2. Ketaksamaan Chebyshev
Jika $a_{1}\leq a_{2}\leq a_{3}\leq \cdots \leq a_{n}$ dan $b_{1}\leq b_{2}\leq b_{3}\leq \cdots \leq b_{n}$ adalah merupakan kumpulan bilangan yang monoton naik atau $a_{1}\geq a_{2}\geq a_{3}\geq \cdots \geq a_{n}$ dan $b_{1}\geq b_{2}\geq b_{3}\geq \cdots \geq b_{n}$ adalah merupakan kumpulan bilangan yang monoton turun, maka
$\begin{aligned}&\left (\displaystyle \frac{a_{1}b_{1}+ a_{2}b_{2}+a_{3}b_{3}+ \cdots + a_{n}b_{n}}{n} \right )\\ &\geq \left (\displaystyle \frac{a_{1}+a_{2}+a_{3}+...+a_{n}}{n} \right )\\ &\times \left (\displaystyle \frac{b_{1}+b_{2}+b_{3}+...+b_{n}}{n} \right ) \end{aligned}$.
$\begin{aligned}&\color{red}\textbf{atau}\\\\ &n\left (a_{1}b_{1}+ a_{2}b_{2}+a_{3}b_{3}+ \cdots + a_{n}b_{n} \right )\\ &\geq \left (a_{1}+a_{2}+a_{3}+...+a_{n} \right )\times \left (b_{1}+b_{2}+b_{3}+...+b_{n} \right ) \end{aligned}$.
Tetapi jika kumpulan bilangan di atas memiliki kemonotonan yang berbeda, yaitu $a_{1}\leq a_{2}\leq a_{3}\leq \cdots \leq a_{n}$ dan $b_{1}\geq b_{2}\geq b_{3}\geq \cdots \geq b_{n}$ atau $a_{1}\geq a_{2}\geq a_{3}\geq \cdots \geq a_{n}$ dan $b_{1}\leq b_{2}\leq b_{3}\leq \cdots \leq b_{n}$, maka ketaksamaan akan menjadi
$\begin{aligned}&\left (\displaystyle \frac{a_{1}b_{1}+ a_{2}b_{2}+a_{3}b_{3}+ \cdots + a_{n}b_{n}}{n} \right )\\ &\leq \left (\displaystyle \frac{a_{1}+a_{2}+a_{3}+...+a_{n}}{n} \right )\\ &\times \left (\displaystyle \frac{b_{1}+b_{2}+b_{3}+...+b_{n}}{n} \right ) \end{aligned}$.
$\begin{aligned}&\color{red}\textbf{atau}\\\\ &n\left (a_{1}b_{1}+ a_{2}b_{2}+a_{3}b_{3}+ \cdots + a_{n}b_{n} \right )\\ &\leq \left (a_{1}+a_{2}+a_{3}+...+a_{n} \right )\times \left (b_{1}+b_{2}+b_{3}+...+b_{n} \right ) \end{aligned}$.
Bukti
Pada kumpulan bilangan yang memiliki kemonotonan yang sama yaitu:
$a_{1}\leq a_{2}\leq a_{3}\leq \cdots \leq a_{n}$ dan $b_{1}\leq b_{2}\leq b_{3}\leq \cdots \leq b_{n}$, dengan mengaplikasikan ketaksamaan Renata akan diperoleh
$\begin{aligned}a_{1}b_{1}+a_{2}b_{2}+\cdots +a_{n}b_{n}&=a_{1}b_{1}+a_{2}b_{2}+\cdots +a_{n}b_{n}\\ a_{1}b_{1}+a_{2}b_{2}+\cdots +a_{n}b_{n}&\geq a_{1}b_{2}+a_{2}b_{3}+\cdots +a_{n}b_{1}\\ a_{1}b_{1}+a_{2}b_{2}+\cdots +a_{n}b_{n}&\geq a_{1}b_{3}+a_{2}b_{4}+\cdots +a_{n}b_{2}\\ &\vdots \\ a_{1}b_{1}+a_{2}b_{2}+\cdots +a_{n}b_{n}&\geq a_{1}b_{n}+a_{2}b_{1}+\cdots +a_{n}b_{n-1}\\ \textrm{Jika ketaksamaan di at}&\textrm{as ditmabahkan, maka}\\ n(a_{1}b_{1}+a_{2}b_{2}+\cdots +a_{n}b_{n})&\geq (a_{1}+a_{2}+\cdots +a_{n})(b_{1}+b_{2}+\cdots +b_{n})\\ \textrm{Bentuk terakhir adalah}&\: \textrm{bukti dari ketaksamaan ini} \end{aligned}$.
$\begin{aligned}\color{blue}\textrm{Sebagai}&\: \color{blue}\textrm{misal, andaikan}\\ \bullet \: \: n=2&\: \Leftrightarrow \: 2(a_{1}b_{1}+a_{2}b_{2})\geq (a_{1}+a_{2})(b_{1}+b_{2})\\ \bullet \: \: n=3&\: \Leftrightarrow \: 3(a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3})\geq (a_{1}+a_{2}+a_{3})(b_{1}+b_{2}+b_{3})\\ &\vdots \\ \bullet \: \: n=k&\: \Leftrightarrow \: k(a_{1}b_{1}+a_{2}b_{2}+\cdots +a_{k}b_{k})\geq (a_{1}+a_{2}+\cdots +a_{k})(b_{1}+b_{2}+\cdots +b_{k})\\ \end{aligned}$ .
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Jika}\: \: a,b,x,y\: \textrm{bilangan real positif}\\ &\textrm{sehingga}\: \: a\geq b\: \: \textrm{dan}\: \: x\geq y.\\ &\textrm{Tunjukkan bahwa}\\ &\qquad (ax+by)\geq \displaystyle \frac{1}{2}(a+b)(x+y)\\\\ &\textbf{Bukti}:\\ &\textrm{Dengan}\: \textbf{ketaksamaan Chebyshev}\\ &\textrm{dapat diperoleh bentuk}\\ &2(ax+by)\geq (a+b)(x+y)\\ &\Leftrightarrow (ax+by)\geq \displaystyle \frac{1}{2}(a+b)(x+y)\quad \blacksquare \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Jika}\: \: a,b>0\: ,\: \textrm{tunjukkan bahwa}\\ & 2(a^{2}+b^{2})\geq (a+b)^{2}\\\\ &\textbf{Bukti}:\\ &\color{red}\textrm{Alternatif 1}\\ &\textrm{Dengan}\: \textbf{ketaksamaan Chebyshev}\\ &\textrm{untuk}\: \: a\geq b,\: \textrm{dapat diperoleh bentuk}\\ &2(a.a+b.b)\geq (a+b)(a+b)\\ &\Leftrightarrow 2(a^{2}+b^{2})\geq (a+b)^{2}\quad \blacksquare\\ &\color{red}\textrm{Alternatif 2}\\ &\textrm{Dengan}\: \: \textbf{ketaksamaan CS-Engel}\\ &(1+1)(a^{2}+b^{2})\geq (1.a+1.b)^{2}\\ &\Leftrightarrow 2(a^{2}+b^{2})\geq (a+b)^{2}\quad \blacksquare\\ &\color{red}\textrm{Alternatif 3}\\ &\textrm{Perhatikan bahwa}\: \: (a-b)^{2}\geq 0\\ &\Leftrightarrow \: a^{2}+b^{2}-2ab\geq 0\\ &\Leftrightarrow \: a^{2}+b^{2}\geq 2ab\\ &\Leftrightarrow \: 2(a^{2}+b^{2})\geq a^{2}+b^{2}+2ab\\ &\Leftrightarrow \: 2(a^{2}+b^{2})\geq (a+b)^{2}\quad \blacksquare \end{array}$.
$\begin{array}{ll}\\ 3.&\textrm{Jika}\: \: a,b,c>0\: ,\: \textrm{tunjukkan bahwa}\\ &3(a^{2}+b^{2}+c^{2})\geq (a+b+c)^{2}\\\\ &\textbf{Bukti}:\\ &\textrm{Dengan}\: \textbf{ketaksamaan Chebyshev}\\ &\textrm{untuk}\: \: a\geq b\geq c,\: \textrm{dapat diperoleh bentuk}\\ &3(a.a+b.b+c.c)\geq (a+b+c)(a+b+c)\\ &\Leftrightarrow 3(a^{2}+b^{2}+c^{2})\geq (a+b+c)^{2}\qquad \blacksquare \end{array}$.
$\begin{array}{ll}\\ 4.&\textrm{Jika}\: \: a,b,c>0\: ,\: \textrm{dengan}\: \: a^{2}+b^{2}+c^{2}=1\\&\textrm{tunjukkan bahwa}\: \: \: a+b+c\leq \sqrt{3}\\\\ &\textbf{Bukti}:\\ &\textrm{Dengan}\: \textbf{ketaksamaan Chebyshev}\\ &\textrm{Kurang lebih caranya sama dengan no.3 di atas}\\ &\textrm{untuk}\: \: a\geq b\geq c,\: \textrm{dapat diperoleh bentuk}\\ &3(a.a+b.b+c.c)\geq (a+b+c)(a+b+c)\\ &\Leftrightarrow 3(a^{2}+b^{2}+c^{2})\geq (a+b+c)^{2}\\ &\Leftrightarrow 3(1)\geq (a+b+c)^{2}\\ &\Leftrightarrow \sqrt{3}\geq (a+b+c)\\ &\Leftrightarrow (a+b+c)\leq \sqrt{3} \qquad \blacksquare \end{array}$.
$\begin{array}{ll}\\ 5.&\textrm{Diberikan}\: \: a,b,c>0,\: \: \textrm{tunjukkan kebenaran}\\ &\textbf{ketaksamaan Nesbitt}\: \textrm{berikut}\\ &\displaystyle \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{3}{2}\\\\ &\textbf{Bukti}:\\ &\color{blue}\textrm{Alternatif 1}\\ &\begin{aligned}&\textrm{Asumsikan},\\ &\color{red}\begin{cases} & a\geq b\geq c \\ & \displaystyle \frac{1}{b+c}\geq \frac{1}{a+c}\geq \frac{1}{a+b} \end{cases} \\ &\textrm{Dengan}\: \: \textbf{Ketaksamaan Chebyshev}\\ &\displaystyle \frac{\displaystyle \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}}{3}\geq \displaystyle \frac{(a+b+c)}{3}\left ( \displaystyle \frac{\left (\displaystyle \frac{1}{b+c}+ \frac{1}{a+c}+ \frac{1}{a+b} \right )}{3} \right )\\ &\textrm{Dengan AM-HM dan}\: K=\displaystyle \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\\ &\Leftrightarrow \displaystyle \frac{K}{3}\geq \displaystyle \frac{(a+b+c)}{3}\left ( \displaystyle \frac{3}{(b+c)+(a+c)+(a+b)} \right )\\ &\Leftrightarrow K\geq \displaystyle \frac{3(a+b+c)}{2(a+b+c)}\\ &\Leftrightarrow K\geq \displaystyle \frac{3}{2}\\ &\Leftrightarrow \displaystyle \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \displaystyle \frac{3}{2}\qquad \blacksquare \end{aligned}\\ &\color{blue}\textrm{Alternatif 2}\\ &\begin{aligned}&\color{magenta}\textbf{Pertama},\: \color{black}\textrm{asumsikan}\\ &\color{red}\begin{cases} & a\geq b\geq c \\ & \displaystyle \frac{1}{b+c}\geq \frac{1}{a+c}\geq \frac{1}{a+b} \end{cases} \\ &\textrm{Dengan}\: \: \textbf{Ketaksamaan Chebyshev}\\ &3\left (\displaystyle \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \right )\geq (a+b+c)\left (\displaystyle \frac{1}{b+c}+ \frac{1}{a+c}+ \frac{1}{a+b} \right )\\ &\color{magenta}\textbf{Kedua},\: \color{black}\textrm{asumsikan}\\ &\color{red}\begin{cases} & a+b\geq a+c\geq b+c \\ & \displaystyle \frac{1}{a+b}\leq \frac{1}{a+c}\leq \frac{1}{b+c} \end{cases} \\ &\textrm{Dengan}\: \: \textbf{Ketaksamaan Chebyshev}\\ &3\left (\displaystyle \frac{a+b}{a+b}+\frac{a+c}{a+c}+\frac{b+c}{b+c} \right )\leq (a+b+a+c+b+c)\left (\displaystyle \frac{1}{a+b}+ \frac{1}{a+c}+ \frac{1}{b+c} \right )\\ &\Leftrightarrow 3(1+1+1)\leq 2(a+b+c)\left (\displaystyle \frac{1}{a+b}+ \frac{1}{a+c}+ \frac{1}{b+c} \right )\\ &\Leftrightarrow \displaystyle \frac{9}{2}\leq (a+b+c)\left (\displaystyle \frac{1}{a+b}+ \frac{1}{a+c}+ \frac{1}{b+c} \right )\\ &\textrm{Dari dua ketaksamaan di atas didapatkan}\\ &3\left (\displaystyle \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \right )\geq \displaystyle \frac{9}{2}\\ &\Leftrightarrow \left (\displaystyle \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \right )\geq \displaystyle \frac{3}{2}\qquad \blacksquare \end{aligned} \end{array}$
$\begin{array}{ll}\\ 6.&\textrm{Diberikan}\: \: a,b,c,d>0,\: \: \textrm{tunjukkan bahwa}\\ &(a+b+c+d)\left (\displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d} \right )\geq 16\\\\ &\textbf{Bukti}:\\ &\begin{aligned}&\textrm{Asumsikan}\\ &\begin{cases} & a\geq b\geq c\geq d \\ & \displaystyle \frac{1}{d}\geq \frac{1}{c}\geq \frac{1}{b}\geq \frac{1}{a} \end{cases} \\ &\textrm{Dengan}\: \: \textbf{Ketaksamaan Chebyshev}\\ &\displaystyle \frac{\displaystyle \frac{a}{a}+\frac{b}{b}+\frac{c}{c}+\frac{d}{d}}{4}\leq \displaystyle \left ( \displaystyle \frac{(a+b+c+d)}{4} \right )\left ( \displaystyle \frac{\displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}{4} \right )\\ &\Leftrightarrow 1\leq \displaystyle \left ( \displaystyle \frac{(a+b+c+d)}{4} \right )\left ( \displaystyle \frac{\displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}{4} \right )\\ &\Leftrightarrow 16\leq (a+b+c+d)\left ( \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d} \right )\\ &\Leftrightarrow (a+b+c+d)\left ( \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d} \right )\geq 16\quad \blacksquare \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 7.&\textrm{Jika}\: \: a,b,c>0\: ,\: \textrm{dengan}\: \: a\neq b\neq c\\ &\textrm{tunjukkan bahwa}\\ &\left ( a^{3}+b^{3}+c^{3} \right )> \displaystyle \frac{(a+b+c)^{3}}{9}> 3abc\\\\ &\textbf{Bukti}:\\ &\textrm{Dengan}\: \textbf{ketaksamaan Chebyshev}\\ &\textrm{untuk}\: \: a\geq b\geq c,\: \textrm{dapat diperoleh bentuk}\\ &\displaystyle \frac{\left ( a^{3}+b^{3}+c^{3} \right )}{3}> \left ( \displaystyle \frac{a+b+c}{3} \right )\left ( \displaystyle \frac{a+b+c}{3} \right )\left ( \displaystyle \frac{a+b+c}{3} \right )\\ &\Leftrightarrow \displaystyle \frac{\left ( a^{3}+b^{3}+c^{3} \right )}{3}> \left ( \displaystyle \frac{a+b+c}{3} \right )^{3}> \left ( \displaystyle \frac{3\sqrt[3]{abc}}{3} \right )^{3}\\ &\Leftrightarrow \displaystyle \frac{\left ( a^{3}+b^{3}+c^{3} \right )}{3}> \displaystyle \frac{(a+b+c)^{3}}{27}> abc\\ &\Leftrightarrow \left ( a^{3}+b^{3}+c^{3} \right )> \displaystyle \frac{(a+b+c)^{3}}{9}> 3abc\quad \blacksquare \end{array}$.
$\begin{array}{ll}\\ 8.&\textrm{tunjukkan bahwa untuk}\: \: n\: \: \textrm{bilangan asli}\\ &\textrm{berlaku}\\ &1+\sqrt{2}+\sqrt{3}+\cdots +\sqrt{n}\leq n\sqrt{\displaystyle \frac{n+1}{2}}\\\\ &\textbf{Bukti}:\\ &\textrm{Dengan}\: \textbf{ketaksamaan Chebyshev}\\ &\textrm{dapat diperoleh bentuk berikut}\\ &\displaystyle \frac{1+2+3+\cdots +n}{n}\geq \displaystyle \frac{\left (1+\sqrt{2}+\sqrt{3}+\cdots +\sqrt{n} \right )}{n}\times \displaystyle \frac{\left (1+\sqrt{2}+\sqrt{3}+\cdots +\sqrt{n} \right )}{n}\\ &\Leftrightarrow \displaystyle \frac{1+2+3+\cdots +n}{n}\geq \displaystyle \frac{\left ( 1+\sqrt{2}+\sqrt{3}+\cdots +\sqrt{n} \right )^{2}}{n^{2}}\\ &\Leftrightarrow \displaystyle \frac{\left ( 1+\sqrt{2}+\sqrt{3}+\cdots +\sqrt{n} \right )^{2}}{n^{2}}\leq \displaystyle \frac{1+2+3+\cdots +n}{n}\\ &\Leftrightarrow \left (1+\sqrt{2}+\sqrt{3}+\cdots +\sqrt{n} \right )^{2}\leq n(1+2+3+\cdots +n)\\ &\Leftrightarrow \left (1+\sqrt{2}+\sqrt{3}+\cdots +\sqrt{n} \right )^{2}\leq n\left ( \displaystyle \frac{n(n+1)}{2} \right )\\ &\Leftrightarrow \left (1+\sqrt{2}+\sqrt{3}+\cdots +\sqrt{n} \right )\leq n\sqrt{\displaystyle \frac{n+1}{2}}\quad \blacksquare \end{array}$.
$\begin{array}{ll}\\ 9.&\textrm{tunjukkan bahwa untuk}\: \: n\: \: \textrm{bilangan asli}\\&\textrm{berlaku}\\ &\displaystyle \frac{1}{\sqrt{n}}\left (1+\sqrt{\displaystyle \frac{1}{2}}+\sqrt{\displaystyle \frac{1}{3}}+\cdots +\sqrt{\displaystyle \frac{1}{n}} \right )\leq (2n-1)^{.^{\frac{1}{4}}}\\\\ &\textbf{Bukti}:\\ &\textrm{Dengan}\: \textbf{ketaksamaan Chebyshev}\\&\textrm{untuk}:\: \left ( 1\geq \displaystyle \frac{1}{2}\geq \frac{1}{3}\geq \cdots \geq \frac{1}{n} \right )\\ &\textrm{dapat diperoleh bentuk berikut}\\ &\left (1+ \displaystyle \frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n} \right )^{2}\leq n\left ( 1+\displaystyle \frac{1}{2.2}+\frac{1}{3.3}+\cdots +\frac{1}{n.n} \right )\\ &\Leftrightarrow \left (1+ \displaystyle \frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n} \right )^{2}\leq n\left ( 1+\displaystyle \frac{1}{1.2}+\frac{1}{2.3}+\cdots +\frac{1}{(n-1).n} \right )\\ &\Leftrightarrow \left (1+ \displaystyle \frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n} \right )^{2}\leq n\left ( 1+\left (1-\displaystyle \frac{1}{2} \right )+\left (\displaystyle \frac{1}{2}-\frac{1}{3} \right )+\cdots +\left (\displaystyle \frac{1}{(n-1)}-\frac{1}{n} \right ) \right )\\ &\Leftrightarrow \left (1+ \displaystyle \frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n} \right )^{2}\leq n\left ( 1+1-\displaystyle \frac{1}{n} \right )=n\left ( 2-\displaystyle \frac{1}{n} \right )\\&\Leftrightarrow \left (1+ \displaystyle \frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n} \right )\leq \sqrt{2n-1}\quad \color{red}..........(1)\\ &\textrm{Gunakan lagi}\: \textbf{ketaksamaan Chebyshev}\\ &\left (1+\sqrt{\displaystyle \frac{1}{2}}+\sqrt{\displaystyle \frac{1}{3}}+\cdots +\sqrt{\displaystyle \frac{1}{n}} \right )^{2}\leq n\left (1+ \displaystyle \frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n} \right )\\ &\Leftrightarrow \displaystyle \frac{1}{n}\left (1+\sqrt{\displaystyle \frac{1}{2}}+\sqrt{\displaystyle \frac{1}{3}}+\cdots +\sqrt{\displaystyle \frac{1}{n}} \right )^{2}\leq \left (1+ \displaystyle \frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n} \right )\: \: \color{red}...(2)\\&\textrm{Dari ketaksamaan (1) dan (2), dapat diperoleh}\\ & \displaystyle \frac{1}{n}\left (1+\sqrt{\displaystyle \frac{1}{2}}+\sqrt{\displaystyle \frac{1}{3}}+\cdots +\sqrt{\displaystyle \frac{1}{n}} \right )^{2}\leq \sqrt{2n-1}=(2n-1)^{.^{\frac{1}{2}}}\\ &\Leftrightarrow \displaystyle \frac{1}{\sqrt{n}}\left (1+\sqrt{\displaystyle \frac{1}{2}}+\sqrt{\displaystyle \frac{1}{3}}+\cdots +\sqrt{\displaystyle \frac{1}{n}} \right )\leq (2n-1)^{.^{\frac{1}{4}}}\qquad \blacksquare \end{array}$.
$\begin{array}{ll}\\ 10.&(\textbf{OSN 2011})\\ &\textrm{Jika}\: \: a,b,c>0\: ,\: \textrm{dengan}\: \: abc=1\\ &\textrm{Jika diketahui}\\ &a^{2011}+b^{2011}+c^{2011}< \displaystyle \frac{1}{a^{2011}}+\frac{1}{b^{2011}}+\frac{1}{c^{2011}}\\ &\textrm{tunjukkan bahwa}\\ &(a+b+c)> \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\\\\ &\textbf{Bukti}:\\ &\textrm{Asumsikan}\\&\color{red}\begin{cases} &a\geq b\geq c \\ &\displaystyle \frac{1}{c}\geq \frac{1}{b}\geq \frac{1}{a} \end{cases}\\ &\textrm{Dengan}\: \textbf{ketaksamaan Chebyshev}\\ &\textrm{Perhatikan}\\ &\begin{aligned}&\displaystyle \frac{1}{a^{2011}}+\frac{1}{b^{2011}}+\frac{1}{c^{2011}}\geq \displaystyle \frac{1}{3}\left ( \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )\left ( \displaystyle \frac{1}{a^{2010}}+\frac{1}{b^{2010}}+\frac{1}{c^{2010}} \right )\\ &\Leftrightarrow \displaystyle \frac{1}{a^{2010}}+\frac{1}{b^{2010}}+\frac{1}{c^{2010}}\geq \displaystyle \frac{1}{3}\left ( \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )\left ( \displaystyle \frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}} \right )\\ &\Leftrightarrow \displaystyle \frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}\geq \displaystyle \frac{1}{3}\left ( \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )\left ( \displaystyle \frac{1}{a^{2008}}+\frac{1}{b^{2008}}+\frac{1}{c^{2008}} \right )\\ &\qquad\qquad \vdots \\ &\Leftrightarrow \displaystyle \frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}\geq \displaystyle \frac{1}{3}\left ( \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )\left ( \displaystyle \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \right )\\ &\Leftrightarrow \displaystyle \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\geq \displaystyle \frac{1}{3}\left ( \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )\left ( \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )\\ &\textrm{Sehingga}\\ &\displaystyle \frac{1}{a^{2011}}+\frac{1}{b^{2011}}+\frac{1}{c^{2011}}\geq \displaystyle \frac{1}{3^{2010}}\left ( \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )^{2011}\: \: \color{red}.....(1) \end{aligned} \\&\color{red}\textrm{dan}\\ &\begin{aligned}&a^{2011}+b^{2011}+c^{2011}\geq \displaystyle \frac{1}{3}(a+b+c)(a^{2010}+b^{2010}+c^{2010})\\ &\Leftrightarrow a^{2010}+b^{2010}+c^{2010}\geq \displaystyle \frac{1}{3}(a+b+c)(a^{2009}+b^{2009}+c^{2009})\\ &\Leftrightarrow a^{2009}+b^{2009}+c^{2009}\geq \displaystyle \frac{1}{3}(a+b+c)(a^{2008}+b^{2008}+c^{2008})\\&\qquad\qquad \vdots \\&\Leftrightarrow a^{3}+b^{3}+c^{3}\geq \displaystyle \frac{1}{3}(a+b+c)(a^{2}+b^{2}+c^{2})\\&\Leftrightarrow a^{2}+b^{2}+c^{2}\geq \displaystyle \frac{1}{3}(a+b+c)(a+b+c)\\ &\textrm{Sehingga}\\ &\Leftrightarrow a^{2011}+b^{2011}+c^{2011}\geq \displaystyle \frac{1}{3^{2010}}(a+b+c)^{2011}\: \: \color{red}........(2) \end{aligned}\\ &\begin{aligned}&\color{purple}\textrm{Dari ketaksamaan (1) dan (2) didapatkan}\\ &\frac{1}{a^{2011}}+\frac{1}{b^{2011}}+\frac{1}{c^{2011}}\geq \displaystyle \frac{1}{3^{2010}}\left ( \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )^{2011}\\ &>a^{2011}+b^{2011}+c^{2011}\geq \displaystyle \frac{1}{3^{2010}}(a+b+c)^{2011}\\ &\color{blue}\textrm{atau}\\ &\displaystyle \sum_{\textrm{siklik}}^{.}\displaystyle \frac{1}{a^{2011}}\geq \displaystyle \frac{1}{3^{2010}}\left ( \displaystyle \sum_{\textrm{siklik}}^{.}\displaystyle \frac{1}{a}\right )^{2011}> \displaystyle \sum_{\textrm{siklik}}^{.}a^{2011}\geq \displaystyle \frac{1}{3^{2010}}\left ( \displaystyle \sum_{\textrm{siklik}}^{.}a \right )^{2011}\\ &\Leftrightarrow \displaystyle \frac{1}{3^{2010}}\left ( \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )^{2011}>\displaystyle \frac{1}{3^{2010}}(a+b+c)^{2011}\\ &\Leftrightarrow \left ( \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )> (a+b+c)\\&\Leftrightarrow \: a+b+c< \displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\qquad \blacksquare \end{aligned} \end{array}$.
DAFTAR PUSTAKA
- Young, B. 2009. Seri Buku Olimpiade Matematika Strategi Menyelesaikan Soal-Soal Olimpiade Matematika: Ketaksamaan (Inequality). Bandung: PAKAR RAYA.