Belajar matematika sejak dini
1.Nilailimx→∞8x2+x−20202x2−2021x=....a.8b.4c.2d.1e.12Jawab:blimx→∞8x2+x−20202x2−2021x=limx→∞8x2+x−20202x2−2021x×1x21x2=limx→∞8x2x2+xx2−2020x22x2x2−2021xx2=limx→∞8+1x−2020x22−2021x=8+1∞−2020∞22−2021∞=8+0−02−0=82=4
2.Nilailimx→−∞x+20199x2−2020x=....a.3b.1c.13d.−13e.−3Jawab:dlimx→−∞x+20219x2−2020x=limx→−∞x+20219x2−2020x×(1x)(−1x2)=limx→−∞xx+2021x−9x2x2−2020xx2=limx→−∞1+2021x−9−2020x=1+2021∞−9−2020∞=1−9=−13
3.Nilailimx→∞2x+1+3x+1+4x+1+5x+12x−1+3x−1+4x−1+5x−1=....a.1b.4c.9d.16e.25Jawab:elimx→∞2x+1+3x+1+4x+1+5x+12x−1+3x−1+4x−1+5x−1=limx→∞2x+1+3x+1+4x+1+5x+12x−1+3x−1+4x−1+5x−1×15x15x=limx→∞2(25)x+3(35)x+4(45)x+5(55)x12(25)x+13(35)x+14(45)x+15(55)x=0+0+0+5(55)x0+0+0+15(55)x=5.115.1=25
4.(USM UGM Mat IPA)NilaiLimx→∞(x3−2x23−x−1)=....a.53b.23c.−13d.−23e.−53Jawab:e
.Limx→∞(x3−2x23−x−1)=Limx→∞(x3−2x23−(x+1)33)ingat bentuka−b=(a3−b3)(a23+ab3+b23)dan untuk{a=(x3−2x2)b=(x+1)3=Limx→∞(a3−b3)(a23+ab3+b23)a23+ab3+b23=Limx→∞a−ba23+ab3+b23=Limx→∞(x3−2x2)−(x+1)3(x3−2x2)23+(x3−2x2)(x+1)33+((x+1)3)23=Limx→∞(x3−2x2)−(x3+3x2+3x+1)(x3−2x2)23+(x6+...)13+(x+1)63=Limx→∞−5x2+...(x3−2x2)23+(x6+...)13+(x+1)63=−51+1+1=−53
5.NilaiLimk→∞(11×2+12×3+13×4+⋯+1k×(k+1))=....a.1b.32c.2d.52e.∞Jawab:aLimk→∞(11×2+12×3+13×4+⋯+1k×(k+1))=Limk→∞((1−12)+(12−13)+(13−14)+⋯+(1k−1k+1))=Limk→∞(1−1k+1)=(1−1∞+1)=1−1∞=1−0=1
Informasi
Tidak ada komentar:
Posting Komentar
Informasi