3}+x_{2}x_{3} \right )\\ &\bullet \: \: \: x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\\ &\qquad =\left ( x_{1}+x_{2}+x_{3} \right )^{3}-3x_{1}x_{2}x_{3}\left ( x_{1}+x_{2}+x_{3} \right ) \end{aligned}$

$\begin{aligned}&\color{blue}\textbf{Teorema Vieta berkaitan polinom}\\ &\textrm{Persamaan polinom berderajat}\: \: n\\ &\color{red}a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots +a_{1}x+a_{0}=0\\ &\textrm{dengan akar-akar}:\: \: \color{purple}x_{1},\: x_{2},\: x_{3},\: \cdots \: ,x_{n},\\ &\textrm{maka}:\\ &\bullet \quad x_{1}+x_{2}+x_{3}+\cdots +x_{n}=\color{blue}-\displaystyle \frac{a_{n-1}}{a_{n}}\\ &\bullet \quad x_{1}x_{2}+x_{1}x_{3}+\cdots +x_{2}x_{3}+\cdots +x_{n-1}x_{n}=\color{magenta}\displaystyle \frac{a_{n-2}}{a_{n}}\\ &\bullet \quad x_{1}x_{2}x_{3}+x_{1}x_{2}x_{4}+\cdots +x_{n-2}x_{n-1}x_{n}=\color{blue}-\displaystyle \frac{a_{n-3}}{a_{n}}\\ &\qquad\qquad\qquad \vdots \\ &\bullet \quad x_{1}x_{2}x_{3}\cdots x_{n}=\color{magenta}(-1)^{n}.\displaystyle \frac{a_{0}}{a_{n}} \end{aligned}$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Jika akar-akar dari polinom}\\ &x^{3}+2x^{2}-5x-6=0\: \: \textrm{adalah}\\ &x_{1},\: x_{2},\: \: \textrm{dan}\: \: x_{3},\: \textrm{tentukanlah nilai}\\ &\textrm{a}.\quad x_{1}+ x_{2}+ x_{3}\\ &\textrm{b}.\quad x_{1}x_{2}+ x_{1}x_{3}+ x_{2}x_{3}\\ &\textrm{c}.\quad x_{1}\times x_{2}\times x_{3}\\ &\textrm{d}.\quad x_{1}^{2}+ x_{2}^{2}+ x_{3}^{2}\\\\ &\textrm{Jawab}:\\ &\textrm{Diketahui bahwa}:\: \: \color{red}x^{3}+2x^{2}-5x-6=0\\ &\textrm{dengan koefisien-koefisien variabelnya}\\ & a_{3}=1,\: a_{2}=2,\: a_{1}=-5,\: \: \textrm{dan}\: \: a_{0}=-6\\ &\textrm{Menurut}\: \: \textbf{Teorema Vieta},\: \textrm{maka}\\ &\textrm{a}.\quad x_{1}+ x_{2}+ x_{3}=-\displaystyle \frac{a_{2}}{a_{3}}=-\frac{2}{1}=\color{red}-2\\ &\textrm{b}.\quad x_{1}x_{2}+ x_{1}x_{3}+ x_{2}x_{3}=\displaystyle \frac{a_{1}}{a_{3}}=\displaystyle \frac{-5}{1}=\color{red}-5\\ &\textrm{c}.\quad x_{1}\times x_{2}\times x_{3}=-\displaystyle \frac{a_{0}}{a_{3}}=-\displaystyle \frac{-6}{1}=\color{red}6\\ &\textrm{d}.\quad x_{1}^{2}+ x_{2}^{2}+ x_{3}^{2}\\ &\quad\quad =\left ( x_{1}+x_{2}+x_{3} \right )^{2}-2\left ( x_{1}x_{2}+x_{1}x_{3}+x_{2}x_{3} \right )\\ &\quad\quad =(-2)^{2}-2(-5)=4+10=\color{red}14 \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Diketahui polinom}\: \: x^{3}+3x-1=0\\ &\textrm{dengan akar-akar}\: \: \alpha ,\: \beta ,\: \textrm{dan}\: \: \gamma \\ &\textrm{tentukanlah nilai}\: \: \alpha^{3} +\beta^{3} + \gamma^{3} \\\\ &\textrm{Jawab}:\\ &\textrm{Pandang polinom}\: \: \color{red}x^{3}+3x-1=0\\ &\textrm{dengan}:\: a_{3}=1,\: a_{2}=0,\: a_{1}=3,\: a_{0}=-1\\ &\textrm{maka bentuk nilai dari akar-akarnya}\\ &\textrm{yaitu}:\\ &\bullet \quad \alpha ^{3}+3\alpha -1=0\: \: .......(1)\\ &\bullet \quad \beta ^{3}+3\beta -1=0\: \: .......(2)\\ &\bullet \quad \gamma ^{3}+3\gamma -1=0\: \: .......(3)\\ &\textrm{Ketika persamaan}\: \: (1)+(2)+(3)\: \: \textrm{maka}\\ &\Leftrightarrow \: \alpha ^{3}+\beta ^{3}+\gamma ^{3}+3\left (\alpha +\beta +\gamma \right ) -3=0\\ &\Leftrightarrow \: \alpha ^{3}+\beta ^{3}+\gamma ^{3}+3\left ( \displaystyle \frac{a_{2}}{a_{3}} \right )-3=0\\ &\Leftrightarrow \: \alpha ^{3}+\beta ^{3}+\gamma ^{3}+3\left ( 0 \right )-3=0\\ &\Leftrightarrow \: \alpha ^{3}+\beta ^{3}+\gamma ^{3}=\color{red}3 \end{array}$


Daftar Pustaka

  1. Kartini, Suprapto, Subandi, Setiadi, U. 2005. Matematika Kelas XI untuk SMA dan MA Program Studi Ilmu Alam. Klaten: INTAN PARIWARA.
  2. Nugroho, P. A., Gunarto, D. 2013. Big Bank Soal+Bahas Matematika SMA/MA Kelas 1, 2, 3. Jakarta: WAHYUMEDIA.
  3. Sembiring, S., Zulkifli, M., Marsito, Rusdi, I. 2017. Matematika untuk Siswa SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: SRIKANDI EMPAT.
  4. Sunardi, Waluyo, S., Sutrisno, Subagya. 2005. Matematika 2 untuk SMA Kelas XI IPA. Jakarta: BUMI AKSARA.
  5. Sukino, S., Intan, T. S., Santiago, Y. E. 2015. Pena Emas Olimpiade Sains Nasional Matematika untuk SMP Seri Kinomatika 1: Seleksi Tingkat Sekolah dan Seleksi Tingkat Kabupaten\Kota. Bandung: YRAMA WIDYA.
  6. Sukino. 2016. Matematika untuk SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.



Tidak ada komentar:

Posting Komentar

Informasi