Contoh Soal dan Pembahasan Distribusi Binomial (Bagian 2)

 $\begin{array}{ll}\\ 6.&\textrm{Pengundian terhadap mata uang }\\ &\textrm{yang homogen sebanyak 10 kali}\\ &\textrm{Peluang untuk mendapatkan 6 }\\ &\textrm{muka angka adalah}\: ....\\ &\textrm{a}.\quad 0,1172\\ &\textrm{b}.\quad \color{red}0,2051\\ &\textrm{c}.\quad 0,2461\\ &\textrm{d}.\quad 0,2651\\ &\textrm{e}.\quad 0,2852\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&p=\textbf{Peluang Angka}=\displaystyle \frac{1}{2},\quad \textrm{dan}\: \: \\ &q=\textbf{Bukan Angka}\\ &\: \: =\textbf{Peluang Gambar}=1-\displaystyle \frac{1}{2}=\frac{1}{2}\\ &f(x)=P(x;n;p)=P(X=x)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ &\textrm{maka}\\ &f(x)=P\left ( X=x \right )=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}.q^{n-x}\\ &f(6)=P\left ( X=6 \right )=\begin{pmatrix} 10\\ 6 \end{pmatrix}\times \left ( \displaystyle \frac{1}{2} \right )^{6}\times \left ( \frac{1}{2} \right )^{10-6}\\ &\qquad =\displaystyle \frac{10!}{6!\times 4!}\left ( \displaystyle \frac{1}{2} \right )^{6+4}\\ &\qquad =210\times \displaystyle \frac{1}{1024}\\ &\qquad =\color{red}0,2051 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 7.&\textrm{Pada pengundian terhadap mata uang identik},\\ &\textrm{sebanyak 10 kali, peluang distribusi binomial} \\ &\textrm{untuk mendapatkan 7 muka gambar adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.\quad \displaystyle 0,2653&&\textrm{d}.\quad \displaystyle 0,7522\\ \textrm{b}.\quad \displaystyle \color{red}0,1172&\textrm{c}.\quad \displaystyle 0,2653&\textrm{e}.\quad 0,2422 \end{array}\\\\ &\textrm{Jawab}:\\ &\textrm{Uraian berikut sekaligus tambahan}\\ &\textrm{penjelasan pada uraian jawaban}\\ &\color{blue}\textrm{soal no. 6 di atas}\\ &\begin{aligned}f(x)&=P(x;n;p)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ &\textrm{Ingat sebuah koin ada 2 muka}\\ &\textrm{yaitu muka gambar (G) dan angka (A)}\\ &\color{red}\textrm{misalkan}\\ &A=\textrm{kejadian muncul muka gambar}\\ &\textrm{maka peluangnya adalah}\: \: \displaystyle \frac{1}{2}\\ &\textrm{Selanjutnya di sini disimbolkan dengan}\: \: \: \color{blue}p=\displaystyle \frac{1}{2}\\ &\color{red}\textrm{Demikian juga misalkan}\\ &B=\textrm{kejadian muncul muka angka}\\ &\textrm{maka peluang juga}\: \displaystyle \frac{1}{2}\\ &\textrm{Di sini dituliskan dengan}\: \: \: \color{blue}q=\displaystyle \frac{1}{2}\\ f(7)&=\begin{pmatrix} 10\\ 7 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{7}\left ( \displaystyle \frac{1}{2} \right )^{10-7}\\ &=\begin{pmatrix} 10\\ 7 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{7}\left ( \displaystyle \frac{1}{2} \right )^{3}\\ &=\displaystyle \frac{10!}{7!\times (10-7)!}\left ( \displaystyle \frac{1}{2} \right )^{7+3}\\ &=\displaystyle \frac{10.9.8.\not{7!}}{\not{7!}.3.2.1}\left ( \displaystyle \frac{1}{1024} \right ) \\ &=\color{red}0,1172 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 8.&\textrm{Sebuah uang logam dilempar sebanyak 8}\\ &\textrm{kali. Peluang muncul gambar sebanyak}\\ &\textrm{5 kali adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle \frac{3}{32}&&&\textrm{d}.&\displaystyle \color{red}\frac{7}{32}\\\\ \textrm{b}.&\displaystyle \frac{4}{32}&\textrm{c}.&\displaystyle \frac{5}{32}&\textrm{e}.&\displaystyle \frac{9}{32} \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}f(x)&=P(x;n;p)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ f(5)&=\begin{pmatrix} 8\\ 5 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{5}\left ( \displaystyle \frac{1}{2} \right )^{8-5}\\ &=\begin{pmatrix} 8\\ 5 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{5}\left ( \displaystyle \frac{1}{2} \right )^{3}\\ &=\displaystyle \frac{8!}{5!\times (8-5)!}\left ( \displaystyle \frac{1}{2} \right )^{5+3}\\ &=\displaystyle \frac{8.7.6.5!}{5!.3.2.1}\left ( \displaystyle \frac{1}{256} \right ) \\ &=\displaystyle \frac{8.7}{256}\\ &=\color{red}\displaystyle \frac{7}{32} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 9.&\textrm{Pada pelemparan sebuah koin sebanyak 4 kali}\\ &\textrm{Peluang didapatkannya dua angka pada} \\ &\textrm{pelemparan tersebut adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.\quad \displaystyle 0,123&&\textrm{d}.\quad \displaystyle 0,232\\ \textrm{b}.\quad \displaystyle 0,135&\textrm{c}.\quad \displaystyle 0,154&\textrm{e}.\quad \color{red}0,375 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}f(x)&=P(x;n;p)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ f(2)&=\begin{pmatrix} 4\\ 2 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{2}\left ( \displaystyle \frac{1}{2} \right )^{4-2}\\ &=\begin{pmatrix} 4\\ 2 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{2}\left ( \displaystyle \frac{1}{2} \right )^{2}\\ &=\displaystyle \frac{4!}{2!\times (4-2)!}\left ( \displaystyle \frac{1}{2} \right )^{2+2}\\ &=\displaystyle \frac{4.3.2!}{2!.2.1}\left ( \displaystyle \frac{1}{16} \right ) \\ &=\color{red}0,375 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 10.&\textrm{Dari data survei didapatkan bahwa}\\ &\textrm{satu dari lima orang telah berkunjung}\\ &\textrm{ke dokter dalam sembarang bulan yang}\\ &\textrm{ditanyakan. Jika 10 orang dipilih secara}\\ &\textrm{acak, peluang 3 orang telah berkunjung}\\ &\textrm{ke dokter bulan lalu adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle 0,125&&&\textrm{d}.&\displaystyle \color{red}0,201\\\\ \textrm{b}.&\displaystyle 0,174&\textrm{c}.&\displaystyle 0,182&\textrm{e}.&\displaystyle 0,423 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}f(x)&=P(x;n;p)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ f(3)&=\begin{pmatrix} 10\\ 3 \end{pmatrix}\left ( \displaystyle \frac{1}{5} \right )^{3}\left ( \displaystyle \frac{4}{5} \right )^{10-3}\\ &=\begin{pmatrix} 10\\ 3 \end{pmatrix}\left ( \displaystyle \frac{1}{5} \right )^{3}\left ( \displaystyle \frac{4}{5} \right )^{7}\\ &=\displaystyle \frac{10!}{3!\times 7!}\left ( \displaystyle \frac{1}{125} \right )\left ( \displaystyle \frac{4^{7}}{5^{7}} \right )\\ &=\cdots \\ &=\color{red}\displaystyle 0,201 \end{aligned} \end{array}$


Contoh Soal dan Pembahasan Distribusi Binomial (Bagian 1)

$\begin{array}{ll}\\ 1.&\textrm{Manakah yang merupakan data diskrit dari pernyataan berikut}\\ &\textrm{a}.\quad \textrm{Suhu Badan Anton ketika sakit mencapai}\: \: 40^{\circ}C\\ &\textrm{b}.\quad \textrm{Kecepatan mobil yang sedang melaju adalah}\: \: 100\: \: km/jam\\ &\textrm{c}.\quad \textrm{Tinggi tiang bendaera di madrasah Budi adalah 4 m}\\ &\textrm{d}.\quad \color{red}\textrm{Jumlah guru yang mengajar di MA Futuhiyah }\\ &\qquad \color{red}\textrm{sebanyak 30 orang}\\ &\textrm{e}.\quad \textrm{Berat bayi yang baru lahir adalah 3.500 gram}\\\\ &\textrm{Jawab}:\\ &\textrm{Alasannya dikarena hasil mencacah} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Jika Anda mengumpulkan nilai raport}\\ &\textrm{teman-teman sekelas Anda untuk pelajaran}\\ &\textrm{ matematika, maka data yang Anda peroleh }\\ &\textrm{adalah}....\\ &\textrm{a}.\quad \color{red}\textrm{data diskrit}\\ &\textrm{b}.\quad \textrm{data kontinu}\\ &\textrm{c}.\quad \textrm{data kualitatif}\\ &\textrm{d}.\quad \textrm{Populasi}\\ &\textrm{e}.\quad \textrm{Sampel}\\\\ &\textrm{Jawab}:\\ &\textrm{Dengan catatan nilainya cacah} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Ukuran yang dihitung dari seluruh data }\\ &\textrm{dalam populasi adalah}\: ....\\ &\textrm{a}.\quad \textrm{data kuantitatif}\\ &\textrm{b}.\quad \textrm{data kualitatif}\\ &\textrm{c}.\quad \textrm{Statistik}\\ &\textrm{d}.\quad \textrm{Statistika}\\ &\textrm{e}.\quad \color{red}\textrm{Parameter}\\\\ &\textrm{Jawab}:\\ &\textrm{Parameter adalah ukuran dari }\\ &\textrm{seluruh data atau populasi} \end{array}$

$\begin{array}{ll}\\ 4.&\textrm{Diketahui distribusi peluang suatu }\\ &\textrm{variabel acak diskrit sebagai berikut}\\ &\begin{array}{|c|c|c|c|c|}\hline x&0&1&2&3\\\hline f(x)&m&0,26&3m&0,42\\\hline \end{array}\\ &\textrm{Peluang nilai X minimal berharga 2 adalah}\\ &\textrm{a}.\quad 0,24\\ &\textrm{b}.\quad 0,34\\ &\textrm{c}.\quad 0,42\\ &\textrm{d}.\quad 0,58\\ &\textrm{e}.\quad \color{red}0,66\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}\: \: X\: \: \textrm{adalah variabel }\\ &\textrm{acak diskrit, maka}\: \: \sum f(x)=1\\ &F(c)=P(X\leq c)=\displaystyle \sum_{x=0}^{x=c}f(x)\\ &=f(0)+f(1)+f(2)+f(3)+\cdots +f(c)=1\\ &\textrm{dalam hal soal}\: \textrm{di atas, maka kita tentukan}\\ &\textrm{nilai}\: \: \color{blue}m\: \: \color{black}\textrm{dulu}\\ &F(3)=P(X\leq 3)=\displaystyle \sum_{x=0}^{x=3}f(x)\\ &=f(0)+f(1)+f(2)+f(3)=1\\ &1=m+0,26+3m+0,42=4m+0,68\\ &4m=1-0.68=0,32\\ &m=0.08, \qquad \textrm{sehingga}\\ &P(2\leq X\leq 3)=f(2)+f(3)=3m+0,42\\ &=3(0,08)+0,42=0,24+0,42=\color{red}0,66 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 5.&\textrm{Diketahui fungsi peluang suatu }\\ &\textrm{variabel acak kontinu adalah}\\ &f(y)=\left\{\begin{matrix} 0,\quad \textrm{untuk \textit{y} yang lain}\\\\ \displaystyle \frac{2y+k}{50},\: \: \textrm{untuk}\: \: 0\leq y\leq 5 \end{matrix}\right.\\ &\textrm{Nilai}\: \: P\left ( \left | Y-1 \right |\leq 2 \right )\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \displaystyle \frac{7}{25}\qquad\qquad\qquad\qquad \textrm{d}.\quad \frac{14}{25}\\\\ &\textrm{b}.\quad \displaystyle \frac{9}{25}\qquad \textrm{c}.\quad \color{red}\frac{12}{25}\qquad\quad \color{black}\textrm{e}.\quad \frac{18}{25}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\int_{0}^{5}\displaystyle \frac{2y+k}{50}\: dy=1\\ &1=\int_{0}^{5}\displaystyle \frac{2y+k}{50}\: dy\\ &50=\int_{0}^{5}(2y+k)dy\\ &50=y^{2}+ky|_{0}^{5}=5^{2}+5k=25+5k\\ &k=5\\ &\color{blue}P(\left | Y-1 \right |\leq 2)=P\left ( -2\leq Y-1\leq 2 \right )\\ &=P\left ( -1\leq Y\leq 3 \right )\\ &=f(-1)+f(0)+f(1)+f(2)+f(3)\\ &=\int_{0}^{3}\left ( \displaystyle \frac{2y+5}{50} \right )dy\\ &=\displaystyle \frac{1}{50}\left ( y^{2}+5y \right )|_{0}^{3}\\ &=\displaystyle \frac{1}{50}\left ( 9+15 \right )=\displaystyle \frac{24}{50}=\color{red}\frac{12}{25} \end{aligned} \end{array}$


 

Persamaan Garis Singgung Lingkaran

A. Pendahuluan

Kita sebelumnya telah membahasas kedudukan suatu lingkaran terhadap suatu garis. Terkait dengan garis singgung lingkaran suatu lingkaran dapat memiliki sekian banyak garis singgung dan tentunya lebih dari satu garis singgung jika ingin dibuat. Garis singgung lingkaran adalah suatu garis yang memotong lingkaran tepat di satu titik. Masih ingat kembali kedudukan suatu garis terhadap lingkaran saat nilai  $D=b^{2}-4ac=0$, dari sanalah akhir dari penyelesaian masalah yang terkait dengan ini. 

B. Garis Singgung Melalui Sebuah Titik pada Lingkaran

Misalkan suatu titik $P(x_{1},y_{1})$ terdapat pada (keliling) lingkaran $x^{2}+y^{2}=r^{2}$, maka berakibat akan memiliki gradien dari garis OP berupa $m_{\textrm{P}}=\displaystyle \frac{y_{1}}{x_{1}}$.

Perhatikan dua ilustrasi berikut


Ilustrasi berikutnya menjadi seperti berikut

Perhatikan tiga ilustrasi di atas, jika titik P adalah titik sinngung lingkaran $x^{2}+y^{2}=r^{2}$, maka gradien garis singgung lingkarannya, misal kita namakan $m_{l}$ adalah $m_{l}=-\displaystyle \frac{x_{1}}{y_{1}}$, sehingga persamaan garis singgungnya yang melalui titik P tersebut dan bergradien $m_{l}=-\displaystyle \frac{x_{1}}{y_{1}}$ adalah:

$\begin{aligned}y-y_{1}&=-\displaystyle \frac{x_{1}}{y_{1}}\left ( x-x_{1} \right )\\ \Leftrightarrow y_{1}y-&y_{1}^{2}=-x_{1}x+x_{1}^{2}\\ \Leftrightarrow x_{1}x+&y_{1}y=x_{1}^{2}+y_{1}^{2}\\ \Leftrightarrow x_{1}x+&y_{1}y=r^{2}\\\\ \textrm{Jadi, per}&\textrm{samaan garis singgungnya adalah}:\\ &\quad \LARGE\boxed{x_{1}x+y_{1}y=r^{2}} \end{aligned}$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah persamaan lingkaran yang }\\ &\textrm{berpusat di pangkal koordinat dan}\\ &\textrm{menyinggung}\: \: k\equiv 2x+y-5=0\\\\ &\textbf{Jawab}:\\ &\textrm{Perhatikan ilustrasi berikut} \end{array}$.


menjadi


$.\qquad\begin{aligned}&\textrm{Diketahui}\: \textrm{bahwa titik}\: \: O\: \: \textrm{ke garis}\: \: k\: \: \textrm{adalah}\\ &r=OA=\displaystyle \left |\frac{ax_{1}+by_{1}+c}{\sqrt{a^{2}+b^{2}}} \right |\\ &=\displaystyle \left | \frac{2(0)+(0)-5}{\sqrt{2^{2}+1^{2}}} \right |\\ &=\displaystyle \left | \frac{-5}{\sqrt{5}} \right |\\ &=\left | -\sqrt{5} \right |\\ &=-(-\sqrt{5})=\sqrt{5}\\ &\textrm{(ingat, nilai mutlak bilangan negatif adalah bilngan positif)}\\ &\textrm{Sehingga persamaan lingkarannya adalah}:\\ &\qquad L\equiv x^{2}+y^{2}=r^{2}\Leftrightarrow \color{red}x^{2}+y^{2}=5\end{aligned}$.

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah persamaan lingkaran yang }\\ &\textrm{berpusat di}\: \: A(2,-1)\: \: \textrm{dan menginggung}\\ &\textrm{garis}\: \: 4y+3x-12=0\: \: \textrm{di titik}\: \: P\\\\ &\textbf{Jawab}:\\ &\textrm{Perhatikan ilustrasi berikut} \end{array}$.
$.\qquad\begin{aligned}&\textrm{Sehingga}\\ &r=AP=\left | \frac{3(2)+4(1)-12}{\sqrt{3^{2}+4^{2}}} \right |\\ &\: \: =\left | \frac{-10}{5} \right |=\left | -2 \right |=2\\ &\textrm{Sehingga persamaan lingkarannya adalah}\\\ &L\equiv (x-2)^{2}+(y+1)^{2}=\color{red}4 \end{aligned}$.

$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah persamaan garis singgung lingkaran}\\ & x^{2}+y^{2}=12\: \: \textrm{dan melalui titik}\: \: P(0,4)\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui persamaan lingkaran}\\ &x^{2}+y^{2}=12\\ &\textrm{Persamaan garis singgung lingkaran}\\ &\textrm{melalui titik}\: \: (x_{1},y_{1})\: \: \textrm{adalah}:\\ &\begin{aligned}x^{2}+y^{2}&=12\\ xx+yy&=12\\ x_{1}x+y_{1}y&=12\\ \textrm{garis ini melalui}&\: \: \textrm{titik}\\ P(0,4)&, \textrm{maka}\\ x_{1}.0+y_{1}.4&=12\\ y_{1}&=3\: ......(1)\end{aligned}\\ &\textrm{Karena titik}\: \: (x_{1},y_{1})\: \: \textrm{pada lingkaran}\\ &\textrm{maka},\\ &x_{1}^{2}+y_{1}^{2}=12\: ......(2)\\ &\textrm{Selanjutnya dari persamaan}\: \: (1)\: \&\: (2)\\ &\textrm{akan diperoleh}\\ &\begin{aligned}&x_{1}^{2}+y_{1}^{2}=12\\ y_{1}=3\Rightarrow \: \: &x_{1}^{2}+(3)^{2}=12\\ \Leftrightarrow \: \: &x_{1}^{2}+9=12\\ \Leftrightarrow \: \: &x_{1}^{2}=3\\ \Leftrightarrow \: \: &x_{1}=\pm \sqrt{3}\end{aligned}\\ &\begin{aligned}& \textrm{Sehingga persa}\textrm{maan garis singgungnya}\\ &\left ( x_{1}x+y_{1}y=12 \right )\: \: \textrm{adalah}:\\ &\begin{cases} \textrm{di titik} & (x_{1},y_{1})=(\sqrt{3},3)\: \: \, \, \Rightarrow \color{red}\sqrt{3}x+3y=12\\ \textrm{di titik} & (x_{1},y_{1})=(-\sqrt{3},3)\Rightarrow \color{red}-\sqrt{3}x+3y=12 \end{cases}\\ &\end{aligned} \end{aligned} \end{array}$
Berikut ilustrasi gambarnya
$\begin{array}{ll}\\ 4.&\textrm{Tentukanlah persamaan garis singgung lingkaran}\\ & x^{2}+y^{2}=169\: \: \textrm{dan melalui titik}\: \: Q(5,-12)\\\\ &\textbf{Jawab}:\\ &\color{red}\textrm{Alternatif 1}\\ &\textrm{Diketahui}\: \: L\equiv x^{2}+y^{2}=169\: \: \color{blue}\textrm{atau}\\ &L\equiv x^{2}+y^{2}-169=0\: \: \textrm{dan}\: \: Q(5,-12)\\ &\textrm{kuasa titik A (posisi titik Q) adalah}:\\ &=5^{2}+(-12)^{2}-169=0\\ &\textrm{Sehingga titik Q pada lingkaran dengan}\\ &\textrm{persamaan}\\ &\qquad x_{1}x+y_{1}y=r^{2}\Rightarrow \color{red}5x-12y=169\\ &\begin{aligned}&\color{red}\textrm{Alternatif 2}\\ &\textrm{Persamaan lingkaran}\\& L\equiv x^{2}+y^{2}=169\: ...................(1)\\ &\textrm{Persamaan garis singgung}\: \: g\: \: \textrm{melalui}\\ &Q(5,-12)\: \: \textrm{adalah}:\\ &g\equiv y+12=m(x-5)\\ &\Leftrightarrow \: \: \qquad y=mx-5m-12\: ....(2)\\ &\textrm{Dari persamaan (1) dan (2)}\\ &x^{2}+(mx-5m-12)^{2}=169\\ &\Leftrightarrow x^{2}+m^{2}x^{2}+25m^{2}+144-10m^{2}-24mx+120m=169\\ &\Leftrightarrow (1+m^{2})x^{2}-(10m^{2}+24m)x+25m^{2}+120m-25=0\\ &\textrm{Syarat menyinggung}\: \: \color{blue}D\color{black}=\color{blue}b^{2}-4ac\color{black}=0\\ &(10m^{2}+24m)^{2}-4(1+m^{2})(25m^{2}+120m-25)=0\\ &\Leftrightarrow 144m^{2}-120m+25=0\\ &\Leftrightarrow (12m-5)^{2}=0\\ &\Leftrightarrow m=\displaystyle \frac{5}{12}\: .......(3)\\ &\textrm{Jika (1) disebstitusikan ke (2), maka}\\ &y+12=\displaystyle \frac{5}{12}(x-5)\\ &\Leftrightarrow y=\displaystyle \frac{5}{12}x-\frac{169}{12}\: \: \textrm{atau}\\ &\Leftrightarrow \color{red}5x-12y=169  \end{aligned}   \end{array}$.

$.\qquad\textrm{Berikut ilustrasi lingkaran dan garis singgungnya}$

$\begin{array}{ll}\\ 5.&\textrm{Tentukan persamaan garis singgung di}\\ &\textrm{titik}\: \: R(-2,-4)\: \: \textrm{pada lingkaran}\\ &(x-2)^{2}+(y+1)^{2}=25\\\\ &\textbf{Jawab}:\\ &\textrm{Kita cek sebentar posisi/kedudukan titik}\: \: R\\ &K_{R}=K_{(-2,-4)}\equiv (-2-2)^{2}+(-4+1)^{2}-\color{blue}25\\ &\: \: \: \qquad\qquad\qquad \equiv 16+9-\color{blue}25\color{black}=\color{red}0\\ &\textrm{Sehingga posisi titik}\: \: R\: \: \textrm{pada keliling lingkaran}\\ &\color{blue}\textrm{Alternatif 1}\\ &(x_{1}-a)(x-a)+(y_{1}-b)(y-b)=r^{2}\\ &\textrm{maka}\\ &(x_{1}-2)(x-2)+(y_{1}+1)(y+1)=25\\ &\textrm{Untuk titik}\: \: R(-2,-4),\: \textrm{maka garis singgungnya}\\ &(-2-2)(x-2)+(-4+1)(x+1)=25\\ &\Leftrightarrow (-4)(x-2)+(-3)(x+1)=25\\ &\Leftrightarrow -4x+8-3x-3=25\\ &\Leftrightarrow 4x+3y+20=0\\ &\textrm{Jadi, garis singgungnya adalah}:\: 4x+3y+20=0\\ &\begin{aligned}&\color{blue}\textrm{Alternatif 2}\\ &(x-2)^{2}+(y+1)^{2}=25\\ &\Leftrightarrow x^{2}-4x+4+y^{2}+2y+1=25\\ &\Leftrightarrow x^{2}+y^{2}-4x+2y-20=0\\ &\textrm{Selanjutnya untuk garis sinngung}\\ &\textrm{lingkaran di titik}\: \: R(-2,-4)\: \: \textrm{adalah}:\\ &x_{1}x+y_{1}y+\displaystyle \frac{1}{2}A(x_{1}+x)+\displaystyle \frac{1}{2}B(y_{1}+y)+C=0\\ &\Leftrightarrow (-2)x+(-4)y-2(-2+x)+(-4+y)-20=0\\ &\Leftrightarrow -2x-4y+4-2x-4+y-20=0\\ &\Leftrightarrow -4x-3y-20=0\\ &\Leftrightarrow 4x+3y+20=0\\ &\textrm{Jadi, garis singgungnya adalah}:\: 4x+3y+20=0 \end{aligned} \end{array}$.



DAFTAR PUSTAKA
  1. Kartini, Suprapto, Subandi, Setiadi, U. 2005. Matematika Program Studi Ilmu Alam Kelas XI untuk SMA dan MA. Klaten: INTAN PARIWARA.
  2. Noormandiri. 2017. Matematika Jilid 2 untuk SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.
  3. Sobirin. 2006. Kompas Matematika Strategi Praktis Menguasai Tes Matematika SMA Kelas 2. Jakarta: KAWAN PUSTAKA.
  4. Wirodikromo, S. 2007. Matematika Jilid 2 IPA untuk Kelas XI. Jakarta: ERLANGGA.

Notasi Faktorial, Permutasi dan Kombinasi (Matematika Wajib Kelas XII)

 $\color{blue}\textrm{C. Faktorial}$

Perhatikanlah tabel berikut yang berisi perkalian bilangan terurut pada bilangan asli

$\begin{array}{|c|}\hline n!=1\times 2\times 3\times 4\times \cdots \times (n-2)\times (n-1)\times n\\ \textbf{atau}\\ n!=n\times (n-1)\times (n-2)\times \cdots \times 4\times 3\times 2\times 1\\ \color{red}\textrm{dengan}\\ (n+1)!=(n+1)\times n!\: \: \textrm{untuk}\: \: n\geq 1,\: n\in \mathbb{N}\\ \color{blue}\textrm{serta didefinisikan bahwa}\\ 0!= 1!=1\\ \colorbox{yellow}{CONTOH}\\ 0!=1\\ 1!=1\\ 2!=2\times 1=2\\ 3!=3\times 2\times 1=6\\ 4!=4\times 3\times 2\times 1=24\\ 5!=5\times 4\times 3\times 2\times 1=120\\ 6!=6\times 5\times 4\times 3\times 2\times 1=720\\ \\ \vdots \\ \\ \color{black}n!=n\times (n-1)\times (n-2)\times \cdots \times 4\times 3\times 2\times 1\\\hline \end{array}$

$\LARGE\colorbox{aqua}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah nilai}\\ &\begin{array}{lll}\\ \textrm{a}.\quad 3!&\textrm{e}.\quad \displaystyle \frac{6!}{4!}&\textrm{i}.\quad \displaystyle \frac{2!}{0!}+\frac{3!}{1!}+\frac{4!}{2!}\\ \textrm{b}.\quad 5!&\textrm{f}.\quad \displaystyle \frac{10!}{6!}&\textrm{j}.\quad \displaystyle \frac{2!}{0!}\times \frac{3!}{1!}+\frac{4!}{2!}\\ \textrm{c}.\quad 0!+1!+2!+3!&\textrm{g}.\quad \displaystyle \frac{7!}{3!\times 4!}&\textrm{k}.\quad \displaystyle \frac{3\times 4!}{3!(5!-5!)}\\ \textrm{d}.\quad (2!)!+(3!)!&\textrm{h}.\quad \displaystyle \frac{13!}{12!+12!}&\textrm{l}.\quad \displaystyle \frac{3!+5!+7!}{4!+6!}\end{array}\\\\ &\textrm{Jawab}:\\\\ &\begin{array}{l}\\ \textrm{a}.\quad 3!=3.2.1=6\\ \textrm{b}.\quad 5!=5.4.3.2.1=120\\ \begin{aligned}\textrm{c}.\quad 0!+1!+2!+3!&=1+1+2+6\\ &=10 \end{aligned}\\ \begin{aligned}\textrm{d}.\quad (2!)!+(3!)!&=2!+6!\\ &=2+720\\ &=722 \end{aligned}\\ \textrm{e}.\quad \displaystyle \frac{6!}{4!}=\frac{720}{24}=30\quad \textrm{atau}\quad \displaystyle \frac{6!}{4!}=\displaystyle \frac{6.5.\not{4}.\not{3}.\not{2}.\not{1}}{\not{4}.\not{3}.\not{2}.\not{1}}=6.5=30\\ \textrm{f}.\quad \displaystyle \frac{10!}{6!}=\frac{10.9.8.7.6.5.4.3.2.1}{6.5.4.3.2.1}=.... (\textrm{silahkan diselesaikan sendiri})\\ \textrm{g}.\quad \displaystyle \frac{7!}{3!\times 4!}=\frac{7.6.5.4.3.2.1}{(3.2.1)\times (4.3.2.1)}=.... (\textrm{silahkan juga diselesaikan sendiri})\\ \vdots \\ (\textrm{silahkan selanjutnya diselesaikan sendiri}) \end{array} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Sederhanakanlah}\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle \frac{n!}{(n-1)!}&\textrm{e}.\quad \displaystyle \frac{1}{n!}+\frac{n}{(n+1)!}-\frac{1}{(n-1)!}\\ \textrm{b}.\quad \displaystyle \frac{(n+2)!}{(n+1)!}&\textrm{f}.\quad \displaystyle \frac{(4n)!}{(4n+1)!}+\frac{(4n)!}{(4n-1)!}\\ \textrm{c}.\quad \displaystyle \frac{(2n)!}{(2n+1)!}&\textrm{g}.\quad \displaystyle \frac{1}{n}-\frac{n!}{(n-1).(n-2)!}\\ \textrm{d}.\quad \displaystyle \frac{(n+2)!}{(n^{2}+3n+2)}&\textrm{h}.\quad 1.1!+2.2!+3.3!+4.4!+5.5!+...+n.n!\end{array}\\\\ &\textrm{Jawab}:\\\\ &\begin{array}{l}\\ \textrm{a}.\quad \displaystyle \frac{n!}{(n-1)!}=\frac{n.(n-1)!}{(n-1)!}=n\\ \textrm{b}.\quad \displaystyle \frac{(n+2)!}{(n+1)!}=\frac{(n+2).(n+1)!}{(n+1)!}=n+2\\ \textrm{c}.\quad \displaystyle \frac{(2n)!}{(2n+1)!}=\frac{(2n)!}{(2n+1).(2n)!}=\frac{1}{2n+1}\\ \textrm{d}.\quad \displaystyle \frac{(n+2)!}{n^{2}+3n+2}=\frac{(n+2)!}{(n+2).(n+1)}=\frac{(n+2).(n+1).n!}{(n+2).(n+1)}=n!\\ \vdots \\ (\textrm{silahkan selanjutnya diselesaikan sendiri sebagai latihan})\\ \vdots \\ \begin{aligned}\textrm{h}.\quad &1.1!+2.2!+3.3!+4.4!+5.5!+...+n.n!\\ & =(2-1).1!+(3-1).2!+(4-1).3!+(5-1).4!+...+(n+1-1).n!\\ &=2.1!+3.2!+4.3!+5.4!+...+(n+1).n!-1!-2!-3!-4!-...-n!\\ &=2!+3!+4!+5!+...+(n+1)!-\left ( 1!+2!+3!+4!+...+n! \right )\\ &=(n+1)!-1 \end{aligned} \end{array} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Sederhanakanlah bentuk penjumlahan berikut}\\ &\displaystyle \frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+\cdots +\displaystyle \frac{100}{98!+99!+100!}\\\\ &\textrm{Jawab}:\\\\ &\begin{aligned}\textrm{Perhatikan}&\, \: \textrm{bahwa}\\ &\displaystyle \frac{3}{1!+2!+3!}=\frac{3}{1+2+6}=\frac{3}{9}=\frac{1}{3}\times \frac{2}{2}=\frac{2}{1\times 2\times 3}=\frac{2}{3!}=\frac{3-1}{3!}=\frac{3}{3!}-\frac{1}{3!}=\frac{3}{2!\times 3}-\frac{1}{3!}=\frac{1}{2!}-\frac{1}{3!}\\ &\textrm{sehingga}\\ &\frac{3}{1!+2!+3!}=\frac{1}{2!}-\frac{1}{3!}\\ &\displaystyle \frac{4}{2!+3!+4!}=\cdots =\frac{1}{3!}-\frac{1}{4!}\\ &\displaystyle \frac{5}{3!+4!+5!}=\cdots =\frac{1}{4!}-\frac{1}{5!}\\ &\vdots \\ &\displaystyle \frac{100}{98!+99!+100!}=\cdots =\frac{1}{99!}-\frac{1}{100!}\\ &---------------------------\\ &\qquad\qquad\qquad\qquad\quad\quad =\frac{1}{2!}-\frac{1}{100!} \end{aligned} \end{array}$

$\color{blue}\textrm{D. Permutasi dan Kombinasi}$

$\begin{array}{|l|l|l|}\hline \textrm{Istilah}&\qquad\qquad\qquad\textrm{Permutasi}&\qquad\qquad\qquad\textrm{Kombinasi}\\\hline \textrm{Definisi}&\begin{aligned}&\textrm{Permutasi r unsur dari n unsur adalah}\\ &\textrm{banyaknya kemungkinan urutan r buah}\\ &\textrm{unsur yang dipilih dari n unsur}\\ &\textrm{yang tersedia}.\: \textrm{Tiap unsur berbeda dan}\\ & r\leq n \end{aligned}&\begin{aligned}&\textrm{Kombinasi r unsur dan n unsur adalah}\\ &\textrm{banyaknya kemungkinan tidak terurut}\\ &\textrm{dalam pemilihan r unsur yang diambil}\\ &\textrm{dari n unsur yang tersedia}.\: \textrm{Tiap unsur}\\ &\textrm{berbeda dan}\: \: r\leq n \end{aligned}\\\hline \textrm{Tipe}&\textrm{Bentuk khusus kaidah perkalian}&\textrm{Bentuk khusus permutasi}\\\hline \textrm{Notasi}&_{n}P_{r},\: P_{n}^{r},\: \textrm{atau}\: \: P(n,k)&_{n}C_{r},\: C_{r}^{n},\: \binom{n}{r},\: \textrm{atau}\: \: C(n,r)\\\hline \textrm{Rumus}&P(n,r)=\displaystyle \frac{n!}{(n-r)!}&\binom{n}{r}=C(n,r)=\displaystyle \frac{n!}{r!(n-r)!}\\\hline \end{array}$

Selanjutnya perhatikanlah tabel berikut

$\begin{array}{|c|c|c|}\hline \textrm{Permutasi}&\textrm{Permutasi}\\ \textrm{dengan unsur yang sama}&\textrm{Siklis}\\\hline \begin{aligned}&P(n;n_{1},n_{2},n_{3},...,n_{k})\\ &=\displaystyle \frac{P(n,n)}{n_{1}!n_{2}!n_{3}!...n_{k}!}\\ &=\displaystyle \frac{n!}{n_{1}!n_{2}!n_{3}!...n_{k}!} \end{aligned}&\begin{aligned}&\begin{cases} \textrm{Siklis} & =(n-1)! \\\\ \textrm{Kalung} & =\displaystyle \frac{(n-1)!}{2} \end{cases} \end{aligned}\\\hline \end{array}$

dan

$\begin{array}{|c|c|}\hline \textrm{Kombinasi}&\textrm{Kombinasi dalam}\\ \textrm{dengan pengulangan}&\textrm{Binom Newton}\\\hline \begin{aligned}&C(n+r-1,r)\\ &=C(n+r-1,n-1)\\ &\binom{n+r-1}{r}\\ &=\binom{n+r-1}{n-1} \end{aligned}&\begin{aligned}&(x+y)^{n}\\ &=\sum_{k=o}^{n}\binom{n}{r}x^{n-k}y^{k}\\\\ &\textrm{Koefisien untuk}\\ &x^{n-k}y^{k},\: \textrm{yaitu}\\ &\textrm{suku ke}-(k+1)\\ &\textrm{adalah}\: \binom{n}{r} \end{aligned}\\\hline \end{array}$

serta


$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Jika di suatu kelas terdapat 4 orang akan dipilih 3 orang }\\ &\textrm{untuk menjadi ketua, sekretaris, dan bendahara}.\\ &\textrm{Tentukanlah banyak cara memilih 3 orang tersebut?}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Karena ada 4 orang, misal A, B, C, dan D yang}\\ &\textrm{akan dipilih 3 orang untuk menduduki posisi} \\ &\textrm{ketua, sekretaris, dan bendahara, maka kita tinggal}\\ &\textrm{buat permutasinya, yaitu posisi ketua dapat dipilih }\\ &\textrm{dengan 4 cara, sekretaris dapat dipilih dengan 3 cara}, \\ &\textrm{dan bendahara dapat dipilih dengan 2 cara. atau} \\ &\color{blue} P(4,3)=\displaystyle \frac{4!}{(4-3)!}=\frac{4!}{1!}=\frac{4\times 3\times 2\times 1}{1}=24\: \: \textrm{cara}\\ &\textrm{Berikut ilustrasinya dengan diagram pohon} \end{aligned} \end{array}$
$\color{red}\begin{cases} A&\begin{cases} B & \begin{cases} C &\rightarrow ABC\\ D & \rightarrow ABD \end{cases} \\ C & \begin{cases} B &\rightarrow ACB\\ D & \rightarrow ACD \end{cases} \\ D & \begin{cases} B &\rightarrow ADB \\ C &\rightarrow ADC \end{cases} \end{cases} \\ \\ B&\begin{cases} A & \begin{cases} C &\rightarrow BAC\\ D & \rightarrow BAD \end{cases} \\ C & \begin{cases} A &\rightarrow BCA\\ D & \rightarrow BCD \end{cases} \\ D & \begin{cases} A &\rightarrow BDA \\ C &\rightarrow BDC \end{cases} \end{cases} \\ \\ C&\begin{cases} A & \begin{cases} B &\rightarrow CAB\\ D & \rightarrow CAD \end{cases} \\ B & \begin{cases} A &\rightarrow CBA\\ D & \rightarrow CBD \end{cases} \\ D & \begin{cases} A &\rightarrow CDA \\ B &\rightarrow CDB \end{cases} \end{cases} \\ \\ D&\begin{cases} A & \begin{cases} B &\rightarrow DAB\\ C & \rightarrow DAC \end{cases} \\ B & \begin{cases} A &\rightarrow DBA\\ C & \rightarrow DBC \end{cases} \\ C & \begin{cases} A &\rightarrow DCA \\ B &\rightarrow DCB \end{cases} \end{cases} \end{cases}$
$\begin{array}{ll}\\ 2.&\textrm{Seorang anak akan mengambil 4 buah bola dari}\\ &\textrm{10 warna yang berbeda. Berapakah banyak}\\ &\textrm{kombinasi warna yang berbeda yang diambil}\\ &\textrm{oleh Andi}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}n=10&\: \: \textrm{dan}\: \: r=4\\ C(n,r)&=\displaystyle \frac{n!}{r!(n-r)!}\\ C(10,4)&=\displaystyle \frac{10!}{4!(10-4)!}\\ &=\displaystyle \frac{10!}{4!\times 6!}\\ &=\displaystyle \frac{10\times 9\times 8\times 7\times 6!}{(4\times 3\times 2\times 1)\times 6!}\\ &=420\: \: \textrm{kombinasi warna bola berbeda} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Berapa banyak cara dapat memilih untuk}\\ &\textrm{3 perwakilan dari 10 anggota suatu}\\ &\textrm{kelompok, jika}\\ &\textrm{a. tanpa perlakuan khusus}\\ &\textrm{b. salah seorang harus terpilih}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Dengan tanpa perlakuan}\\ &\textrm{memilih 3 orang dari 10 orang adalah}:\\ &C(10,3)=\displaystyle \frac{10!}{3!(10-3)!}=\frac{10!}{3!\times 7!}=\color{blue}120\\ \textrm{b}.\quad&\textrm{Dengan perlakuan 1 orang terpilih}\\ &\color{red}(\textrm{1 orang ini artinya tidak perlu diperhitungkan})\\ &\textrm{memilih 2 orang dari 9 orang adalah}:\\ &C(9,2)=\displaystyle \frac{9!}{2!(9-2)!}=\frac{9!}{2!\times 8!}=\color{blue}36 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 4.&\textrm{Berapa banyak cara dapat memilih 2 buku}\\ &\textrm{matematika dan 3 buku fisika serta 4 buku}\\ &\textrm{ekonomi pada suatu lemari buku yang}\\ &\textrm{di dalamnya terdapat 10 buku matematika,}\\ &\textrm{11 buku fisika dan 12 buku ekonomi}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}\textrm{Banyak}&\: \textrm{cara pemilihan tersebut adalah}:\\ &=C(10,2)\times C(11,3)\times C(12,4)\\ &=\displaystyle \frac{10!}{2!\times 8!}\times \frac{11!}{3!\times 8!}\times \frac{12!}{4!\times 8!}\\ &=\displaystyle \frac{10\times 9}{1\times 2}\times \frac{11\times 10\times 9}{1\times 2\times 3}\times \frac{12\times 11\times 10\times 9}{1\times 2\times 3\times 4}\\ &=\color{red}3675375 \end{aligned} \end{array}$

DAFTAR PUSTAKA
  1. Johnaes, Kastolan, & Sulasim. 2004. Kompetensi Matematika SMA Kelas 2 Semester 1 Program Ilmu Sosial KBK 2004. Jakarta: YUDHISTIRA.
  2. Kartini, Suprapto, Subandi, & Setiyadi, U. 2005. Matematika Program Studi Ilmu Alam Kelas XI untuk SMA dan MA. Klaten: INTAN PARIWARA.
  3. Sobirin. 2006. Kompas Matematika Strategi Praktis Menguasai Tes Matematika. Jakarta: KAWAN PUSTAKA.







Kedudukan Garis terhadap Lingkaran

 $\color{blue}\textrm{E. Kedudukan Garis Terhadap Lingkaran }$.

Posisi garis terhadap lingkaran tergantung nilai Diskriminan (D) hasil substitusi persamaan garis ke persamaan lingkaran.

$\begin{cases} \bullet &\textrm{memotong lingkaran di dua titik}\: \: (D>0)\\ & \textrm{ada garis dan titik polar} \\ \bullet &\textrm{menyinggung lingkaran}\: \: (D=0) \\ \bullet &\textrm{tidak memotong ataupun menyinggung}\: \: (D<0) \end{cases}$.

Berikut Ilustrasi gambarnya

$\color{blue}\textrm{F. Jarak Garis ke Pusat Lingkaran}$.

$\begin{array}{|l|l|}\hline \textrm{Jarak titik}\: \: M(p,q)\: \: \textrm{terhadap pusat}&\\ \textrm{lingkaran}\: \: N(a,b)&\left | MN \right |=r\\ \qquad r=\left | \displaystyle \frac{Ap+Bq+C}{\sqrt{A^{2}+B^{2}}} \right |&\\\hline \end{array}$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah nilai}\: \: p\: \: \textrm{supaya lingkaran}\\ & x^{2}+y^{2}-px-10y+4=0 \\ &\textrm{a}.\quad \textrm{menyinggung sumbu x}\\ &\textrm{b}.\quad \textrm{memotong sumbu x di dua titik}\\ &\textrm{c}.\quad \textrm{tidak memotong dan tidak menyinggung }\\ &\quad\: \: \: \: \textrm{sumbu x}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\\ &\textrm{Persamaan lingkaran}:\\ &x^{2}+y^{2}-px-10y+4=0\\ &\textrm{saat menyinggung}\: \: \textrm{sumbu x},\: \: \textrm{maka}\: \: y=0\\ &\textrm{adalah gar}\textrm{is yang sejajar sumbu x, maka}\\ &y=0\Rightarrow \: \: x^{2}+y^{2}-px-10y+4=0\\ &\: \qquad \Leftrightarrow \: \: x^{2}+0^{2}-px-0+4=0\\ &\: \qquad \Leftrightarrow \: \: \color{red}x^{2}-px+4 \end{aligned}\\ &\textrm{Selanjutnya}\\ &\begin{array}{|c|c|c|}\hline \textrm{Menyinggung}&\textrm{memotong}&\textrm{Tidak keduanya}\\\hline \begin{aligned}D&= b^{2}-4ac=0\\ &\Leftrightarrow p^{2}-4.1.4=0\\ &\Leftrightarrow p^{2}=16\\ &\Leftrightarrow p=\pm 4\\ & \end{aligned}&\begin{aligned}D&>0\\ &\Leftrightarrow b^{2}-4ac>0\\ &\Leftrightarrow p^{2}-16>0\\ &\Leftrightarrow (p+4)(p-4)>0\\ &\therefore \quad p<-4\: \: \textrm{atau}\: \: p>4 \end{aligned}&\begin{aligned}D&<0\\ &\Leftrightarrow b^{2}-4ac<0\\ &\Leftrightarrow p^{2}-16<0\\ &\Leftrightarrow (p+4)(p-4)<0\\ &\therefore \quad -4<p<4 \end{aligned}\\\hline \end{array} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah nilai}\: \: a\: \: \textrm{supaya lingkaran}\\ & x^{2}+y^{2}=1\: \: \textrm{dan garis}\: \: y=ax+2 \\ &\textrm{a}.\quad \textrm{bersinggungan}\\ &\textrm{b}.\quad \textrm{berpotongan}\\ &\textrm{c}.\quad \textrm{tidak berpotongan maupun bersinggungan}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Di sini yang kita bahas adalah yang poin b, }\\ &\textrm{yaitu untuk}\: \: y=ax+2,\: \: \textrm{maka}\\ &x^{2}+y^{2}=1\\ &x^{2}+(ax+2)^{2}=1\\ &x^{2}+a^{2}x^{2}+4ax+4=1\\ &(1+a^{2})x^{2}+4ax+3=0\\ &\textrm{syarat berpotongan}\: \: D=b^{2}-4ac\geq 0\\ &(\textrm{artinya bersinggungan sekaligus berpotongan di 2 titik})\\ &(4a)^{2}-4(1+a^{2})(3)\geq 0\\ &16a^{2}-12a^{2}-12\geq 0\\ &4a^{2}-12\geq 0\\ &a^{2}-3\geq 0\\ &(a+\sqrt{3})(a-\sqrt{3})\geq 0\\ &\therefore \: \: \: \: a\leq -\sqrt{3}\: \: \textrm{atau}\: \: a\geq \sqrt{3} \end{aligned} \end{array}$.

Pembukaan PPDB MA FUTUHIYAH JEKETRO 2022

Bismillah

Pembukaan PPDB MA FUTUHIYAH Jeketro Gubug Kabupaten Grobogan Jawa Tengah


Hal yang berkaitan PPDB klik di sini

Perkalian Skalar Dua Vektor di Dimensi Dua (Matematika Peminatan Kelas X)

 $\color{blue}\textrm{L. Operasi Perkalian Dua Buah Vektor}$

Perhatikanlah ilustrasi berikut


Bentuk perkalian dari ilustrasi dua vektor di atas dinotasikan dengan  $\color{black}\bar{a}\bullet \bar{b}$. Dimisalkan sebuah vektor  $\color{black}\bar{a}$  dan  vektor  $\color{black}\bar{b}$  membentuk sudut  $\theta$ , maka perkalian skalar dua vektor didefinisikan dengan

$\color{black}\bar{a}\bullet \bar{b}=\left | \bar{a} \right |\left | \bar{b} \right |\cos \theta ,\: \: \color{blue}\textrm{dengan}\: \: \color{black}0^{\circ}\leq \theta \leq 180^{\circ}$

Misalkan diberikan dua vektor   

$\begin{aligned}&\bar{a}=\color{red}\begin{pmatrix} a_{1}\\ a_{2} \end{pmatrix}\: \: \color{black}\textrm{dan}\: \: \bar{b}=\color{blue}\begin{pmatrix} b_{1}\\ b_{2} \end{pmatrix}\\ &\textrm{Sesuai definisi, maka}\\ &\bar{a}\bullet \bar{b}=\color{red}\bar{a_{1}}\color{blue}\bar{b_{1}}\color{black}+\color{red}\bar{a_{2}}\color{blue}\bar{b_{2}} \end{aligned}$

Sebagai bukti diberikan uraian berikut

Perhatikanlah   $\triangle \textbf{AOB}$   di atas, saat kita menentukan ruas garis  AB  yang terbentuk dari vektor posisi  $\color{black}\bar{a}$  dan  $\color{black}\bar{b}$ dengan sudut pengapitnya adalah  $\theta$, maka kita dapat menggunakan aturan COSINUS, yaitu:
$\color{purple}\begin{aligned}\left | \overline{AB} \right |^{2}&=\left | \overline{OA} \right |^{2}+\left | \overline{OB} \right |^{2}-2\left | \overline{OA} \right |\left | \overline{OB} \right |\cos \theta \\ (b_{1}-a_{1})^{2}&+(b_{2}-a_{2})^{2}=a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}-2\left | \bar{a} \right |\left | \bar{b} \right |\cos \theta \\ -2a_{1}b_{1}-&2a_{2}b_{2}=-2\left | \bar{a} \right |\left | \bar{b} \right |\cos \theta \\ \displaystyle 2a_{1}b_{1}+&2a_{2}b_{2}=\displaystyle 2\left | \bar{a} \right |\left | \bar{b} \right |\cos \theta\\ &\textbf{Karena}\\ &\color{blue}\bar{a}\bullet \bar{b}=\displaystyle 2\left | \bar{a} \right |\left | \bar{b} \right |\cos \theta\\ \displaystyle 2a_{1}b_{1}+&2a_{2}b_{2}=\bar{a}\bullet \bar{b}\: \: \: \color{black}\blacksquare \end{aligned}$

Dan dari bentuk di atas kita juga akan mendapatkan bentuk:
$\cos \theta =\displaystyle \frac{\bar{a}\bullet \bar{b}}{\left | \bar{a} \right |\left | \bar{b} \right |}$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Jika diketahui}\: \: \left | \bar{a} \right |=5,\: \: \textrm{dan}\: \: \left | \bar{b} \right |=8\\ &\textrm{dan kedua vektor itu membentuk sudut}\: \: 60^{\circ}\\ &\textrm{maka nilai}\: \: \bar{a}\bullet \bar{b}=....\\\\ &\textrm{Jawab}\\ &\begin{aligned}\bar{a}\bullet \bar{b}&=\left | \bar{a} \right |\left | \bar{b} \right |\cos \angle \left ( \bar{a},\bar{b} \right )\\ &=5.8.\cos 60^{\circ}\\ &=40\times \displaystyle \frac{1}{2}\\ &=20 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Jika diketahui vektor}\: \: \bar{a} =\begin{pmatrix} 15\\ -11 \end{pmatrix},\: \: \textrm{dan}\: \: \bar{b}=\begin{pmatrix} -2\\ 1 \end{pmatrix}\\ &\textrm{Tentukanlah nilai}\: \: \bar{a}\bullet \bar{b}\\\\ &\textrm{Jawab}\\ &\color{blue}\begin{aligned}\bar{a}\bullet \bar{b}&=\begin{pmatrix} 15\\ -11 \end{pmatrix}\begin{pmatrix} -2\\ 1 \end{pmatrix}\\ &=(15)(-2)+(-11)(1)\\ &=-30+(-11)\\ &=-30-11\\ &=-41 \end{aligned} \end{array}$

$\color{blue}\textrm{M. Perbandingan Vektor}$

Perhatikanlah ilustrasi gambar berikut!

Dari gambar tersebut di atas diketahui bahwa titik P dan Q dengan koordinat masing-masing adalah  $(x_{1},y_{1})$  dan  $(x_{1},y_{1})$, dan  $\overrightarrow{PT}:\overrightarrow{TQ}=m:n$ , mak vektor posisi titik T adalah $\vec{t}=\displaystyle \frac{n\vec{p}+m\vec{q}}{m+n}$.

Berikut paparan buktinya

$\begin{aligned}\overrightarrow{PT}:\overrightarrow{TQ}&=m:n\\ \displaystyle \frac{\overrightarrow{PT}}{\overrightarrow{TQ}}&=\frac{m}{n}\\ \displaystyle \frac{\vec{t}-\vec{p}}{\vec{q}-\vec{t}}&=\frac{m}{n}\\ n\left ( \vec{t}-\vec{p} \right )&=m\left ( \vec{q}-\vec{t} \right )\\ n\vec{t}-n\vec{p}&=m\vec{q}-m\vec{t}\\ m\vec{t}+n\vec{t}&=m\vec{q}+n\vec{p}\\ \vec{t}\left ( m+n \right )&=n\vec{p}+m\vec{q}\\ \vec{t}&=\color{red}\displaystyle \frac{n\vec{p}+m\vec{q}}{m+n}\qquad\quad \color{black}\blacksquare \end{aligned}$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Perhatikanlah gambar pada soal No. 6 di atas. }\\ &\textrm{Jika titik T terletak pada}\: \overrightarrow{SP},\: \textrm{sehingga}\\&\: \: \overrightarrow{ST}:\overrightarrow{TP}=1:3,\: \textrm{maka}\\ &\textrm{a}.\quad \textrm{Tentukanlah koordinat titik T}\:\\ &\textrm{b}.\quad \textrm{Jika titik M terletak di tengah-tengah}\: \: \overrightarrow{SP},\\ &\qquad \textrm{tentukanlah koordinat titik M}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{array}{|l|l|}\hline \begin{aligned}\textrm{a}.\quad \vec{t}&=\displaystyle \frac{3\vec{s}+\vec{p}}{3+1}\\ &=\displaystyle \frac{3\begin{pmatrix} -3\\ 7 \end{pmatrix}+\begin{pmatrix} 5\\ 3 \end{pmatrix}}{3+1}\\ &=\displaystyle \frac{1}{4}\left ( \begin{pmatrix} -9\\ 21 \end{pmatrix}+\begin{pmatrix} 5\\ 3 \end{pmatrix} \right )\\ &=\displaystyle \frac{1}{4}\begin{pmatrix} -4\\ 24 \end{pmatrix}\\ &=\begin{pmatrix} -1\\ 6 \end{pmatrix}\\ \textrm{jadi}&\: \textrm{koordinat titik}\: \color{red}T(-1,6) \end{aligned}&\begin{aligned}\textrm{b}.\quad \vec{m}&=\displaystyle \frac{1}{2}\left ( \vec{s}+\vec{p} \right )\\ &=\displaystyle \frac{1}{2}\left ( \begin{pmatrix} -3\\ 7 \end{pmatrix}+\begin{pmatrix} 5\\ 3 \end{pmatrix} \right )\\ &=\displaystyle \frac{1}{2}\begin{pmatrix} 2\\ 10 \end{pmatrix}\\ &=\begin{pmatrix} 1\\ 5 \end{pmatrix}\\ \textrm{Jadi}&\: \textrm{koordinat titik}\: \color{red}M(1,5)\\ &\\ &\\ & \end{aligned}\\\hline \end{array} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Diketahui}\: \: \vec{u}=\begin{pmatrix} -8\\ 2 \end{pmatrix}\: \textrm{dan}\: \: \vec{v}=\begin{pmatrix} -4\\ m \end{pmatrix}.\\ &\textrm{Tentukan}\: \: m\: \: \textrm{jika}\: \: \vec{u}\: \: \textrm{dan}\: \: \vec{v}\: \: \textrm{sejajar dan searah}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\overrightarrow{u}&=k\vec{v}\\ &\quad (\textrm{vektor}\: \: \vec{u}\: \: \textrm{dan}\: \: \vec{v}\: \: \textrm{sejajar dan searah})\\ \begin{pmatrix} -8\\ 2 \end{pmatrix}&=k\begin{pmatrix} -4\\ m \end{pmatrix}=\begin{pmatrix} -4k\\ mk \end{pmatrix}\\ -8&=-4m\: \: \Rightarrow \: \: m=\displaystyle \frac{-8}{-4}=2\\ \textrm{Jadi}\: &\: \color{red}m=2\\ \end{aligned} \end{array}$

$\LARGE\colorbox{yellow}{LATIHAN SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Perhatikanlah gambar berikut} \end{array}$

$\begin{array}{ll}\\ .\quad &\textrm{Nyatakan vektor-vektor pada gambar }\\ &\textrm{di atas ke dalam bentuk}\\ &\textrm{a}.\quad \textrm{Vektor kolom}\\ &\textrm{b}.\quad \textrm{Vektor baris}\\ &\textrm{c}.\quad \textrm{Vektor basis} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Pada soal No. 1 di atas, gambarkanlah }\\ &\textrm{vektor-vektor berikut pada kertas berpetak}\\ &\textrm{a}.\quad \vec{a}+\vec{b}\\ &\textrm{b}.\quad \vec{b}+\vec{c}\\ &\textrm{c}.\quad \vec{c}+\vec{d}\\ &\textrm{d}.\quad (\vec{a}+\vec{b})+\vec{c}\\ &\textrm{e}.\quad \vec{b}+(\vec{c}+\vec{d})\\ &\textrm{f}.\quad (\vec{a}+\vec{b})+(\vec{c}+\vec{d})\\ &\textrm{g}.\quad (\vec{a}+\vec{b})-(\vec{c}+\vec{d})\\ &\textrm{h}.\quad \vec{a}+\vec{b}+\vec{c}+\vec{d}+\vec{e}+\vec{f}\\ &\textrm{i}.\quad \vec{a}-\vec{b}+\vec{c}-\vec{d}+\vec{e}-\vec{f}\end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Perhatikanlah gambar pada soal No. 6 di atas.}\\ &\textrm{Jika titik T terletak pada}\: \: \overrightarrow{SP},\: \textrm{sehingga}\\ &\overrightarrow{ST}:\overrightarrow{TP}=2:3,\: \textrm{maka}\\ &\textrm{a}.\quad \textrm{Tentukanlah koordinat titik T}\:\\ &\textrm{b}.\quad \textrm{Jika titik M terletak di tengah-tengah}\: \: \overrightarrow{SP},\\ &\qquad \textrm{tentukanlah koordinat titik M}\\ \end{array}$

$\begin{array}{ll}\\ 4.&\textrm{Diketahui}\: \: \vec{u}=\begin{pmatrix} 16\\ -2 \end{pmatrix}\: \textrm{dan}\: \: \vec{v}=\begin{pmatrix} -4\\ m \end{pmatrix}.\\ &\textrm{Tentukan}\: \: m\: \: \textrm{jika}\: \: \vec{u}\: \: \textrm{dan}\: \: \vec{v}\: \: \textrm{sejajar dan searah}\end{array}$


DAFTAR PUSTAKA

  1. Kuntarti, Sulistiyono, & Kurnianingsih, S. 2005. Matematika untuk SMA dan MA Kelas XII Program Ilmu Alam. Jakarta: PT. Gelora Aksara Pratama.
  2. Yuana, R. A., Indriyastuti. 2017. Perspektif Matematika untuk Kelas X SMA dan MA Kelompok Peminatan dan Ilmu Alam. Solo: PT TIGA SERANGKAI PUSTAKA MANDIRI.

Kaidah Pencacahan (Kaidah Penjumlahan dan Perkalian)

 $\color{blue}\textrm{B. Kaidah Pencacahan}$

Dalam kombinatorial kita harus melakukan perhitungan (counting) untuk mendapatkan semua kemungkinan dari pengaturan objekgar hasilnya didaptkan valid. Dua kaidah dasar yang digunakan dalam hal ini adalah adalah kaidah perkalian (rule of product) dan kaidah penjumlahan (rule of sum). Kedua kaidah tersebut nantinya akan selalu digunakan secara terpisah atau secara gabungan tergantung kondisi yang diinginkan dalam penentuan aturan pengisian tempat.

 $\color{blue}\textrm{B. 1 Kaidah Perkalian}$

$\begin{cases} \color{red}\Rightarrow &\begin{array}{|c|}\hline \textrm{Kaidah Perkalian}\\\hline \begin{aligned}&\textrm{Jika percobaan 1 mendapat hasil}\: \: m,\\ & \textrm{percobaan 2 mendapatkan hasil}\: n,\\ & \textrm{maka jika percobaan 1 dan 2 dilakukan},\\ &\textrm{maka akan mendapatkan hasil} \: \: m \times n \\ &\textrm{kemungkinan} \end{aligned}\\\hline \end{array} \\\\\\ \color{blue}\Rightarrow &\begin{array}{|c|}\hline \textrm{Kaidah Penjumlah}\\\hline \begin{aligned}&\textrm{Jika percobaan 1 mendapat hasil}\: \: m,\\ & \textrm{percobaan 2 mendapatkan hasil}\: \: n,\\ & \textrm{maka jika hanya}\: \: \color{magenta}\textbf{satu percobaan}\: \: \color{black}\textrm{saja}\\ & \textrm{yang dilakukan (percobaan 1 atau percobaan 2)},\\ & \textrm{maka akan mendapatkan hasil}\: \: m + n\\ & \textrm{kemungkinan} \end{aligned}\\\hline \end{array} \end{cases}$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Sekumpulan pelajar terdiri dari 5 anak putra}\\ & \textrm{dan 4 anak putri. Tentukanlah jumlah cara memilih}\\ & \textrm{satu orang wakil siswa dan satu orang wakil siswi}?\\\\ &\textrm{Jawab}:\\ &\textrm{ada 5 kemungkinan memilih seorang wakil siswa}\\ & \textrm{dan ada 4 kemungkinan memilih wakil siswi}.\\ & \textrm{Jika 2 orang wakil harus dipilih yang terdiri}\\ & \textrm{dari 1 siswa dan 1 siswi, maka jumlah}\\ & \textrm{kemungkinan perwakilan tersebut adalah yang}\\ & \textrm{dapat dipilih adalah 5 x 4 = 20 cara} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah ruang sampel dan banyaknya}\\ &\textrm{anggota untuk percobaan}\\ &\textrm{a}.\quad \textrm{melambungkan sebuah koin sebanyak 3 kali}\\ &\textrm{b}.\quad \textrm{melambungkan dua buah dadu sebanyak sekali}\\\\ &\color{blue}\textrm{Jawab}:\\ &\textrm{Jika S adalah ruang sampel dan n(S) adalah}\\ &\textrm{banyak anggota ruang sampel, maka}\\ &\textrm{a}.\quad \textrm{karena muka koin ada 2, maka n(S)}\\ &\qquad n(S)=2\times 2\times 2=2^{3}=8\\ &\textrm{b}.\quad \textrm{karena muka dadu ada 6, maka n(S)}\\ &\qquad n(S)=6\times 6=6^{2}=36\\ &\textrm{Dan berikut ilustrasi untuk seluruh ruang}\\ &\color{red}\textrm{sampelnya untuk kedua kasus di atas}\\ &\begin{array}{|c|c|}\hline \textrm{a}&\textrm{b}\\\hline \left\{\begin{matrix} A\left\{\begin{matrix} A\left\{\begin{matrix} A&=AAA\\ \\ G&=AAG \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A&=AGA\\ \\ G&=AGG \end{matrix}\right. \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A\left\{\begin{matrix} A&=GAA\\ \\ G&=GAG \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A&=GGA\\ \\ G&=GGG \end{matrix}\right. \end{matrix}\right. \end{matrix}\right. &\begin{array}{|c|c|c|c|c|c|c|}\hline \setminus&1&2&3&4&5&6\\\hline 1&(1,1)&(1,2)&(1,3)&(1,4)&(1,5)&(1,6)\\\hline 2&(2,1)&(2,2)&(2,3)&(2,4)&(2,5)&(2,6)\\\hline 3&(3,1)&(3,2)&(3,3)&(3,4)&(3,5)&(3,6)\\\hline 4&(4,1)&(4,2)&(4,3)&(4,4)&(4,5)&(4,6)\\\hline 5&(5,1)&(5,2)&(5,3)&(5,4)&(5,5)&(5,6)\\\hline 6&(6,1)&(6,2)&(6,3)&(6,4)&(6,5)&(6,6)\\\hline \end{array} \\\hline \textrm{n}(\textrm{S})=8&\textrm{n}(\textrm{S})=36\\\hline \end{array} \end{array}$

Catatan :

Sebuah koin di lempar 3 kali sama dengan hasilnya untuk ruang sampel 3 buah koin dilempar sekali. Demikian juga sebuah dadu diundi 2 kali akan sama hasilnya dengan 2 buah dadi diundi sekali.

$\begin{array}{ll}\\ 3.&\textrm{Sekumpulan pelajar terdiri dari 5 anak putra dan}\\ & \textrm{4 anak putri. Tentukanlah jumlah cara memilih satu}\\ & \textrm{orang wakil pelajar tersebut(tidak masalah putra atau putri)}?\\\\ &\textrm{Jawab}:\\ &\textrm{ada 5 kemungkinan memilih seorang wakil siswa dan}\\ &\textrm{ada 4 kemungkinan memilih wakil siswi. Jika}\\ &\textrm{hanya 1 orang wakil yang harus dipilih}\\ & \textrm{(tidak peduli putra atau putri)},\\ & \textrm{maka banyak cara memilih adalah 5 + 4 = 9 cara} \end{array}$

$\begin{array}{ll}\\ 4.&\textrm{Sebuah bilangan dibentuk dari angka-angka}\\ & \textrm{1, 2, 3, 4, 5, 6, 7, 8, dan 9. Jika pengulangan} \\ &\textrm{tidak diperbolehkan, tentukan banyaknya bilangan}\\ &\textrm{a}.\quad \textrm{yang terdiri dari 1 angka dan kurang dari 5}\\ &\textrm{b}.\quad \textrm{yang terdiri dari 2 angka dan kurang dari 50}\\ &\textrm{c}.\quad \textrm{yang terdiri dari 3 angka dan kurang dari 500}\\ &\textrm{d}.\quad \textrm{yang terdiri dari 4 angka dan kurang dari 5000}\\ &\textrm{e}.\quad \textrm{yang terdiri dari 5 angka dan kurang dari 50000}\\ &\textrm{f}.\quad \textrm{yang terdiri dari 6 angka dan kurang dari 500000 dan habis dibagi 5}\\\\ &\textrm{Jawab}:\\ &\textrm{a}.\quad \textrm{jelas ada 4 angka yang memenuhi, yaitu: 1, 2, 3, dan 4}\\ &\textrm{b}.\quad \textrm{2 angka misalkan AB, posisi A dapat diisi dengan 4 cara dan posisi B dapat}\\ &\qquad \textrm{diisi dengan 8 cara, karena setelah diisikan ke A angka tinggal 8 buah dan}\\ &\qquad \textrm{semuanya memiliki kesempatan yang sama untuk diisikan ke B}.\\ &\qquad \textrm{sehingga AB dapat diisi dengan 4 x 8 = 32 cara}.\\ &\textrm{c}.\quad \textrm{3 angka misalkan ABC, posisi A dapat diisi dengan 4 cara, posisi B dapat}\\ &\qquad \textrm{diisi dengan 8 cara, dan posisi C dapat diisi dengan 7 cara}.\\ &\qquad \textrm{sehingga ABC dapat diisi dengan 4 x 8 x 7 = 224 cara}.\\ &\\ &\textrm{Untuk jawaban d, e, dan f silahkan dicoba sendiri sebagai latihan} \end{array}$



Aturan Pencacahan

 $\color{blue}\textrm{A. Pendahuluan}$

$\color{blue}\textrm{A. 1 Kombiatorial}$

Dalam matematika ada cabang ilmu yang mengkhususkan mempelajari tentang pengaturan objek-objek. Cabang matematika ini selanjutnya dinamakan Kombinatorial. Hasil dari mempelajari bagian ini adalah diperoleh jumlah cara pengaturan objek-objek tertentu di dalam himpunannya. 

Sebagai contoh nomor plat mobil di negara X terdiri atas 4 angka diikuti dengan 2 huruf. Angka pertama tidak boleh 0. Berapa banyak nomor plat mobil yang dapat dibuat?

Sebagai contoh yang lain sandi-lewat (password) sistem komputer panjangnya 6 sampai 8 karakter. Tiap karakter sendiri boleh berupa angka atau huruf, dengan huruf besar maupun huruf kecil tidak dibedakan. Berapa banyak sandi-lewat (password) yang dapat dibuat?

$\color{blue}\textrm{A. 2 Percobaan}$

Hasil dari Kombinatorial ini diperoleh dari percobaan(experiment). Percobaan dalam pengertian di sini adalah Proses yang berupa tindakan yang dapat diamati. Sebagai misal dalam percobaan melempar sebuah dadu, maka hasil yang mungkin adalah munculnya salah satu muka dadu yang enam, yaitu: 1,2,3,4,5, dan 6. Setiap kali kita melempar dapat dipastikan salah satu muka dadu akan muncul

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Pada saat melempar sebuah koin, maka akan}\\ &\textrm{didapatkan 2 kemungkinan, yaitu muka}\\ &\textrm{gambar (G) atau muka angka (A)}\\ 2.&\textrm{Ketika melempar dua koin sekaligus, maka }\\ &\textrm{akan didapatkan kemungkinan 4 muka koin}\\ &\textrm{4 kemungkinan itu yaitu: AA, AG, GA, dan GG}\\ 3.&\textrm{Selanjutnya saat kita melempar 3 koin sekaligus}\\ &\textrm{maka kita akan mendapatkan 8 kemungkinan}\\ &\textrm{muka koin, yaitu}:\\ &\textrm{AAA, AAG, AGA, AGG, GAA, GAG, GGA,}\\ &\textrm{dan GGG}\\ 4.&\textrm{Contoh yang lain saat kita melempar dua buah}\\ &\textrm{dadu, maka kita akan mendapatkan 36 kemungkinan}\\ &\textrm{muka dadu} \end{array}$

Untuk uraian contoh pada no.3 dan 4 disertakan tabel berikut

$\begin{array}{|c|c|}\hline \textrm{3}&\textrm{4}\\\hline \color{red}\left\{\begin{matrix} A\left\{\begin{matrix} A\left\{\begin{matrix} A&=AAA\\ \\ G&=AAG \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A&=AGA\\ \\ G&=AGG \end{matrix}\right. \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A\left\{\begin{matrix} A&=GAA\\ \\ G&=GAG \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A&=GGA\\ \\ G&=GGG \end{matrix}\right. \end{matrix}\right. \end{matrix}\right. &\color{blue}\begin{array}{|c|c|c|c|c|c|c|}\hline \setminus&1&2&3&4&5&6\\\hline 1&(1,1)&(1,2)&(1,3)&(1,4)&(1,5)&(1,6)\\\hline 2&(2,1)&(2,2)&(2,3)&(2,4)&(2,5)&(2,6)\\\hline 3&(3,1)&(3,2)&(3,3)&(3,4)&(3,5)&(3,6)\\\hline 4&(4,1)&(4,2)&(4,3)&(4,4)&(4,5)&(4,6)\\\hline 5&(5,1)&(5,2)&(5,3)&(5,4)&(5,5)&(5,6)\\\hline 6&(6,1)&(6,2)&(6,3)&(6,4)&(6,5)&(6,6)\\\hline \end{array} \\\hline \textrm{n}(\textrm{S})=8&\textrm{n}(\textrm{S})=36\\\hline \end{array}$

Sebagai catatan kemungkinan-kemungkinan yang muncul dalam setaip tindakan pada 4 contoh di atas selanjutnya akan disebut sebagai titik sampel. Titik sampel sampel sendiri adalah semua anggota dalam ruang sampel.

$\color{blue}\textrm{A. 3 Ruang sampel}$

Ruang sampel adalah himpunan semua hasil yang mungkin dari dari suatu percobaan. Jika dalam ruangnya sampel hanya terdapat satu titik sampel saja, maka disebut kejadian sederhana, tetapi jika titik sampelnya lebih dari satu, maka disebutlah dengan istilah kejadian majmuk. Ruang sampel dilambangkan dengan huruf S dan banyaknya anggota (titik sampel) dalam ruang sampel ini dituliskan dengan n(S). Adapun cara menentukan ruang sampel ini dapat dilakukan dengan beberapa cara di antaranya, yaitu: dengan mendaftar, dengan tabel, dan dengan diagram pohon.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Perhatikan lagi tabel di atas}\\ &\textrm{Tuliskan lagi ruang sampelnya}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Pada tabel kolom 3, anggota}\\&\textrm{ruang sampelnya adalah sebagai berikut}\\ &\left \{AAA,AAG,AGA,AGG,GAA,GAG,GGA,GGG \right \}\\ &\textrm{Jadi},\: \: n(S)=\color{red}8 \end{aligned}\\ &\begin{aligned}\textrm{b}.\quad&\textrm{Pada tabel kolom 4, anggota}\\&\textrm{ruang sampelnya adalah sebagai berikut}\\ &\left \{ (1,1),(1,2),(1,3),\cdots ,(6,4),(6,5),(6,6) \right \}\\ &\textrm{Jadi},\: \: n(S)=\color{red}36 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Pada pelemparan dua buah koin}\\ &\textrm{uang logam tentukan banyaknya }\\ &\textrm{ruang sampel dengan tabel dan}\\ &\textrm{tentukan jumlahnya}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Dengan tabel yaitu}\\ &\begin{array}{|c|c|c|}\hline &A&G\\\hline A&AA&AG\\\hline G&GA&GG\\\hline \end{array}\\ &S=\left \{ AA,AG,GA,GG \right \}\\  &\textrm{Jadi},\: \: n(S)=\color{red}4 \end{aligned} \end{array}$.

DAFTAR PUSTAKA

  1. Munir, R. 2012. Matematika Diskrit. Bandung: IMFORMATIKA.



Distribusi Binomial

 $\color{blue}\begin{aligned}\textrm{E}.\quad&\textrm{Binomial Newton} \end{aligned}$

 $\color{blue}\begin{aligned}\textrm{E. 1}.\quad&\textrm{Binomial Newton} \end{aligned}$

$\begin{aligned}&\textrm{Perhatikanlah susunan bilangan berikut}\\\\ &\begin{array}{|c|l|}\hline &\\ 1=C_{0}^{\color{red}1}\quad 1=C_{1}^{\color{red}1}&(a+b)^{\color{red}1}\\ &\\ 1=C_{0}^{\color{red}2}\quad 2=C_{1}^{\color{red}2}\quad 1=C_{2}^{\color{red}2}&(a+b)^{\color{red}2}\\ &\\ 1=C_{0}^{\color{red}3}\quad 3=C_{1}^{\color{red}3}\quad 3=C_{2}^{\color{red}3}\quad 1=C_{3}^{\color{red}3}&(a+b)^{\color{red}3}\\ &\\ 1=C_{0}^{\color{red}4}\quad 4=C_{1}^{\color{red}4}\quad 6=C_{2}^{\color{red}4}\quad 4=C_{3}^{\color{red}4}\quad 1=C_{4}^{\color{red}4}&(a+b)^{\color{red}4}\\ \vdots &\: \: \quad\vdots \\ dst&(a+b)^{\color{red}\cdots }\\ &\\ \vdots&\: \: \quad\vdots \\ &(a+b)^{\color{red}n}\\\hline \end{array}\\\\ &\textrm{Susunan bilangan-bilangan di atas selanjutnya}\\ &\textrm{dinamakan}\: \: \: \textbf{Segitiga Pascal}\\ & \end{aligned}$

$\begin{aligned}&\textrm{Bilangan}\: \: C_{r}^{n}=\begin{pmatrix} n\\ r \end{pmatrix}\: \: \textrm{merupakan koefisien}\\ &\textrm{dari binomial}\: \: (a+b)^{n}\\ &\textrm{Selanjutnya perhatikanlah bahwa untuk}\\ &n=1,2,3,4,\cdots \: \: \: \textrm{berlaku}\\ &\color{red}\begin{aligned}(a+b)^{n}\color{black}=\, &\color{red}C_{0}^{n}a^{n}b^{0}+C_{1}^{n}a^{n-1}b^{1}+C_{2}^{n}a^{n-2}b^{2}\\ &+C_{3}^{n}a^{n-3}b^{3}+\cdots +C_{n-3}^{n}a^{3}b^{n-3}\\ &+C_{n-2}^{n}a^{2}b^{n-2}+C_{n-1}^{n}a^{1}b^{n-1}+C_{n}^{n}a^{0}b^{n}\\ &\color{black}=\displaystyle \sum_{r=0}^{n}C_{r}^{\color{red}n}a^{\color{red}n\color{black}-r}b^{r} \end{aligned}\\ & \end{aligned}$

$\color{blue}\textrm{E. 2 Perluasan Binomial Newton}$

$\begin{aligned}&\textrm{Untuk bilangan real}\: \: n\: \: \textrm{dan bilangan}\\ &\textrm{non negatif}\: \: r,\: \: \textrm{serta}\: \: \left | A \right |<1,\: \textrm{berlaku}:\\ &(1+A)^{n}=\displaystyle \sum_{r=0}^{n}C_{r}^{n}A^{r} \end{aligned}$

$\color{blue}\textrm{E. 3 Teorema Multinomial}$

Pada bentuk multinomial dengan ekspresi  $(x_{1}+x_{2}+x_{3}+\cdots +x_{r})^{n}$  dengan n dan r bilangan bulat positif, maka koefisien dari  $\color{red}x_{1}^{n_{1}}x_{2}^{n_{2}}x_{3}^{n_{3}}\cdots x_{r}^{n_{r}}$   adalah  $\displaystyle \frac{n!}{n_{1}!n_{2}!n_{3}!\cdots n_{r}!}$  dinotasikan dengan  $\begin{pmatrix} n\\\\ n_{1},n_{2},n_{3},\cdots ,n_{r} \end{pmatrix}$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Misalkan untuk}\: \: n\: \: \textrm{bilangan bulat}\\ &\textrm{Positif. Tunjukklan bahwa}\\ &\textrm{a}.\quad (1+x)^{n}=\displaystyle \sum_{r=0}^{n}C_{r}^{n}x^{r}=\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}x^{r}\\ &\textrm{b}.\quad \begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}+\cdots +\begin{pmatrix} n\\ n \end{pmatrix}=2^{n}\\\\ &\textbf{Bukti}\\ &\color{red}\begin{aligned}\color{black}\textrm{a}.\quad(1+x)&^{n}\\ \color{black}=\, &\color{red}C_{0}^{n}1^{n}x^{0}+C_{1}^{n}1^{n-1}x^{1}+C_{2}^{n}1^{n-2}x^{2}\\ &+C_{3}^{n}1^{n-3}x^{3}+\cdots +C_{n-3}^{n}1^{3}x^{n-3}\\ &+C_{n-2}^{n}1^{2}x^{n-2}+C_{n-1}^{n}1^{1}x^{n-1}+C_{n}^{n}1^{0}x^{n}\\ =\, &\color{red}C_{0}^{n}+C_{1}^{n}x+C_{2}^{n}x^{2} +C_{3}^{n}x^{3}+\cdots \\ &+C_{n-3}^{n}x^{n-3} +C_{n-2}^{n}x^{n-2}+C_{n-1}^{n}x^{n-1}\\ &+C_{n}^{n}x^{n}\\ \color{black}\textrm{atau}&\: \color{black}\textrm{dengan bentuk lain}\\ =\, &\begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}x+\begin{pmatrix} n\\ 2 \end{pmatrix}x^{2}+\begin{pmatrix} n\\ 3 \end{pmatrix}x^{3}\\ &+\cdots +\begin{pmatrix} n\\ n-3 \end{pmatrix}x^{n-3}+\begin{pmatrix} n\\ n-2 \end{pmatrix}x^{n-2}\\ &+\begin{pmatrix} n\\ n-1 \end{pmatrix}x^{n-1}+\begin{pmatrix} n\\ n \end{pmatrix}x^{n}\\ \color{black}=&\color{black}\displaystyle \sum_{r=0}^{n}\begin{pmatrix} \color{red}n\\ r \end{pmatrix}x^{r} \end{aligned}\\ &\color{red}\begin{aligned}\color{black}\textrm{b}.\quad(1+x)&^{n}\: \: \color{black}\textrm{lihat jawaban poin}\: \: a,\: \: \textrm{saat}\: \: \color{blue}x=1\\ \color{black}(1+1)&^{n}\color{red} \color{black}=\color{red}\begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}1+\begin{pmatrix} n\\ 2 \end{pmatrix}1^{2}+\begin{pmatrix} n\\ 3 \end{pmatrix}1^{3}\\ &+\cdots +\begin{pmatrix} n\\ n-3 \end{pmatrix}1^{n-3}+\begin{pmatrix} n\\ n-2 \end{pmatrix}1^{n-2}\\ &+\begin{pmatrix} n\\ n-1 \end{pmatrix}1^{n-1}+\begin{pmatrix} n\\ n \end{pmatrix}1^{n}\\ \color{black}(2)&^{n}\color{red} \color{black}=\color{red}\begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}+\begin{pmatrix} n\\ 3 \end{pmatrix}\\ &+\cdots +\begin{pmatrix} n\\ n-1 \end{pmatrix}+\begin{pmatrix} n\\ n \end{pmatrix}\\ \color{black}=&\color{black}\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}\\ \color{black}\textrm{Sehing}&\color{black}\textrm{ga}\\ 2^{n}&=\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Misalkan untuk}\: \: n\: \: \textrm{bilangan bulat}\\ &\textrm{Positif. Tunjukklan bahwa}\\ & \begin{pmatrix} n\\ 0 \end{pmatrix}-\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}-\cdots +(-1)^{n}\begin{pmatrix} n\\ n \end{pmatrix}=0\\\\ &\textbf{Bukti}\\ &\textrm{Sebelumnya diketahui bahwa}\\ &\begin{aligned}&(a+b)^{n}=\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}a^{n-r}b^{r}\\ &\qquad\qquad\qquad \color{blue}\textrm{atau}\\ &\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}a^{n-r}b^{r}=(a+b)^{n}\\ &\blacklozenge \quad \textrm{saat}\: \: \color{blue}a=b=1,\: \: \color{black}\textrm{maka}\\ &\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}1^{n-r}1^{r}=(1+1)^{n}\\ &\Leftrightarrow \displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}=2^{n}\: ...\: (\color{red}\textrm{bukti no. 1.b})\\ &\blacklozenge \quad \textrm{saat}\: \: \color{blue}a=1\: \&\: b=-1\: \: \color{black}\textrm{maka}\\ &\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}1^{n-r}(-1)^{r}=(1-1)^{n}=0\\ &\textrm{Sehingga}\\ &\begin{pmatrix} n\\ 0 \end{pmatrix}-\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}-\cdots +(-1)^{n}\begin{pmatrix} n\\ n \end{pmatrix}=0\quad \blacksquare \end{aligned} \end{array}$

 $\color{blue}\begin{aligned}\textrm{E}.\quad&\textrm{Distribusi Binomial} \end{aligned}$

Perhatikan materi Binomial Newton di atas berkaitan dengan distribusi binomial. Misalkan suatu kejadian yang hanya memberikan dua hasil saja  $\color{red}a$  dan  $\color{red}b$ saja seperti melambungkan sebuah uang koin yang akan menghasilkan 2 hasil saja yang mungkin, yaitu antara sisi gambar $\color{red}G$ atau muncul sisi angka $\color{red}A$ atau pada contoh lainnya adalah ketika seseorang yang menunggu hasil hasil ujian yang jelas hasilnya kemungkinannya cuma dua, yaitu lulus atau tidak lulus.

Percobaan acak yang hanya memberikan 2 hasil saja disebut percobaan $\color{red}Bernoulli$. Selanjujtnya percobaan Bernoulli yang dilakukan sebanyak $\color{blue}n$ kali dinamakan dengan  $\color{red}\textrm{percobaan}\: \textrm{Binomial}$.

Variabel acak $\color{red}X$ yanmg mana nilai-nilainya ditentukan oleh hasil dari percobaan binomial disebut sebagai  Variabel Acak Binomial

Berikut ciri-ciri percobaan binomial

  • Percobaan dilakukan secara berulang sebanyak  $\color{red}n$  kali, dengan  $\color{red}n$ bilangan bulat positif
  • Setiap percobaan memiliki dua macam hasil saja dan saling berkomplemen, yaitu kejadian yang diharapkan (disebut sukses) dan kejadian yang tidak diharapkan (disebut tidak sukses)
  • Peluang setiap kejadian bersifat tetap untuk setiap percobaan dan jumlah peluangnya baik sukses maupun yang tidak sukses  sama dengan 1. Misalkan peluang suksesny adalah  $\color{red}p$, maka peluang gagalnya adalah  $\color{red}q=1-p$
  • Setiap percobaan bebas $\color{red}(independent)$ satu sama lainnya, artinya hasil percobaan yang satu tidak mempengaruhi percobaan yang lain.

Secara umum rumus fungsi  $\color{red}\textrm{distribusi binomial}$ adalah:

$\begin{aligned}&f(x)=P(x;n;p)=\color{red}C(n,x)p^{x}q^{n-x}\color{black}=\color{red}\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ &\textbf{Keterangan}:\\ &\bullet \: C(n,x)=\begin{pmatrix} n\\ x \end{pmatrix}=\color{blue}\textrm{koefisien bibonial}\\ &\bullet \: x=\textrm{banyak kejadian yang diharapkan},\\ &\quad\qquad \textrm{dengan nilai}\: \: x=0,1,2,3,\cdots ,n\\ &\bullet \: p=\textrm{peluang kejadian yang diharapkan}\\ &\bullet \: q=\textrm{peluang kejadian yang tidak diharapkan} \end{aligned}$

Jika rumus dari fungsi peluang di atas dijabarkan akan menjadi berupa bentuk penjumlahan, maka

$\begin{aligned}F(t)&=P(X\leq t)\\ &=\displaystyle \sum_{x=0}^{x=t}\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ &=\begin{pmatrix} n\\ 0 \end{pmatrix}p^{0}q^{n-0}+\begin{pmatrix} n\\ 1 \end{pmatrix}+p^{1}q^{n-1}+\begin{pmatrix} n\\ 2 \end{pmatrix}p^{2}q^{n-2}+\cdots +\begin{pmatrix} n\\ t \end{pmatrix}p^{t}q^{n-t} \end{aligned}$

Dan rumus di atas karena tidak sepenuhnya sampai  $\color{red}n$ , maka akan diperoleh fungsi binomial. kumulatif.

Hasil perhitungan $\color{red}f(x)=P(x;n;p)$  juga dapat dilihat dalam tabel distribusi binomial. Sebagai contohnya adalah $\color{red}P(2;4;0,05)$ yang berarti  $\color{red}x=2$, $\color{red}n=4$,  dan  $\color{red}p=0,05$ berikut tabelnya:

(Sumber: Buku Siswa Matematika Kelas XII, penulis Tasari, dkk, 2016; hal :126, PT.INTAN PARIWARA)

Sedangkan untuk mencari nilai fungsi peluang distribusi binomial kumulatif, misalkan diberikan  $F(2)=P(X\leq 2)$  dari  $\color{red}P(2;4;0,05)$  perhatikanlah tabel distribusi untuk distribusi peluang kumulatif dari sumber buku yang sama tetapi terdapat pada halaman berikutnya dengan melihat kolom  $\color{red}p=0,05$  , lalu perhatikan baris  $\color{red}x=2$  untuk  $\color{red}n=2$. Berikut tabelnya


$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Dari sebuah survei didapatkan bahwa}\\ &\textrm{1 dari 5 orang berkata bah dia telah}\\ &\textrm{mengunjungi dokter dalam sembarang}\\ &\textrm{bulan. Jika 10 orang dipilih secara acak}\\ &\textrm{maka peluang 3 orang telah berkunjung}\\ &\textrm{ke dokter pada bulan kemaren adalah}\: ....\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&n=10, \: x=3,\: p=\displaystyle \frac{1}{5},\: q=\frac{4}{5}\\ &\textrm{maka}\\ &P(3;10;\displaystyle \frac{1}{5})=\begin{pmatrix} 10\\ 3 \end{pmatrix}\left ( \displaystyle \frac{1}{5} \right )^{3}\left ( \displaystyle \frac{4}{5} \right )^{7} \end{aligned}\\ &\quad\qquad\qquad=\color{red}0,201 \end{array}$

$\LARGE\colorbox{yellow}{TAMBAHAN}$

$\color{blue}\begin{aligned}\textrm{F}.\quad&\textrm{Dsitribusi Poisson} \end{aligned}$

Perhatikanlah rumus ditribusi binomial berikut

$\begin{aligned}&f(x)=P(x;n;p)\\ &=\color{red}C(n,x)p^{x}q^{n-x}\color{black}=\color{red}\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ \end{aligned}$

Saat harga  $\color{blue}p$ sebagai lmabang sukses tersebut sangat kecil atau kecil sekali dapat juga dikatakan  $\color{blue}p\rightarrow 0$, dan percobaan dilakukan banyak sekali atau  $\color{blue}n\rightarrow \infty$ , maka penggunaan formula binomial akan terasa sulit. Dan untuk tetap mendapatkan nilai seperti hasil pada perhitungan dengan rumus binomial tersebut, maka digunakan pendekatan nilai dengan menggunkan rumus Distribusi Poisson berikut:

$f(x)=P(X=x)=\color{red}P(x;\lambda )=\displaystyle \frac{\lambda ^{x}}{x!}.e^{-\lambda }$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 2.&\textrm{Pada tiap 100 lembarkertas produksi}\\ &\textrm{suatu pabrikdiperkirakan terdapat 1}\\ &\textrm{lembar yang rusak. Tentukanlah}\\ &\textrm{kemungkinan mendapat selembar kertas}\\ &\textrm{dari 20 lembar yang diambil secara acak}\\ &\textrm{dari hasil produksi tersebut}!\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad &n=10, \: x=1,\: p=\displaystyle \frac{1}{100},\: q=\frac{99}{100}\\ &\textrm{maka penghitungan dengan}\\ &\textrm{rumus}\: \textbf{Distribusi Binomial}\\ &P(1;20;\displaystyle \frac{1}{100})=\begin{pmatrix} 20\\ 1 \end{pmatrix}\left ( \displaystyle \frac{1}{100} \right )^{1}\left ( \displaystyle \frac{99}{100} \right )^{19}\\ &=\cdots \\ \textrm{b}.\quad&\textrm{Dengan rumus}\: \textbf{Distribusi poisson}\\ &\bullet \quad n=20\rightarrow \textrm{terlalu besar, dan}\\ &\bullet \quad p=\displaystyle \frac{1}{100}\rightarrow \textrm{terlalu kecil, maka}\\ &\textrm{dengan}\: \: \lambda =np=20\times \displaystyle \frac{1}{100}=\color{blue}0,2\\ &\textrm{dan}\: \: \: e=2,7183\: \: (\textrm{bilangan Euler})\\ &f(x)=P(X=x)=\displaystyle \frac{\lambda ^{x}}{x!}.e^{-\lambda }\\ &f(1)=\displaystyle \frac{(0,2)^{1}.e^{-0,2}}{1!}\\ &\qquad =0,2\times 0,409\\ &\qquad =\color{red}0,0818 \end{aligned} \end{array}$

DAFTAR PUSTAKA

  1. Bintari, N. 2009. Master Juara Olimpiade Matematika SMA Nasional dan Internasional. Yogyakarta: PUSTAKA WIDYATAMA.
  2. Kanginan, M., Terzalgi, Y. 2014. Matematika untuk SMA-MA/SMK Kelas XI. Bandung: SEWU.
  3. Rasiman, Rahmawati, N., D. 2012. Matematika Diskrit. Semarang: IKIP PGRI Semarang Press.
  4. Sharma, dkk. 2017. Jelajah Matematika SMA Kelas XII Program Wajib. Jakarta: YUDHISTIRA.
  5. Tasari, Sksin, N., Miyanto, & Muklis. 2016. Matematika untuk SMA/MA Kelas XII Peminatan Matematika dan Ilmu-Ilmu Alam. Klaten: PT. INTAN PARIWARA.
  6. Yuliatun. 2019. Matematika IPA Kelas XII SMA/MA Semester Genap. Solo: INDONESIA JAYA

Distribusi Peluang Kontinue

 $\color{blue}\begin{aligned}\textrm{D. 2}.\quad&\textrm{Distribusi Peluang Kontinue} \end{aligned}$


Jika pada distribusi peluang diskrit nilai  x diperjelas lagi menjadi nilai eksak atau kontinue, maka distribusi peluangnya akan berubah menjadi distribusi peluang kontinu.
Luas seluruh daerah di dalam kurva memiliki luas 1. Luas daerah pada wilayah yang diarsi (warna kuning) yang terletak antara X=a  dan X=b dapat dinyatakan dengan :  $P(a\leq X\leq b)=\displaystyle \int_{a}^{b}f(x)\: \: dx$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Fungsi peluang lama bicara seorang}\\ &\textrm{operator sebagai berikut}\\ &f(x)=\begin{cases} kx &\textrm{untuk}\: \: 0\leq k\leq 5 \\ k(10-x)&\textrm{untuk}\: \: 5\leq k\leq 10\\ \qquad 0 &\textrm{untuk}\: \: x\: \: \textrm{yang lain} \end{cases}\\ &\textrm{Tentukanlah}\\ &\textrm{a}.\quad \textrm{Nilai}\: \: k\\ &\textrm{b}.\quad \textrm{Peluang operator telpon berbicara}\\ &\qquad \textrm{lebih dari 8 menit}\\ &\qquad \textrm{Peluang operator telpon berbicara}\\ &\qquad \textrm{2 sampai 4 menit}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Karena}\: \: f(x)\: \: \textrm{adalah fungsi peluang, maka}\\ &\displaystyle \int_{0}^{5}kx\: dx+\int_{5}^{10}k(10-x)\: dx=1\\ &\Leftrightarrow \left [ \displaystyle \frac{1}{2}kx^{2} \right ]_{0}^{5}+\left [ 10kx-\displaystyle \frac{1}{2}kx^{2} \right ]_{5}^{10}=1\\ &\Leftrightarrow \displaystyle \frac{1}{2}k(5^{2}-0^{2})+\left ( 10k(10-5)-\displaystyle \frac{1}{2}k(10^{2}-5^{2}) \right )=1\\ &\Leftrightarrow \displaystyle \frac{1}{2}k(25)+10k(5)-\displaystyle \frac{1}{2}k(100-25)=1\\ &\Leftrightarrow \displaystyle \frac{25}{2}k+50k-\displaystyle \frac{75}{2}k=1\\ &\Leftrightarrow 50k-25k=1\\ &\Leftrightarrow 25k=1\\ &\Leftrightarrow k=\color{red}\displaystyle \frac{1}{25}\\ \textrm{b}.\quad&\textrm{Misalkan saja}\\ &X=\textrm{lama operator telpon bicara}\\ &\textrm{Peluang operator berbicara lebih}\\ &\textrm{dari 8 menit}=P(X>8),\\ &P(X>8)=P(8<X\leq 10)\\ &\quad\qquad =\displaystyle \int_{8}^{10}k(10-x)\: dx\\ &\quad\qquad =\displaystyle \int_{8}^{10}\frac{1}{25}(10-x)\: dx\\ &\quad\qquad =\displaystyle \frac{1}{25}\left [ 10x-\displaystyle \frac{1}{2}x^{2} \right ]_{8}^{10}\\ &\quad\qquad =\displaystyle \frac{1}{25}\left ( 10(10-8)-\displaystyle \frac{1}{2}(10^{2}-8^{2}) \right )\\ &\quad\qquad =\displaystyle \frac{1}{25}\left ( 10.(2)-\displaystyle \frac{1}{2}(100-64) \right )\\ &\quad\qquad =\displaystyle \frac{1}{25}\left ( 20-\displaystyle \frac{1}{2}(36) \right )\\ &\quad\qquad =\displaystyle \frac{1}{25}(20-18)\\ &\quad\qquad =\displaystyle \frac{1}{25}(2)=\color{red}\frac{2}{25}=0,08\\ \textrm{c}.\quad&\textrm{Peluang operator telpon berbicara}\\ &P(2\leq X\leq 4)\\ &=\displaystyle \int_{2}^{4}kx\: dx\\ &=\displaystyle \int_{2}^{4}\displaystyle \frac{1}{25}x\: dx\\ &=\displaystyle \frac{1}{25}\left [ \displaystyle \frac{1}{2}x^{2} \right ]_{2}^{4}\\ &=\displaystyle \frac{1}{25}\times \frac{1}{2}(4^{2}-2^{2})\\ &=\displaystyle \frac{1}{50}(16-4)\\ &=\color{red}\displaystyle \frac{12}{50}=0,24 \end{aligned} \end{array}$


DAFTAR PUSTAKA
  1. Kurnia, N., dkk. 2018. Jelajah Matematika SMA Kelas XII Peminatan MIPA. Bogor: YUDHISTIRA.
  2. Tasari. Aksin, N., Miyanto, Muklis. 2016. Matematika untuk SMA/MA Kelas XII Peminatan Matematika dan Ilmu-Ilmu Alam. Klaten: INTAN PARIWARA.

Distribusi Peluang Diskrit

$\color{blue}\begin{aligned}\textrm{D. 1}.\quad&\textrm{Distribusi Peluang Diskrit} \end{aligned}$

$\begin{aligned} &\textrm{Misalkan}\: \: X\: \: \textrm{adalah variabel acak diskrit}\\ &\textrm{dari nilai}\: :\: \: x_{1},\: x_{2},\: x_{3},\: x_{4},\: \cdots \: ,\: x_{k},\: \textrm{dan}\\ &P\: \textrm{adalah seluruh nilai peluang untuk}\: :\\ &p_{1},\: p_{2},\: p_{3},\: p_{4},\: \cdots \: ,p_{k}, \textrm{maka nilai untuk}\\ &\color{blue}p_{1}+ p_{2}+ p_{3}+ p_{4}+ \cdots +p_{k}=1\\ &\textbf{dan}\\ &\textrm{Fungsi}\: \: f(x) =P(X=x)\: \: \textrm{yang mempunyai}\\ &\textrm{nilai}\: \: p_{1},\: p_{2},\: p_{3},\: p_{4},\: \cdots \: ,p_{k},\: \textrm{pada variabel}\\ &X=x_{1},\: x_{2},\: x_{3},\: x_{4},\: \cdots \: ,\: x_{k},\: \textrm{disebut fungsi}\\ &\textrm{kepekatan peluang dari variabel acak}\: \: X.\\ &\textrm{Selanjutnya jika kita gambar grafik}\: \: f(x)\\ &\textrm{terhadap}\: \: x,\: \textrm{maka kita akan grafik yang}\\ &\textrm{dinamakan dengan}\: \: \color{red}\textbf{grafik peluang} \end{aligned}$

Suatu fungsi  $f(x)=P(X=x)$  disebut fungsi peluang (probabilitas) dari  $X$, jika memenuhi syarat-syarat:

$\color{blue}\begin{matrix} (\textrm{i})\quad f(x)\geq 0\: \: \: \textrm{untuk semua}\: \: x\qquad\qquad\qquad\qquad\qquad\qquad\: \:  \\\\ (\textrm{ii})\quad \sum_{i=1}^{n}f\left ( x_{i} \right )=\color{red}f(x_{1})+f(x_{2})+f(x_{3})+...+f(x_{n})=\color{black}1 \end{matrix}$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Pada percobaan melempar 3 koin identik}\\ &\textrm{sekaligus bersama-sama. Variabel acak}\\ &\textrm{dalam hal ini pada kejadian muncul sisi}\\ &\textrm{gambar, tentukan}\\ &\textrm{a}.\: \: \textrm{distribusi peluangnya}\\ &\textrm{b}.\: \: \textrm{tabel fungsi peluangnya}\\ &\textrm{c}.\: \: \textrm{grafik fungsi peluangnya}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui dari soal}\: \: \color{red}\textrm{variabel acak}\\ &\textrm{pada kejadian di atas adalah munculnya}\\ &\textrm{sisi gambar pada pelemparan 3 koin}\\ &\textrm{maka} \end{aligned}\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Distribusi peluangnya}\\ &\begin{array}{|l|c|c|c|c|c|c|c|c|}\hline \textrm{Sampel}&AAA&AA\color{red}G&A\color{red}G\color{black}A&A\color{red}GG&\color{red}G\color{black}AA&\color{red}G\color{black}A\color{red}G&\color{red}GG\color{black}A&\color{red}GGG\\\hline \textrm{Muncul}\: \color{red}(G)&0&1&1&2&1&2&2&3\\\hline \end{array}\\ \textrm{b}.\quad&\textrm{Tabel fungsi peluangnya}\\ &x=\textrm{muncul kejadian sisi gambar}\: \: \color{red}(G)\\ &\begin{array}{|c|c|c|c|c|c|}\hline x&0&1&2&3&\color{red}\textrm{Jumlah}\\\hline f(x)&\displaystyle \frac{1}{8}&\displaystyle \frac{3}{8}&\displaystyle \frac{3}{8}&\displaystyle \frac{1}{8}&\color{red}1\\\hline \end{array}\\ \textrm{c}.\quad&\textrm{Grafik fungsi peluangnya adalah}\\ & \end{aligned} \end{array}$

 
$\begin{array}{ll}\\ 2.&\textrm{Pada sebuah kotak terdapat 2 kelereng}\\ &\textrm{biru dan 4 kelereng merah. Tiga kereng}\\ &\textrm{diambil secara acak. Tentukanlah distribusi}\\ &\textrm{peluang}\: \: \color{red}x\: \: \color{black}\textrm{jika}\: \: \color{red}x\: \: \color{black}\textrm{menyatakan banyaknya}\\ &\textrm{terambilnya bola biru}\\\\ &\textbf{Jawab}:\\ &\begin{array}{|l|c|}\hline \qquad\qquad\textrm{Nama}&\textrm{Perhitungan}\\\hline \textrm{Banyak}&\\ \textrm{titik sampel}&\begin{aligned}C_{3}^{6}&=\displaystyle \frac{6!}{3!(6-3)!}=20 \end{aligned}\\\hline \textrm{Banyak cara}&\\ \textrm{mendapatkan bola biru}&C_{x}^{2}\\\hline \textrm{Banyak cara}&\\ \textrm{mendapatkan bola merah}&C_{3-x}^{4}\\\hline \end{array} \end{array}$
$.\quad \: \begin{array}{|l|l|}\hline \color{red}\textrm{Distribusi peluang}&\qquad\quad\color{red}\textrm{Perhitungan}\\\hline P(X=x)=f(x)&f(x)=\displaystyle \frac{\displaystyle C_{x}^{2}.C_{3-x}^{4}}{\displaystyle C_{3}^{6}},\\ \textrm{untuk}&\begin{aligned}x&=0,1,2 \end{aligned}\\\hline x=0\Rightarrow P(x=0)&f(x)=\displaystyle \frac{\displaystyle C_{0}^{2}.C_{3-0}^{4}}{\displaystyle C_{3}^{6}}\\ &.\: \: \, \quad=\displaystyle \frac{\displaystyle C_{0}^{2}.C_{3}^{4}}{\displaystyle C_{3}^{6}}=\displaystyle \frac{\displaystyle \frac{2!}{0!2!}\times \frac{4!}{3!1!}}{\displaystyle \frac{6!}{3!3!}}\\ &.\: \: \, \quad=\displaystyle \frac{2!4!3!3!}{2!3!6!}=0,2\\\hline x=1\Rightarrow P(x=1)&f(x)=\displaystyle \frac{\displaystyle C_{1}^{2}.C_{3-1}^{4}}{\displaystyle C_{3}^{6}}\\ &.\: \: \, \quad=\displaystyle \frac{\displaystyle C_{1}^{2}.C_{2}^{4}}{\displaystyle C_{3}^{6}}=\displaystyle \frac{\displaystyle \frac{2!}{1!1!}\times \frac{4!}{2!2!}}{\displaystyle \frac{6!}{3!3!}}\\ &.\: \: \, \quad=\displaystyle \frac{2!4!3!3!}{2!2!6!}=0,6\\\hline x=2\Rightarrow P(x=2)&f(x)=\displaystyle \frac{\displaystyle C_{2}^{2}.C_{3-2}^{4}}{\displaystyle C_{3}^{6}}\\ &.\: \: \, \quad=\displaystyle \frac{\displaystyle C_{2}^{2}.C_{1}^{4}}{\displaystyle C_{3}^{6}}=\displaystyle \frac{\displaystyle \frac{2!}{2!0!}\times \frac{4!}{1!3!}}{\displaystyle \frac{6!}{3!3!}}\\ &.\: \: \, \quad=\displaystyle \frac{2!4!3!3!}{2!3!6!}=0,2\\\hline \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Tunjukkan bahwa fungsi}\: \: P(x)=\displaystyle \frac{x+2}{12}\\ &\textrm{untuk}\: \: x=1,2,\: \textrm{dan}\: \: 3\: \: \textrm{merupakan fungsi}\\ &\textrm{peluang}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{Perhatik}&\textrm{an bahwa}\\ \bullet \quad P(1)&=\displaystyle \frac{1+2}{12}=\frac{3}{12}=\frac{1}{4}\\ \bullet \quad P(2)&=\displaystyle \frac{2+2}{12}=\frac{4}{12}=\frac{1}{3} \\ \bullet \quad P(3)&=\displaystyle \frac{5+2}{12}=\frac{5}{12} \\ \textrm{Sehing}&\textrm{ga}\: \: \displaystyle \sum_{i=1}^{3}P(i)=\displaystyle \frac{3}{12}+\frac{4}{12}+\frac{5}{12}=\color{red}\frac{12}{12}=1\\ &\begin{cases} (\textrm{i}) & \textrm{Peluangnya berada}\: \: \color{red}0\leq P(i)\leq 1 \\ (\textrm{ii}) & \textrm{dan nilai totolnya}=\displaystyle \color{red}\sum_{i=1}^{3}P(i)=1 \end{cases}\\ \textrm{Jadi},\: &\textrm{fungsi}\: \: P(x)=\displaystyle \frac{x+2}{12}\: \: \textrm{untuk}\: \: x=1,2,\: \textrm{dan}\: \: 3\\ &\textbf{merupakan fungsi peluang} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 4.&\textrm{Diketahui fungsi peluang adalah}\: \: P(x)=\displaystyle \frac{\color{red}m}{x+1}\\ &\textrm{untuk}\: \: x=0,1,2,\: \textrm{dan}\: \: 3\: .\: \textrm{Tentukanlah}\\ &\textrm{a}.\: \: \textrm{nilai}\: \: \color{red}m\\ &\textrm{b}.\: \: \textrm{nilai}\: \: \color{red}P(x\leq 2)\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\displaystyle \sum_{i=0}^{3}P(i)=\color{blue}1\\ &\Leftrightarrow \displaystyle \frac{\color{red}m}{0+1}+\frac{\color{red}m}{1+1}+\frac{\color{red}m}{2+1}+\frac{\color{red}m}{3+1}=1\\ &\Leftrightarrow \color{red}m\color{black}+\displaystyle \frac{\color{red}m}{2}+\frac{\color{red}m}{3}+\frac{\color{red}m}{4}=1\\ &\Leftrightarrow \left (\displaystyle \frac{12+6+4+3}{12} \right )\color{red}m\color{black}=1\\ &\Leftrightarrow \color{red}m\color{black}=\displaystyle \frac{12}{25}\\ \textrm{b}.\quad&P(x\leq 2)=P(x=0)+P(x=1)+P(x=2)\\ &\Leftrightarrow \color{red}m\color{black}+\displaystyle \frac{\color{red}m}{2}+\frac{\color{red}m}{3}=1\\ &\Leftrightarrow \left ( \displaystyle \frac{6+3+2}{6} \right )\color{red}m\color{black}=\displaystyle \frac{11}{6}\color{red}m\\ &\Leftrightarrow \quad =\displaystyle \frac{11}{6}\left ( \displaystyle \frac{12}{25} \right )=\frac{22}{25} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 5.&\textrm{Diketahui fungsi}\: \: f(x)=\begin{cases} \displaystyle \frac{x}{6} &\textrm{untuk}\: \: x=1,2,3 \\\\ 0 &\textrm{untuk}\: \: x\: \: \textrm{yang lain} \end{cases}\\ &\textrm{adalah suatu fungsi peluang/probabilitas}\\ &\textrm{dari pubah/variabel acak}\: \: X.\: \: \textrm{Tentukanlah}\\ &\textrm{a}.\quad \textrm{distribusi peluangnya untuk}\: \: X\\ &\textrm{b}.\quad P(X=2),\: P(X< 3),\: \textrm{dan}\: P(X\geq 2)\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Distribusi peluangnya adalah}:\\ &\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline X=x&1&2&3&4&5&\cdots &\textrm{Jumlah}\\\hline P(X=x)&\displaystyle \frac{1}{6}&\displaystyle \frac{2}{6}&\displaystyle \frac{3}{6}&\color{red}0&\color{red}0&\color{red}0&\color{blue}1\\\hline \end{array}\\ \textrm{b}.\quad &\textrm{Karena}\: \: f(x)=\begin{cases} \color{red}\displaystyle \frac{x}{6} &\textrm{untuk}\: \: x=1,2,3 \\\\ 0 &\textrm{untuk}\: \: x\: \: \textrm{yang lain} \end{cases}\\ &\textrm{maka}\\ &\bullet P(X=2)=\color{red}\displaystyle \frac{2}{6}\\ &\bullet P(X<3)=P(X=1)+P(X=2)\\ &\: \quad\qquad \qquad =\displaystyle \frac{1}{6}+\frac{2}{6}\\ &\: \quad\qquad \qquad =\displaystyle \frac{3}{6}=\color{red}\frac{1}{2}\\ &\bullet P(X\geq 2)=P(X=2)+P(X=3)\\ &\: \quad\qquad \qquad =\displaystyle \frac{2}{6}+\frac{3}{6}\\ &\: \quad\qquad \qquad =\color{red}\displaystyle \frac{5}{6} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 6.&\textrm{Diketahui fungsi peluang variabel}\: \: X\\ &f(x)=\begin{cases} \displaystyle \frac{x+2}{14} &\textrm{untuk}\: \: x=0,1,2,\: \: \textrm{dan}\: \: 3 \\\\ \quad 0 &\textrm{untuk}\: \: x\: \: \textrm{yang lain} \end{cases}\\ &\textrm{Tentukanlah}\\ &\textrm{a}.\quad \textrm{bahwa}\: \: X\: \: \textrm{merupakan variabel acak diskrit}\\ &\textrm{b}.\quad P(X=4),\: F(2),\: P(1<X\leq 3),\\ &\qquad \textrm{dan}\: P(X\geq 1)\: \: \textrm{serta}\: \: P(\left |X-2 \right |\leq 1)\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Distribusi peluangnya adalah}:\\ &\begin{array}{|c|c|c|c|c|c|c}\hline X=x&0&1&2&3&\textrm{Jumlah}\\\hline P(X=x)&\displaystyle \frac{2}{14}&\displaystyle \frac{3}{14}&\displaystyle \frac{4}{14}&\displaystyle \frac{5}{14}&1\\\hline \end{array} \\ &\textrm{Karena}\: \: \displaystyle \sum_{x=0}^{3}f(x)=1,\: \textrm{serta}\\ &0\leq \displaystyle \frac{2}{14},\: \frac{3}{14},\: \frac{4}{14},\: \frac{5}{14}<1.\: \textrm{Sehingga syarat}\\ &0\leq f(x)<1\: \: \textrm{dan}\: \: \sum f(x)=1\: \: \: \color{red}\textbf{terpenuhi}\\ &\textrm{Jadi, terbukti}\: \: X\: \: \textrm{adalah variabel acak diskrit}\\ \textrm{b}.\quad&\bullet P(X=4)=f(4)=\color{red}0\\ &\bullet F(2)=P(X\leq 2)\\ &\quad\qquad=P(X=0)+P(X=1)+P(X=2)\\ &\quad\qquad=f(0)+f(1)+f(2)\\ &\quad\qquad=\displaystyle \frac{2}{14}+\frac{3}{14}+\frac{4}{14}=\color{red}\frac{9}{14}\\ &\bullet P(1<X\leq 3)=P(X=2)+P(X=3)\\ &\quad\qquad =f(2)+f(3)=\displaystyle \frac{4}{14}+\frac{5}{14}=\color{red}\displaystyle \frac{9}{14}\\ &\bullet P(X\geq 1)=f(1)+f(2)+f(3)\\ &\quad\qquad =\displaystyle \frac{3}{14}+\frac{4}{14}+\frac{5}{14}=\color{red}\displaystyle \frac{12}{14}\\ &\bullet P(\left | X-2 \right |\leq 1)=P(-1\leq X-2\leq 1)\\ &\quad\qquad =P(1\leq X\leq 3)\\ &\quad\qquad =f(1)+f(2)+f(3)\\ &\quad\qquad =\displaystyle \frac{3}{14}+\frac{4}{14}+\frac{5}{14}=\color{red}\displaystyle \frac{12}{14} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 7.&\textrm{Distribusipeluang acak X disajikan dalam tabel berikut}\\ &\begin{array}{|c|c|c|c|}\hline x&2&3&4\\\hline f(x)&\displaystyle \frac{1}{8}&k+\displaystyle \frac{1}{8}&2k\\\hline \end{array}\\ &\textrm{Jika X merupakan variabel acak diskret, tentukanlah}\\ &\textrm{a}.\quad \textrm{nilai \textit{k}}\\ &\textrm{b}.\quad \textrm{nilai}\: \: \textrm{P}(\textrm{X}\geq 3)-\textrm{F}(3)\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad \sum f(x)&=f(2)+f(3)+f(4)=1\\ \Leftrightarrow \quad &\displaystyle \frac{1}{8}+k+\frac{1}{8}+2k=1\\ \Leftrightarrow \quad &3k=1-\displaystyle \frac{2}{8}=\frac{6}{8}\\ \Leftrightarrow \quad &k=\displaystyle \frac{2}{8}=\color{red}\frac{1}{4}\\ \textrm{b}.\quad \textrm{P}(\textrm{X}\, \geq 3&)-\textrm{F}(3)=\textrm{P}(\textrm{X}\geq 3)-\textrm{P}(\textrm{X}\leq 3)\\ &=f(3)+f(4)-\left ( f(2)+f(3) \right )\\ &=f(4)-f(2)\\ &=2\left ( \displaystyle \frac{1}{4} \right )-\frac{1}{8}\\ &=\displaystyle \frac{4}{8}-\frac{1}{8}=\color{red}\frac{3}{8} \end{aligned} \end{array}$


DAFTAR PUSTAKA
  1. Noormandiri. 2017. Matematika Jilid 3 untuk SMA/MA Kelas XII Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA
  2. Kurnia, N., dkk. 2018. Jelajah Matematika SMA Kelas XII Peminatan MIPA. Bogor: YUDHISTIRA.