$\begin{array}{ll}\\ 21.&\textrm{Jika jumlah}\: \: n\: \: \textrm{suku pertama suatu barisan}\\ &\textrm{adalah}\: \: S_{n}=n^{3}+2n\: ,\: \textrm{maka suku keempat}\\ &\textrm{adalah}\: ....\\ &\textrm{A}.\quad 33 \: \: \qquad\qquad\qquad\qquad\quad\: \, \, \textrm{D}.\quad 63\\ &\textrm{B}.\quad \color{red}39\qquad\qquad \color{black}\textrm{C}.\quad 49\qquad\quad \color{black}\textrm{E}.\quad 72\\\\ &\textbf{Jawab}:\\ &\textrm{Diketahui jumlah dari suatu barisan bilangan}\\ &\textrm{adalah}\: \: S_{n}=n^{3}+2n,\: \: \textrm{maka}\\ &\begin{aligned}U_{n}&=S_{n}-S_{n-1}\\ U_{4}&=\left ( 4^{3}+2(4) \right )-\left ( 3^{3}+2(3) \right )\\ &=(64+8)-(27+6)\\ &=72-33=\color{red}39 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 22.&\textrm{Dari suatu deret diketahui}\, \: S_{n}=3n^{2}-15n\\ &U_{n}=0\: \: \textrm{saat}\: n=\: ....\\ &\textrm{A}.\quad 1 \: \: \qquad\qquad\qquad\qquad\quad \textrm{D}.\quad 4\\ &\textrm{B}.\quad 2\qquad\qquad \textrm{C}.\quad \color{red}3\qquad\quad \color{black}\textrm{E}.\quad 5\\\\ &\textbf{Jawab}:\\ &\textrm{Perhatikan hal yang diketahui di atas}\\ &\begin{aligned}U_{n}&=S_{n}-S_{n-1}\\ 0&=\left ( 3n^{2}-15n \right )-\left ( 3(n-1)^{2}-15(n-1) \right )\\ 0&=3\left ( n^{2}-(n-1)^{2} \right )+15(n-1-n)\\ 0&=3(2n-1)(1)+15(-1)\\ 0&=6n-3-15\\ 0&=6n-18\\ \color{red}3&=n \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 23.&\textrm{Diketahui sebuah deret}\: \: U_{n}=2an+b+4\\ &\textrm{dan}\: \: S_{n}=3bn^{2}+an\: ,\: \textrm{maka nilai}\: \: a\: \: \textrm{dan}\\ &b\: \: \: \textrm{adalah}\: ....\\ &\textrm{A}.\quad 12\: \: \textrm{dan}\: 4 \: \: \qquad\qquad\qquad\qquad \\ &\textrm{B}.\quad -12\: \textrm{dan}\: 4\quad \\ &\textrm{C}.\quad 12\: \: \textrm{dan}\: -4\quad\quad \\ &\textrm{D}.\quad \color{red}-12\: \: \textrm{dan}\: -4\\ &\textrm{E}.\quad -4\: \: \textrm{dan}\: -12\\\\ &\textbf{Jawab}:\\ &\textrm{Diketahui bahwa}\: \: U_{n}=2an+b+4\: \: \textrm{dan}\\ &S_{n}=3bn^{2}+an,\: \: \textrm{maka}\\ &\begin{aligned}&U_{n}=S_{n}-S_{n-1}\\ &U_{2}=S_{2}-S_{1}\\ &2a(2)+b+4=(3b.2^{2}+a.2)-(3b.1^{2}+a.1)\\ &\Leftrightarrow \: \: 4a+b+4=9b+a\\ &\Leftrightarrow \: \: 3a-8b=-4\: ........(1) \end{aligned}\\ &\textrm{Dan juga}\\ &\begin{aligned}&U_{1}=S_{1}\\ &\Leftrightarrow \: \: 2a(1)+b+4=3b.1^{2}+a.1\\ &\Leftrightarrow \: \: 2a+b+4=3b+a\\ &\Leftrightarrow \: \: a-2b=-4\\ &\Leftrightarrow \: \: 3a-6b=-12\: ........(2) \end{aligned}\\ &\begin{aligned}&\textrm{Persamaan (2) disubstitusikan ke (1)}\\ &3a-8b=-4\\ &\Leftrightarrow \: \: 3a-6b-2b=4\\ &\Leftrightarrow \: \: (-12)-2b=-4\\ &\Leftrightarrow \: \: -2b=-4+12=8\\ &\Leftrightarrow \: \: b=\color{red}-4\: ........(3)\\ &\textrm{Selanjutnya dikembalikan ke (1), maka}\\ &3a-8b=-4\\ &\Leftrightarrow \: \: 3a-8(-4)=-4\\ &\Leftrightarrow \: \: 3a+32=-4\\ &\Leftrightarrow \: \: 3a=-4-32=-36\\ &\Leftrightarrow \: \: a=\color{red}-12 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 24.&\textrm{Jumlah}\: \: n\: \: \textrm{suku pertam sebuah barisan}\\ &\textrm{adalah}\: \: S_{n}=\displaystyle \frac{1}{6}(4n^{3}-63n^{2}-n)\: ,\: \textrm{suku ke}-n\\ &\textrm{akan mempunyai nilai terkecil untuk}\: \: n=\: ....\\ &\textrm{A}.\quad 3 \: \: \qquad\qquad\qquad\qquad \textrm{D}.\quad \color{red}6\\ &\textrm{B}.\quad 4\: \: \qquad\qquad\qquad\qquad \textrm{E}.\quad 7\\ &\textrm{C}.\quad 5\quad\quad \\\\ &\textbf{Jawab}:\\ &\textrm{Dengan menggunakan rumus}\\ &U_{n}=S_{n}-S_{n-1}\qquad \textrm{dengan}\: \: \: \: U_{1}=S_{1},\: \textrm{maka}\\ &\textrm{akan didapatkan nilai}\\ &U_{1}=-10,\: \: U_{2}=-27,\: \: U_{3}=-40,\: \: U_{4}=-49\\ &U_{5}=-54,\: \: U_{\color{red}6}=\color{red}-55\color{black},\: \: U_{7}=-52\\ &\textrm{Kesemuanya membentuk barisan aritmetika}\\ &\textrm{tingkat ke-2}.\: \textrm{Berikut ilustrasinya}\\ &\begin{aligned}&\underset{+4\qquad +4\qquad+4\qquad +4\qquad +4}{\underset{\underbrace{}\qquad\underbrace{}\quad\underbrace{}\quad\underbrace{}\qquad\underbrace{}}{\underset{-17\qquad -13\qquad -9\qquad -5\qquad -1\qquad +3}{\underset{\: \: \underbrace{}\: \quad\underbrace{}\: \qquad\underbrace{}\: \quad\underbrace{}\: \: \quad\underbrace{}\: \qquad\underbrace{}}{-10\quad -27\quad -40\quad -49\quad -54\quad -55\quad -52}}}} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 25.&\textrm{Jika suku pertama dan kedua sebuah deret}\\ &\textrm{geometri masing-masing adalah}\: \: a^{-4}\: \: \textrm{dan}\: \: a^{x}\\ &\textrm{serta suku kedelapan ialah}\: \: a^{52},\: \: \textrm{maka nilai}\\ &x\: \: \textrm{adalah}\: ....\\ &\textrm{A}.\quad -32 \: \: \qquad\qquad\qquad\qquad\quad\: \, \textrm{D}.\quad 8\\ &\textrm{B}.\quad -16\qquad\qquad \color{black}\textrm{C}.\quad 12\qquad\quad \textrm{E}.\quad \color{red}4\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&U_{8}=ar^{7}=U_{1}r^{7}=a^{52}\\ &\Leftrightarrow \: \: U_{8}=a^{-4}r^{7}=a^{52}\\ &\Leftrightarrow \: \: r^{7}=\displaystyle \frac{a^{52}}{a^{-4}}=a^{52+4}=a^{56}\\ &\Leftrightarrow \: \: r=a^{.^{\frac{56}{7}}}=a^{8}\\ &\textrm{Maka nilai}\: \: x-\textrm{nya adalah}\\ &U_{2}=U_{1}r=a^{x}\\ &\Leftrightarrow \: \: (a^{-4})(a^{8})=a^{-4+8}=a^{x}\\ &\Leftrightarrow \: \: x=\color{red}4 \end{aligned} \end{array}$.