$\LARGE\textrm{A. Persamaan Trigonometri}$
Ada minimal 3 yang utama untuk persmaan trigonometri sederhana, yaitu:
$\begin{aligned}1.\quad\sin x&=\sin \alpha \\ x&=\begin{cases} &=\alpha +k.360^{\circ} \\ &=\left ( 180^{\circ}-\alpha \right )+k.360^{\circ} \end{cases}\\ \textrm{deng}&\textrm{an}\\ k&\in \mathbb{Z} \end{aligned}$
$.\: \quad \color{magenta}\textrm{atau}$
$\begin{aligned}.\: \quad\sin x&=\sin \alpha \\ x&=\begin{cases} &=\alpha +k.2\pi \\ &=\left ( \pi -\alpha \right )+k.2\pi \end{cases}\\ \textrm{deng}&\textrm{an}\\ k&\in \mathbb{Z} \end{aligned}$
$\begin{aligned}2.\quad\cos x&=\cos \alpha \\ x&=\begin{cases} &=\alpha +k.360^{\circ} \\ &=-\alpha +k.360^{\circ} \end{cases}\\ \textrm{deng}&\textrm{an}\\ k&\in \mathbb{Z} \end{aligned}$
$.\: \quad \color{magenta}\textrm{atau}$
$\begin{aligned}.\: \quad\cos x&=\cos \alpha \\ x&=\begin{cases} &=\alpha +k.2\pi \\ &=-\alpha +k.2\pi \end{cases}\\ \textrm{deng}&\textrm{an}\\ k&\in \mathbb{Z} \end{aligned}$
$\begin{aligned}3.\quad\tan x&=\tan \alpha \\ x&=\alpha +k.180^{\circ}\\ \textrm{deng}&\textrm{an}\\ k&\in \mathbb{Z} \end{aligned}$
$.\: \quad \color{magenta}\textrm{atau}$
$\begin{aligned}.\: \quad\tan x&=\tan \alpha \\ x&=\alpha +k.\pi \\ \textrm{deng}&\textrm{an}\\ k&\in \mathbb{Z} \end{aligned}$
$\color{yellow}\LARGE\fbox{CONTOH SOAL}$
$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah himpunan penyelesaian dari }\\ &\textrm{persamaan-persamaan trigonometri berikut}\\ &\textrm{ini untuk}\: \: 0^{\circ}\leq x\leq 360^{\circ}\\ &\begin{array}{lllllll}\\ \textrm{a}.& \sin x=\displaystyle \frac{1}{2}&\textrm{f}.& \tan x=-\displaystyle \frac{1}{3}\sqrt{3}&\textrm{k}.& \sin 2x=\displaystyle \frac{1}{2}\\ \textrm{b}.& \cos x=\displaystyle \frac{1}{2}\sqrt{3}&\textrm{g}& 2\cos x=-\sqrt{3}&\textrm{l}.& \cos 2x=-\displaystyle \frac{1}{2}\sqrt{3}\\ \textrm{c}.& \tan x=\sqrt{3}&\textrm{h}& 3\tan x=\sqrt{3}&\textrm{m}.& \tan 2x=\sqrt{3}\\ \textrm{d}.& \sin x=-1&\textrm{i}.& \sin x=\sin 46^{\circ}&\textrm{n}.& \sin \left ( 2x-30^{\circ} \right )=\sin 45^{\circ}\\ \textrm{e}.& \cos x=-\displaystyle \frac{1}{2}\sqrt{2}&\textrm{j}.& \cos x=\cos 93^{\circ}&\textrm{o}.& \sin \left ( 2x+60^{\circ} \right )=\sin 90^{\circ}\\ \end{array}\\ \end{array}$
$.\: \quad\color{blue}\textrm{Jawab}:$
$\color{blue}\begin{aligned}.\: \quad\textrm{a}.\quad\sin x&=\displaystyle \frac{1}{2}\\ \sin x&=\sin 30^{\circ}\\ x&=\begin{cases} 30^{\circ} & +k.360^{\circ}\\ \left (180^{\circ}-30^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 30^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \\ 150^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \end{cases}\\ k=1&\: \: \textrm{tidak ada yang memenuhi}\\ \textrm{HP}&=\left \{ 30^{\circ},150^{\circ} \right \} \end{aligned}$
$\color{blue}\begin{aligned}.\: \quad\textrm{b}.\quad\cos x&=\displaystyle \frac{1}{2}\sqrt{3}\\ \cos x&=\cos 30^{\circ}\\ x&=\begin{cases} 30^{\circ} & +k.360^{\circ}\\ -30^{\circ} & +k.360^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=\begin{cases} 30^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \\ -30^{\circ}\: \: (\color{red}\textrm{tidak memenuhi}) & \end{cases}\\ k=1&\\ x&=\begin{cases} 30^{\circ}+360^{\circ}=390^{\circ}\: \: (\color{red}\textrm{tidak memenuhi}) & \\ -30^{\circ}+360^{\circ}=330^{\circ}\: \: (\color{magenta}\textrm{memenuhi}) & \end{cases}\\ \textrm{HP}&=\left \{ 30^{\circ},330^{\circ} \right \} \end{aligned}$
$\color{blue}\begin{aligned}.\: \quad\textrm{c}.\quad\tan x&=\sqrt{3}\\ \tan x&=\tan 60^{\circ}\\ x&=60^{\circ}+k.180^{\circ}\\ k=0&\: \: \textrm{diperoleh}:\\ x&=60^{\circ}\: \: \color{magenta}\textrm{memenuhi}\\ k=1&\\ x&=60^{\circ}+180^{\circ}=240^{\circ}\: \: \color{magenta}\textrm{memenuhi}\\ k=2&\\ x&=60^{\circ}+360^{\circ}=420^{\circ}\: \: \color{red}\textrm{tidak memenuhi}\\ \textrm{HP}&=\left \{ 60^{\circ},240^{\circ} \right \} \end{aligned}$
$\color{blue}\begin{aligned}.\: \quad\textrm{d}.\quad\sin x&=-1\\ \sin x&= \sin 270^{\circ}\\ x&=\begin{cases} 270^{\circ} & +k.360^{\circ} \\ \left ( 180^{\circ}-270^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}\\ x&=\begin{cases} 270^{\circ} & \color{magenta}\textrm{memenuhi} \\ -90^{\circ} & \color{red}\textrm{tidak memenuhi} \end{cases}\\ k=1&\: \: \textrm{tidak memenuhi semuanya}\\ \textrm{HP}&=\left \{ 270^{\circ} \right \} \end{aligned}$
$\color{blue}\begin{aligned}.\: \quad\textrm{n}.\quad\sin \left ( 2x-30^{\circ} \right )&=\sin 45^{\circ}\\ \left ( 2x-30^{\circ} \right )&=\begin{cases} 45^{\circ} & +k.360^{\circ} \\ \left ( 180^{\circ}-45^{\circ} \right ) & +k.360^{\circ} \end{cases}\\ 2x&=\begin{cases} 45^{\circ}+30^{\circ} &+k.360^{\circ} \\ 135^{\circ}+30^{\circ} &+ k.360^{\circ} \end{cases}\\ x&=\begin{cases} 37,5^{\circ} & +k.180^{\circ} \\ 82,5^{\circ} & +k.180^{\circ} \end{cases}\\ k=0&\: \: \textrm{diperoleh}\\ x&=\begin{cases} 37,5^{\circ} & \\ 82,5^{\circ} & \end{cases}\\ k=1&\: \: \textrm{diperoleh}\\ x&=\begin{cases} 37,5^{\circ}+180^{\circ} &=217,5^{\circ} \\ 82,5^{\circ}+180^{\circ} &=262,5^{\circ} \end{cases}\\ k=2&\: \: \textrm{tidak ada yang memenuhi}\\ \textrm{HP}&=\left \{ 37,5^{\circ},82,5^{\circ},217,5^{\circ},262,5^{\circ} \right \} \end{aligned}$
Tidak ada komentar:
Posting Komentar
Informasi