Contoh Soal 4 Fungsi Komposisi dan Fungsi Invers

$\begin{array}{ll}\\ 16.&\textrm{Jika}\: \: f\: \: \textrm{dan}\: \: g\: \textrm{adalah fungsi yang }\\ &\textrm{mempunyai invers dan memenuhi}\\ & f(2x)=g(x-3),\: \textrm{maka}\: \: f^{-1}(x)\\ & \textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&g^{-1}\left ( \displaystyle \frac{x}{2}- \frac{2}{3}\right )\\ \textrm{b}.&g^{-1}\left ( \displaystyle \frac{x}{2} \right )-\displaystyle \frac{2}{3}\\ \textrm{c}.&g^{-1}(2x+6)\\ \textrm{d}.&2g^{-1}(x)-6\\ \color{red}\textrm{e}.&2g^{-1}(x)+6 \end{array}\\ & (\textbf{SBMPTN 2016 Mat Das})\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned} &\textrm{Misalkan bahwa}\\ &f(2x)=g(x-3)=x,\\ & \textrm{maka}\\ &\begin{cases} f^{-1}(x) &=2x \\ g^{-1}(x) &=x-3 \end{cases} \end{aligned}\\ &\begin{array}{|c|c|}\hline \textrm{Sintak}&\textrm{Hasil}\\\hline \begin{aligned}g^{-1}(x) &=x-3\\ x&=g^{-1}(x)+3\\ & \end{aligned}&\begin{aligned}f^{-1}(x) &=2x\\ &=2\left ( g^{-1}(x)+3 \right )\\ &=2g^{-1}(x)+6 \end{aligned}\\\hline \end{array} \end{array}$.

$\begin{array}{ll}\\ 17.&\textrm{Jika}\: \: f^{-1}(x)=\displaystyle \frac{x-1}{5}\: \: \textrm{dan}\: \: g^{-1}(x)=\displaystyle \frac{3-x}{2},\\ & \textrm{maka}\: \: \left (f\circ g \right )^{-1}(6)=....\\ &\begin{array}{llllll}\\ \textrm{a}.&-1&&&\textrm{d}.&2\\ \textrm{b}.&0\qquad&\color{red}\textrm{c}.&1\qquad&\textrm{e}.&3 \end{array}\\ & (\textbf{UMPTN 1995})\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{Diketahui b}&\textrm{ahwa}:\\ &\begin{cases} f^{-1}(x)&=\displaystyle \frac{x-1}{5} \\ g^{-1}(x)&=\displaystyle \frac{3-x}{2} \end{cases}\\ \left (f\circ g \right )^{-1}(x)&=\left (g^{-1}\circ f^{-1} \right )(x)\\ &=\displaystyle \frac{3-\left ( \displaystyle \frac{x-1}{5} \right )}{2}\\ \left (f\circ g \right )^{-1}(6)&=\displaystyle \frac{3-\left ( \displaystyle \frac{6-1}{5} \right )}{2}\\ &=\displaystyle \frac{3-1}{2}=\frac{2}{2}\\ &=1 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 18.&\textrm{Invers dari}\: \: f(x)=125^{x}\: \: \textrm{adalah}\: \: f^{-1}(x)\\ &\textrm{Nilai dari}\: \: f^{-1}\left ( 5\sqrt{5} \right )=\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&1&&&\textrm{d}.&\displaystyle \frac{3}{5}\\ \color{red}\textrm{b}.&\displaystyle \frac{1}{2}&\textrm{c}.&\displaystyle \frac{1}{6}&\textrm{e}.&-\displaystyle \frac{1}{2} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned} &\textrm{Diketahui bahwa}\: \: f(x)=125^{x},\: \textrm{maka}\\ &f(x)=y=125^{x}\\ &\textrm{Kedua ruas dilogkan masing-masing}\\ &\log y=\log 125^{x}\\ &\Leftrightarrow \log y=x\log 125\\ &\Leftrightarrow x\log 125=\log y\\ &\Leftrightarrow x=\displaystyle \frac{\log y}{\log 125}\\ &\Leftrightarrow x= \, ^{125}\log y\\ &\Leftrightarrow f^{-1}(x)=\, ^{125}\log x\\ &\textrm{Selanjutnya}\\ &f^{-1}(x)=\, ^{125}\log x\\ &\Leftrightarrow f^{-1}(5\sqrt{5})=\, ^{125}\log (5\sqrt{5})\\ &\Leftrightarrow f^{-1}(5\sqrt{5})=\, ^{5^{3}}\log 5^{.^{ \frac{3}{2}}}\\ &\Leftrightarrow f^{-1}(5\sqrt{5})=\displaystyle \frac{\displaystyle \frac{3}{2}}{3}\,^{5}\log 5\\ &\Leftrightarrow f^{-1}(5\sqrt{5})= \displaystyle \frac{1}{2}.1\\ &\Leftrightarrow f^{-1}(5\sqrt{5})= \color{red}\displaystyle \frac{1}{2} \end{aligned} \end{array}$

Contoh Soal 3 Fungsi Komposisi dan Fungsi Invers

 $\begin{array}{ll}\\ 11.&\textrm{Diketahui beberapa fungsi memiliki }\\ &\textrm{sifat-sifat sebagaimana berikut ini}:\\ &(i)\quad \Phi (-x)=-\Phi (x)\: \: \textrm{untuk setiap}\: \: x\\ &(ii)\quad \Phi (-x)=\Phi (x)\: \: \textrm{untuk setiap}\: \: x\\ &\textrm{Jika diketahui fungsi}\: \: f\: \: \textrm{dan}\: \: g\\ & \textrm{memiliki sifat}\: \: (i)\: \: \textrm{dan fungsi}\: \: h\: \: \textrm{dan}\: \: k\\ &\textrm{memiliki sifat}\: \: (ii),\: \: \textrm{maka pernyataan }\\ &\textrm{berikut yang salah adalah}\: ....\\ &(1)\quad (f+g)(-x)=-(f+g)(x)\\ &(2)\quad (f.k)(-x)=-(f.k)(x)\\ &(3)\quad (h-k)(-x)=(h-k)(x)\\ &(4)\quad (h-g)(-x)=(h-g)(x)\\ &\begin{array}{llllll}\\ \color{red}\textrm{a}.&(1),(2)\: \textrm{dan}\: (3)\\ \textrm{b}.&(1)\: \textrm{dan}\: (3)\\ \textrm{c}.&(2)\: \textrm{dan}\: (4)\\ \textrm{d}.&(4)\: \textrm{saja}\\ \textrm{e}.&\textrm{semuanya benar} \end{array}\\ & (\textbf{SIMAK UI 2014 Mat Das})\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\: \textrm{bahwa}:\\ &\begin{cases} \Phi (-x)=-\Phi (x) \\ (\textrm{fungsi ganjil})\begin{cases} f & \text{ misal } f(x)=x \\ g & \text{ misal } g(x)=2x \end{cases} \\\\ \Phi (-x)=\Phi (x)\\ (\textrm{fungsi genap})\begin{cases} h & \text{ misal } h(x)=x^{2} \\ k & \text{ misal } k(x)=2x^{2} \end{cases} \end{cases}\\ & \end{aligned}\\ &\begin{array}{|c|}\hline \begin{aligned}(1)\quad (f+g)(-x)&=-(f+g)(x)\\ &\textrm{benar}\\ (2)\qquad (f.k)(-x)&=-(f.k)(x)\\ &\textrm{benar}\\ \end{aligned}\\\hline \begin{aligned} (3)\quad (h-k)(-x)&=(h-k)(x)\\ &\textrm{benar}\\ (4)\quad (h-g)(-x)&=(h-g)(x)\\ &\color{blue}\textrm{salah} \end{aligned}\\\hline \end{array} \end{array}$.

$\begin{array}{ll}\\ 12.&\textrm{Jika}\: \: f(x)=\displaystyle \frac{1}{2x-1}\: \: \textrm{dan}\: \: (f\circ g)(x)=\displaystyle \frac{x}{3x-2}\\ &\textrm{maka}\: \: g(x)=\: ....\\ &(\textbf{UMPTN 1998})\\ &\begin{array}{llllll}\\ \textrm{a}.&x+\displaystyle \frac{1}{2}&&&\textrm{d}.&1-\displaystyle \frac{2}{x}\\\\ \textrm{b}.&x-\displaystyle \frac{1}{2}&\color{red}\textrm{c}.&2-\displaystyle \frac{1}{x}&\textrm{e}.&2-\displaystyle \frac{1}{2x} \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\color{blue}\textbf{Alternatif 1}\\ &\textrm{Diketahui bahwa}\: \: f(x)=\displaystyle \frac{1}{2x-1},\: \textrm{dan}\\ &(f\circ g)(x)=\displaystyle \frac{x}{3x-2},\: \: \textrm{maka}\\ &\Leftrightarrow (f\circ g)(x)=f\left ( g(x) \right )=\displaystyle \frac{x}{3x-2}\\ &\Leftrightarrow \displaystyle \frac{1}{2g(x)-1}=\displaystyle \frac{x}{3x-2}\\ &\Leftrightarrow \displaystyle \frac{1}{2g(x)-1}=\displaystyle \frac{1}{\left (\displaystyle \frac{3x-2}{x} \right )}\\ &\textrm{Dari bentuk di atas didapatkan}\\ &\color{magenta}2g(x)-1=\displaystyle \frac{3x-2}{x}\\ &\Leftrightarrow 2g(x)=1+\left ( 3-\displaystyle \frac{2}{x} \right )\\ &\Leftrightarrow 2g(x)=4-\displaystyle \frac{2}{x}\\ &\Leftrightarrow g(x)=2-\displaystyle \frac{1}{x} \end{aligned}\\ &\begin{aligned}&\color{blue}\textbf{Alternatif 2}\\ &\textrm{Diketahui bahwa}\: \: f(x)=\displaystyle \frac{1}{2x-1},\: \textrm{dengan}\\ &f^{-1}(x)=\displaystyle \frac{x+1}{2x}.........(\textrm{tunjukkan sendiri})\\ &\textrm{serta}\: \: (f\circ g)(x)=\displaystyle \frac{x}{3x-2},\: \: \textrm{maka}\\ &g(x)=(f^{-1}\circ f\circ g)(x)=(I\circ g)(x)=g(x)\\ &\Leftrightarrow g(x)=\displaystyle \frac{f(g(x))+1}{2\left ( f(g(x)) \right )}\\ &\Leftrightarrow g(x)=\displaystyle \frac{\left ( \displaystyle \frac{x}{3x-2} \right )+1}{2\left ( \displaystyle \frac{x}{3x-2} \right )}\\ &\Leftrightarrow g(x)=\displaystyle \frac{\displaystyle \frac{4x-2}{3x-2}}{\displaystyle \frac{2x}{3x-2}}\\ &\Leftrightarrow g(x)=\displaystyle \frac{4x-2}{2x}\\ &\Leftrightarrow g(x)=2-\displaystyle \frac{1}{x} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 13.&\textrm{Jika}\: \: f(x)=x^{2}-9\: \: \textrm{dan}\: \: (f\circ g)(x)=x(x-6)\\ &\textrm{rumus fungsi}\: \: g(x)=\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&x+3&&&\textrm{d}.&3x+1\\ \textrm{b}.&x-3&\color{red}\textrm{c}.&-x&\textrm{e}.&x \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\color{blue}\textbf{Alternatif 1}\\ &\textrm{Diketahui bahwa}\: \: f(x)=x^{2}-9,\: \textrm{dan}\\ &(f\circ g)(x)=x(x-6)=x^{2}-6x,\: \: \textrm{maka}\\ &\Leftrightarrow (f\circ g)(x)=f\left ( g(x) \right )=x^{2}-6x\\ &\Leftrightarrow \left (g(x) \right )^{2}-9=x^{2}-6x\\ &\Leftrightarrow \left (g(x) \right )^{2}-9=x^{2}-6x+9-9\\ &\Leftrightarrow \left (g(x) \right )^{2}-9=(x-3)^{2}-9\\ &\textrm{Dari bentuk di atas didapatkan}\\ &\qquad g(x)=x-3 \end{aligned}\\ &\begin{aligned}&\color{blue}\textbf{Alternatif 2}\\ &\textrm{Diketahui bahwa}\: \: f(x)=x^{2}-9,\: \textrm{dengan}\\ &f^{-1}(x)=\sqrt{x+9}\: .......(\textrm{tunjukkan sendiri})\\ &\textrm{serta}\: \: (f\circ g)(x)=x^{2}-6x,\: \: \textrm{maka}\\ &g(x)=(f^{-1}\circ f\circ g)(x)=(I\circ g)(x)=g(x)\\ &\Leftrightarrow g(x)=\sqrt{\left ( f(g(x)) \right )+9}\\ &\Leftrightarrow g(x)=\sqrt{x^{2}-6x+9}\\ &\Leftrightarrow g(x)=\sqrt{(x-3)^{2}}\\ &\Leftrightarrow g(x)=x-3 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 14.&\textrm{Jika}\: \: f(x)=\displaystyle \frac{1}{\sqrt{x^{2}-2}}\: \: \textrm{dan}\\ &\left ( f\circ g \right )(x)=\displaystyle \frac{1}{\sqrt{x^{2}+6x+7}},\\ & \textrm{maka}\: \: g(x+2)=....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle \frac{1}{x+3}&&&\textrm{d}.&x+3\\ \textrm{b}.&\displaystyle \frac{1}{x-2}\qquad&\textrm{c}.&x-2\qquad&\color{red}\textrm{e}.&x+5 \end{array}\\ & (\textbf{UM UGM 2010 Mat Das})\\\\ &\textrm{Jawab}:\\ &\color{blue}\textbf{Alternatif 1}\\ &\begin{aligned}\left ( f\circ g \right )(x)&=\displaystyle \frac{1}{\sqrt{x^{2}+6x+7}}\\ f\left ( g(x) \right )&=\displaystyle \frac{1}{\sqrt{x^{2}+6x+7}}\\ \displaystyle \frac{1}{\sqrt{\left (g(x) \right )^{2}-2}}&=\displaystyle \frac{1}{\sqrt{x^{2}+6x+7}}\\ \left (g(x) \right )^{2}-2&=x^{2}+6x+7\\ \left (g(x) \right )^{2}&=x^{2}+6x+9\\ g(x)&=\sqrt{x^{2}+6x+9}=\sqrt{(x+3)^{2}}\\ g(x)&=x+3\\ g(x+2)&=(x+2)+3\\ &=x+5 \end{aligned}\\ &\begin{aligned}&\color{blue}\textbf{Alternatif 2}\\ &\textrm{Diketahui bahwa}\: \: f(x)=\displaystyle \frac{1}{\sqrt{x^{2}-2}},\: \textrm{dengan}\\ &f^{-1}(x)=\sqrt{\displaystyle \frac{1}{x^{2}}+2}\: .......(\textrm{akan ditunjukkan})\\ &\textrm{serta}\: \: (f\circ g)(x)=\displaystyle \frac{1}{\sqrt{x^{2}+6x+7}},\: \: \textrm{maka}\\ &\begin{array}{|c|c|}\hline \begin{aligned}f(x) =y&= \displaystyle \frac{1}{\sqrt{x^{2}-2}}\\ y^{2}&=\displaystyle \frac{1}{x^{2}-2}\\ x^{2}-2&=\displaystyle \frac{1}{y^{2}}\\ x^{2}&=\displaystyle \frac{1}{y^{2}}+2\\ x&=\sqrt{\displaystyle \frac{1}{y^{2}}+2}\\ f^{-1}(y)&=\sqrt{\displaystyle \frac{1}{y^{2}}+2}\\ f^{-1}(x)&=\sqrt{\displaystyle \frac{1}{x^{2}}+2} \end{aligned}&\begin{aligned}g(x)&=\left (f^{-1}\circ f\circ g \right )(x)\\ &=\sqrt{\displaystyle \frac{1}{\left ( \displaystyle \frac{1}{\sqrt{x^{2}+6x+7}} \right )^{2}}+2}\\ &=\sqrt{\left ( x^{2}+6x+7 \right )+2}\\ &=\sqrt{\left ( x^{2}+6x+9 \right )}\\ &=\sqrt{(x+3)^{2}}\\ &=x+3\\ g(x+2)&=(x+2)+3\\ &=x+5\\ & \end{aligned}\\\hline \end{array} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 15.&\textrm{Jika}\: \: g(x)=2x+4\: \: \textrm{dan}\: \: \left ( f\circ g \right )(x)=4x^{2}+8x-3,\\ & \textrm{maka}\: \: f^{-1}(x)=....\\ &\begin{array}{llllll}\\ \textrm{a}.&x+9\\ \textrm{b}.&\sqrt{x}+2\\ \textrm{c}.&x^{2}-4x-3\\ \textrm{d}.&\sqrt{x+1}+2\\ \color{red}\textrm{e}.&\sqrt{x+7}+2 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{array}{|c|c|c|}\hline \textrm{Sintak 1}&\textrm{ Sintak 2}&\textrm{Hasil Invers}\\\hline \begin{aligned}g(x)=y&=2x+4\\ y-4&=2x\\ x&=\displaystyle \frac{y-4}{2}\\ f^{-1}(y)&=\displaystyle \frac{y-4}{2}\\ f^{-1}(x)&=\displaystyle \frac{x-4}{2}\\ & \end{aligned}&\begin{aligned}f(x)&=\left (f\circ g\circ g^{-1} \right )(x)\\ &=4\left ( g^{^{-1}}(x) \right )^{2}+8\left ( g^{-1}(x) \right )-3\\ &=4\left ( \displaystyle \frac{x-4}{2} \right )^{2}+8\left ( \displaystyle \frac{x-4}{2} \right )-3\\ &=\left ( \displaystyle x^{2}-8x+16 \right )+4x-16-3\\ &=x^{2}-4x-3\\ &=x^{2}-4x+4-7\\ &=(x-2)^{2}-7 \end{aligned}&\begin{aligned}f(x)=y&=(x-2)^{2}-7\\ y+7&=(x-2)^{2}\\ \sqrt{y+7}&=(x-2)\\ (x-2)&=\sqrt{y+7}\\ x&=\sqrt{y+7}+2\\ f^{-1}(y)&=\sqrt{y+7}+2\\ f^{-1}(x)&=\sqrt{x+7}+2 \end{aligned} \\\hline \end{array} \end{array}$

Contoh Soal 2 Fungsi Komposisi dan Fungsi Invers

$\begin{array}{ll}\\ 6.&\textrm{Fungsi}\: \: g:\mathbb{R}\rightarrow \mathbb{R}\: \: \textrm{ditentukan oleh}\\ &g(x)=x^{2}-x+3\: \: \textrm{dan}\: \: f:\mathbb{R}\rightarrow \mathbb{R}\\ &\textrm{sehingga}\: \: (f\circ g)(x)=3x^{2}-3x+4 \:, \\ &\textrm{maka fungsi}\: \: f(x-2)=\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&2x-11&&&\textrm{d}.&3x-7\\ \textrm{b}.&2x-7&\textrm{c}.&3x+1&\color{red}\textrm{e}.&3x-11 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\: \textrm{bahwa}:\\ &\begin{cases} &\color{blue}f(x) =f(x)\\ &\color{blue}g(x) =x^{2}-x+3\end{cases}\\ &\left ( f\circ g \right )(x)=3x^{2}-3x+4\\ &\begin{aligned}f(g(x))&=3x^{2}-3x+4\\ f(x^{2}-&x+3)=3(x^{2}-x+3)-5\\ \textrm{Sehing}&\textrm{ga}\\ f(x)&=3x-5\\ f(x-2)&=3(x-2)-5\\ &=3x-11 \end{aligned} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 7.&\textrm{Fungsi}\: \: f:\mathbb{R}\rightarrow \mathbb{R}\: \: \textrm{dan}\: \: g:\mathbb{R}\rightarrow \mathbb{R}\\ &\textrm{dengan}\: \: f(x)=x-3\: \: \textrm{dan}\\ & g(x)=x^{2}+5.\: \textrm{Jika}\: \: (f\circ g)(x)=(g\circ f)(x)\\ &\textrm{maka nilai}\: \: x\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&1&&&\textrm{d}.&4\\ \color{red}\textrm{b}.&2&\textrm{c}.&3&\textrm{e}.&5 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\: \textrm{bahwa}:\\ &\begin{cases} &\color{blue}f(x) =x-3\\ &\color{blue}g(x) =x^{2}+5\end{cases}\\ &\left ( f\circ g \right )(x)=(g\circ f)(x)\\ &\begin{aligned}f(g(x))&=g(f(x))\\ (x^{2}+5)-3&=(x-3)^{2}+5\\ x^{2}+2&=x^{2}-6x+14\\ 6x&=14-2\\ x&=\displaystyle \frac{12}{6}\\ x&=2 \end{aligned} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 8.&\textrm{Fungsi}\: \: f:\mathbb{R}\rightarrow \mathbb{R}\: \: \textrm{dan}\: \: g:\mathbb{R}\rightarrow \mathbb{R}\\ &\textrm{dengan}\: \: f(x)=3x-10\: \: \textrm{dan}\\ & g(x)=4x+n.\: \textrm{Jika}\\ & (g\circ f)(x)-(f\circ g)(x)=0\\ &\textrm{maka nilai}\: \: n\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&15&&&\textrm{d}.&-10\\ \textrm{b}.&10&\textrm{c}.&5&\color{red}\textrm{e}.&-15 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\: \textrm{bahwa}:\\ &\begin{cases} &\color{blue}f(x) =3x-10\\ &\color{blue}g(x) =4x+n\end{cases}\\ &\left ( g\circ f \right )(x)-(f\circ g)(x)=0\\ &\begin{aligned}g(f(x))&=f(g(x))\\ 3(4x+n)-10&=4(3x-10)+n\\ 12x+3n-10&=12x-40+n\\ 2n&=-30\\ x&=\displaystyle \frac{-30}{2}\\ x&=-15 \end{aligned} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 9.&\textrm{Jika}\: \: f(x)=\sqrt{2x+3}\\ & \textrm{dan}\: \: g(x)=x^{2}+1,\: \textrm{maka}\: \: \left ( f\circ g \right )(2)=....\\\\ &\begin{array}{llllll}\\ \textrm{a}.&2,24&&&\textrm{d}.&6\\ \textrm{b}.&3\qquad&\color{red}\textrm{c}.&3,61\qquad&\textrm{e}.&6,16 \end{array}\\ & (\textbf{SAT Subject Test})\\\\\\ &\textrm{Jawab}:\quad \textbf{c}\\ &\begin{aligned}\left ( f\circ g \right )(x)&=f\left ( g(x) \right )\\ &=\sqrt{2g(x)+3}\\ &=\sqrt{2\left ( x^{2}+1 \right )+3}\\ \left ( f\circ g \right )(2)&=\sqrt{2\left ( 2^{2}+1 \right )+3}\\ &=\sqrt{2(5)+3}\\ &=\sqrt{13}\\ &\color{blue}\approx 3,61 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 10.&\textrm{Misalkan}\: \: f(x)=x^{2},\: \: g(x)=2x\\ &\textrm{dan}\: \: h(x)=1-x.\\ & \textrm{Fungsi}\: \: (f\circ g\circ h)(x)=\: ....\\ &\begin{array}{llllll}\\ \color{red}\textrm{a}.&4x^{2}-8x+4\\ \textrm{b}.&4x^{2}+8x-4\\ \textrm{c}.&2x^{2}-4x+1\\ \textrm{d}.&x^{2}-2x+1\\ \textrm{e}.&4-2x+x^{2} \end{array}\\\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{Dike}&\textrm{tahui bahwa}\\ \bullet \quad&f(x)=x^{2}\\ \bullet \quad &g(x)=2x\\ \bullet \quad&h(x)=1-x\\ \textrm{mak}&\textrm{a}\\ &(f\circ g\circ h)=f\left ( g(h(x)) \right )\\ &\: =\left ( 2(1-x) \right )^{2}\\ &\: =(2-2x)^{2}\\ &\: =4x^{2}-8x+4 \end{aligned} \end{array}$

Contoh 7 Vektor

$\begin{array}{ll}\\ 31.&\textrm{Jika}\: \: \vec{p}=\begin{pmatrix} 2\\ -5 \end{pmatrix},\: \vec{q}=\begin{pmatrix} 4\\ 3 \end{pmatrix},\: \textrm{maka }\\ &\textrm{proyeksi skalar ortogonal vektor}\: \vec{p}\\ &\textrm{pada}\: \: \vec{q}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \displaystyle \frac{3}{5}\\\\ &\textrm{b}.\quad \color{red}\displaystyle \frac{7}{5}\\\\ &\textrm{c}.\quad \displaystyle \frac{8}{5}\\\\ &\textrm{d}.\quad \displaystyle \frac{9}{5}\\\\ &\textrm{e}.\quad \displaystyle 2\\\\ &\textrm{Jawab}\\ &\begin{aligned}\left | \vec{r} \right |&=\displaystyle \frac{\vec{p}.\vec{q}}{\left | \vec{q} \right |}\\ &=\displaystyle \frac{\begin{pmatrix} 2\\ -5 \end{pmatrix}.\begin{pmatrix} 4\\ 3 \end{pmatrix}}{\sqrt{4^{2}+3^{2}}}\\ &=\displaystyle \frac{8+(-15)}{\sqrt{25}}\\ &=\left | \displaystyle \frac{-7}{5} \right |\\ &=\color{red}\displaystyle \frac{7}{5} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 32.&\textrm{Panjang Proyeksi vektor}\: \: \vec{a}=\begin{pmatrix} 5\\ 1 \end{pmatrix}\\ & \textrm{pada}\: \: \vec{b}=\begin{pmatrix} 0\\ 4 \end{pmatrix}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \displaystyle -1\\ &\textrm{b}.\quad -\displaystyle \frac{1}{2}\\ &\textrm{c}.\quad \color{red}1\\ &\textrm{d}.\quad \displaystyle 2\\ &\textrm{e}.\quad 4\\\\ &\textrm{Jawab}\\ &\begin{aligned}\left |\vec{c} \right |&=\left |\displaystyle \frac{\vec{a}.\vec{b}}{\left | \vec{b} \right |} \right |\\ &=\left |\displaystyle \frac{\begin{pmatrix} 5\\ 1 \end{pmatrix}\bullet \begin{pmatrix} 0\\ -4 \end{pmatrix}}{\left | \sqrt{0^{2}+(-4)^{2}} \right |} \right |\\ &=\left |\displaystyle \frac{0-4}{4} \right |=\left |-1 \right |=\color{red}1 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 33.&\textrm{Proyeksi vektor ortogonal}\: \: \vec{a}=\begin{pmatrix} 2\\ -4 \end{pmatrix}\\ & \textrm{pada}\: \: \vec{b}=\begin{pmatrix} -1\\ 2 \end{pmatrix}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \begin{pmatrix} 2\\ -1 \end{pmatrix}\\ &\textrm{b}.\quad \begin{pmatrix} 2\\ -2 \end{pmatrix}\\ &\textrm{c}.\quad \color{red}\begin{pmatrix} 2\\ -4 \end{pmatrix}\\ &\textrm{d}.\quad \begin{pmatrix} -1\\ 2 \end{pmatrix}\\ &\textrm{e}.\quad \begin{pmatrix} -2\\ 4 \end{pmatrix}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{c}&=\left ( \displaystyle \frac{\vec{a}\bullet \vec{b}}{\left |\vec{b} \right |^{2}} \right ).\vec{b}\\ &=\left (\displaystyle \frac{\begin{pmatrix} 2\\ -4 \end{pmatrix}\bullet \begin{pmatrix} -1\\ 2 \end{pmatrix}}{(-1)^{2}+2^{2}} \right ).\begin{pmatrix} -1\\ 2 \end{pmatrix}\\ &=\left (\displaystyle \frac{-2-8}{1+4} \right ).\begin{pmatrix} -1\\ 2 \end{pmatrix}\\ &=-2\begin{pmatrix} -1\\ 2 \end{pmatrix}\\ &=\color{red}\begin{pmatrix} 2\\ -4 \end{pmatrix} \end{aligned} \end{array}$

Contoh 6 Vektor

$\begin{array}{ll}\\ 26.&\textrm{Jika}\: \: \vec{p}=\begin{pmatrix} -2\\ 4 \end{pmatrix}\: \: \textrm{dan}\: \: \vec{q}=\begin{pmatrix} 8\\ 4 \end{pmatrix},\: \: \textrm{maka}\\ &\textrm{sudut yang dibentuk vektor}\: \: \vec{p}\: \: \textrm{dan}\: \: \vec{q}\\ &\textrm{adalah}....\\ &\textrm{a}.\quad 0^{\circ}\\ &\textrm{b}.\quad 60^{\circ}\\ &\textrm{c}.\quad 45^{\circ}\\ &\textrm{d}.\quad 60^{\circ}\\ &\textrm{e}.\quad \color{red}90^{\circ}\\\\ &\textrm{Jawab}\\ & \begin{aligned}\vec{p}.\vec{q}&=\displaystyle \begin{vmatrix} \vec{p} \end{vmatrix}.\begin{vmatrix} \vec{q} \end{vmatrix}.\cos \angle \left (\vec{p},\, \vec{q} \right )\\ \cos \angle \left (\vec{p},\, \vec{q} \right )&=\displaystyle \frac{\vec{p}.\vec{q}}{\left | \vec{p} \right |.\left | \vec{q} \right |}\\ &=\displaystyle \frac{\begin{pmatrix} -2\\ 1 \end{pmatrix}.\begin{pmatrix} 8\\ 4 \end{pmatrix}}{\sqrt{(-2)^{2}+1^{2}}.\sqrt{8^{2}+4^{2}}}\\ &=\displaystyle \frac{-16+16}{\sqrt{20}.\sqrt{80}}\\ &=\displaystyle \frac{0}{40}\\ &=0\\ \cos \angle \left (\vec{p},\, \vec{q} \right )&=\cos 90^{\circ}\\ \angle \left (\vec{p},\, \vec{q} \right )&=\color{red}90^{\circ} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 27.&\textrm{Jika}\: \: \overline{OA}=\begin{pmatrix} 1\\ 2 \end{pmatrix},\: \overline{OB}=\begin{pmatrix} 4\\ 2 \end{pmatrix},\: \textrm{dan}\\ &\theta =\angle \left ( \overline{OA},\: \overline{OB} \right ),\: \textrm{maka}\: \: \tan \theta =....\\\\ &\textrm{a}.\quad \displaystyle \frac{3}{5}\\\\ &\textrm{b}.\quad \displaystyle \frac{9}{16}\\\\ &\textrm{c}.\quad \color{red}\displaystyle \frac{3}{4}\\\\ &\textrm{d}.\quad \displaystyle \frac{4}{3}\\\\ &\textrm{e}.\quad \displaystyle \frac{16}{9}\\\\ &\textrm{Jawab}\\ &\begin{array}{|c|c|}\hline \begin{aligned}\cos \theta &=\displaystyle \frac{\vec{a}.\vec{b}}{\left | \vec{a} \right |\left | \vec{b} \right |}\\ &=\displaystyle \frac{\begin{pmatrix} 1\\ 2 \end{pmatrix}.\begin{pmatrix} 4\\ 2 \end{pmatrix}}{\sqrt{1^{2}+2^{2}}\sqrt{4^{2}+2^{2}}}\\ &=\displaystyle \frac{4+4}{\sqrt{5}.\sqrt{20}}\\ &=\displaystyle \frac{8}{10} \end{aligned}&\begin{aligned}\sin \theta &=\sqrt{1-\cos ^{2}\theta }\\ &=\sqrt{1-\left ( \displaystyle \frac{8}{10} \right )^{2}}\\ &=\sqrt{\displaystyle \frac{36}{100}}\\ &=\displaystyle \frac{6}{10}\\ & \end{aligned}\\\hline \end{array} \\ &\textrm{Selanjutnya}\\ &\begin{aligned}\tan \theta &=\displaystyle \frac{\sin \theta }{\cos \theta }\\ &=\displaystyle \frac{\displaystyle \frac{6}{10}}{\displaystyle \frac{8}{10}}\\ &=\color{red}\displaystyle \frac{3}{4} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 28.&\textrm{Jika}\: \: \vec{a},\: \vec{b}\: \: \textrm{dan}\: \: \vec{c}\: \: \textrm{adalah vektor satuan dengan}\\ & \vec{a}+\vec{b}+\vec{c}=0.\: \textrm{Nilai dari}\: \: \vec{a}.\vec{b}+\vec{a}.\vec{c}+\vec{b}.\vec{c}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \displaystyle -3\\ &\textrm{b}.\quad \color{red}\displaystyle -\frac{3}{2}\\ &\textrm{c}.\quad \displaystyle 0\\ &\textrm{d}.\quad \displaystyle \frac{3}{2}\\ &\textrm{e}.\quad \displaystyle 3\\\\ &\textrm{Jawab}\\ & \begin{aligned}\textrm{Karena}&\left\{\begin{matrix} \vec{a},\vec{b},\vec{c}\: \: \textrm{adalah vektor satuan, dan}\\ \vec{a}+\vec{b}+\vec{c}=0\qquad\qquad\qquad\qquad . \end{matrix}\right.\\ \textrm{segitig}&\textrm{a ABC adalah segitiga sama sisi}\\ \vec{a}.\vec{b}=&\left | \vec{a} \right |\left | \vec{b} \right |\cos 120^{0}=1.1.\left ( -\frac{1}{2} \right )=-\frac{1}{2}\\ \vec{a}.\vec{c}=&\left | \vec{a} \right |\left | \vec{c} \right |\cos 120^{0}=1.1.\left ( -\frac{1}{2} \right )=-\frac{1}{2}\\ \vec{b}.\vec{c}=&\left | \vec{b} \right |\left | \vec{c} \right |\cos 120^{0}=1.1.\left ( -\frac{1}{2} \right )=-\frac{1}{2}\\ \textrm{Jadi, ni}&\textrm{lai dari}\: \: \vec{a}.\vec{b}+\vec{a}.\vec{c}+\vec{b}.\vec{c}\\ &=\left ( -\frac{1}{2} \right )+\left ( -\frac{1}{2} \right )+\left ( -\frac{1}{2} \right )=\color{red}-\frac{3}{2} \end{aligned} \end{array}$

$.\: \qquad \color{blue}\textrm{berikut ilustrasinya}$

$\begin{array}{ll}\\ 29.&\textrm{Jika}\: \: \angle \left ( \vec{a},\vec{b} \right )=60^{\circ},\: \: \left |\vec{a} \right |=4\: \: \textrm{dan}\\ &\left |\vec{b} \right |=3,\: \: \textrm{maka}\: \: \vec{a}(\vec{a}-\vec{b})\: \: \textrm{adalah}....\\ &\textrm{a}.\quad 2\\ &\textrm{b}.\quad 4\\ &\textrm{c}.\quad 6\\ &\textrm{d}.\quad 8\\ &\textrm{e}.\quad \color{red}10\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{a}(\vec{a}-\vec{b})&=\vec{a}.\vec{a}-\vec{a}.\vec{b}\\ &=\left | \vec{a} \right |\left | \vec{a} \right |\cos 0^{\circ}-\left | \vec{a} \right |\left | \vec{b} \right |\cos 60^{\circ}\\ &=\left | \vec{a} \right |^{2}-\left | \vec{a} \right |\left | \vec{b} \right |.\displaystyle \frac{1}{2}\\ &=4^{2}-4.3.\displaystyle \frac{1}{2}\\ &=16-6\\ &=\color{red}10 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 30.&\textrm{Diketahui}\: \: \left | \vec{a} \right |=\sqrt{3}\: ,\left | \vec{b} \right |=1,\: \: \textrm{dan}\: \: \left | \vec{a}-\vec{b} \right |=1\\ &\textrm{maka panjang vektor}\: \: \vec{a}+\vec{b}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\sqrt{3}&&&\textrm{d}.&2\sqrt{2}\\ \textrm{b}.&\sqrt{5}&\textrm{c}.&\color{red}\sqrt{7}&\textrm{e}.&3 \end{array}\\\\ &\textbf{Jawab}\\ &\begin{aligned}\textrm{Diketahui}&\: \, \textrm{sebagaimana pada soal}\\ \left | \vec{a}-\vec{b} \right |^{2}&=\left | \vec{a} \right |^{2}+\left | \vec{b} \right |^{2}-2\left | \vec{a} \right |\left | \vec{b} \right |\cos \theta \\ 1^{2}&=\left ( \sqrt{3} \right )^{2}+1^{2}-2.\sqrt{3}.1.\cos \theta \\ 2\sqrt{3}\cos \theta &=3\\ \textrm{maka pan}&\textrm{jang vektor}\: \: \vec{a}+\vec{b}\: \: \textrm{adalah}\\ \left | \vec{a}+\vec{b} \right |&=\sqrt{\left | \vec{a} \right |^{2}+\left | \vec{b} \right |^{2}+2\left | \vec{a} \right |\left | \vec{b} \right |\cos \theta}\\ &=\sqrt{\left ( \sqrt{3} \right )^{2}+1^{2}+3}\\ &=\sqrt{3+1+3}\\ &=\color{red}\sqrt{7} \end{aligned} \end{array}$


Contoh 5 Vektor

 $\begin{array}{ll}\\ 21.&\textrm{Jika}\: \: \vec{g}=\begin{pmatrix} 3^{x+y}\\ 5 \end{pmatrix}\: \: \textrm{dan}\: \: \vec{h}=\begin{pmatrix} 81\\ \displaystyle \frac{y+7}{2} \end{pmatrix}\\ & \textrm{sehingga}\: \: \vec{g}=\vec{h}\: \: \: \textrm{nilai dari}\: \: 4x-3y=.... \\ &\textrm{a}.\quad \color{red}-5\\ &\textrm{b}.\quad -1\\ &\textrm{c}.\quad 0\\ &\textrm{d}.\quad 5\\ &\textrm{e}.\quad 10\\\\ &\textrm{Jawab}\\ &\begin{aligned}\textrm{Diketahui}\: &\: \textrm{bahwa}:\quad \vec{g}=\vec{h}\\ \begin{pmatrix} 3^{x+y}\\ 5 \end{pmatrix}&=\begin{pmatrix} 81\\ \displaystyle \frac{y+7}{2} \end{pmatrix}\\ 3^{x+y}&=81=3^{4}\Leftrightarrow x+y=4\\ \displaystyle \frac{y+7}{2}&=5\Leftrightarrow y=10-7=3,\quad \textrm{sehingga}\\ x+y&=4\Leftrightarrow x+3=4\Leftrightarrow x=4-3=1,\\ &\textrm{maka}\\ 4x-3y&=4(1)-3(3)\\ &=4-9=\color{red}-5 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 22.&\textrm{Vektor}\: \: \vec{m}=\begin{pmatrix} -2\\ 5 \end{pmatrix}\: \: \textrm{searah }\\ &\textrm{dengan vektor}\: .... \\ &\textrm{a}.\quad \displaystyle \begin{pmatrix} 2\\ -5 \end{pmatrix}\\ &\textrm{b}.\quad \displaystyle \begin{pmatrix} 2\\ 5 \end{pmatrix}\\ &\textrm{c}.\quad \color{red}\displaystyle \begin{pmatrix} -6\\ 15 \end{pmatrix}\\ &\textrm{d}.\quad \displaystyle \begin{pmatrix} -4\\ 5 \end{pmatrix}\\ &\textrm{e}.\quad \displaystyle \begin{pmatrix} -3\\ 10 \end{pmatrix} \\\\ &\textrm{Jawab}\\ &\begin{aligned}&\textrm{Vektor}\quad \vec{m}\: \: \: \textrm{searah dengan vektor}\: \: k.\vec{m}\\ &\color{blue}k.\vec{m}=k\begin{pmatrix} -2\\ 5 \end{pmatrix}, \color{black}\textrm{dengan}\: \: k\: \: \textrm{skalar positif}\\ &\begin{array}{|c|c|c|}\hline \textrm{a}&\textrm{b}\\\hline \begin{pmatrix} 2\\ -5 \end{pmatrix}=-\begin{pmatrix} -2\\ 5 \end{pmatrix}&\begin{pmatrix} 2\\ 5 \end{pmatrix}=...\\\hline \textrm{c}&\textrm{d}\\\hline \color{red}\begin{pmatrix} -6\\ 15 \end{pmatrix}=3\begin{pmatrix} -2\\ 5 \end{pmatrix}&\begin{pmatrix} -4\\ 5 \end{pmatrix}=...\\\hline \textrm{e}&\\\hline \begin{pmatrix} -3\\ 10 \end{pmatrix}=...&\\\hline \end{array} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 23.&\textrm{Jika vektor}\: \: \overline{AC}=\vec{p},\: \overline{BC}=\vec{q}\: \: \textrm{dan}\\ &\overline{AD}:\overline{DC}=1:2,\: \: \textrm{maka vektor}\\ & \overline{BD}\: \: \textrm{bila dinyatakan}\\ &\textrm{dalam}\: \: \vec{p}\: \: \textrm{dan}\: \: \vec{q}\: \: \textrm{adalah}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle \frac{1}{3}\left ( 3\vec{p}-2\vec{q} \right )\\ \textrm{b}.\quad \color{red}\displaystyle \frac{1}{3}\left ( 3\vec{q}-2\vec{p} \right )\\ \textrm{c}.\quad \displaystyle \frac{1}{3}\left ( \vec{p}-2\vec{q} \right )\\ \textrm{d}.\quad \displaystyle \left ( \vec{p}-\displaystyle \frac{1}{3}\vec{q} \right )\\ \textrm{e}.\quad \displaystyle \frac{1}{3}\left ( \vec{p}-\vec{q} \right ) \end{array}\\\\ &\textbf{Jawab}\\ &\begin{aligned}\overline{AC}:\overline{CD}&=3:-2\\ \overline{CD}&=-\displaystyle \frac{2}{3}\, \overline{AC}\\ &=\displaystyle -\frac{2}{3}\vec{p}\\ \textrm{maka}\, ,\qquad&\\ \overline{BD}&=\overline{BC}+\overline{CD}\\ &=\vec{q}+\left ( -\displaystyle \frac{2}{3}\vec{p} \right )\\ &=\color{red}\displaystyle \frac{1}{3}\left ( 3\vec{q}-2\vec{p} \right ) \end{aligned} \end{array}$

$.\: \quad \color{blue}\textrm{Gambar berikut untuk soal 24}$

$\begin{array}{ll}\\ 24.&\textrm{Jika vektor}\: \: \overline{AC}=\vec{p},\: \overline{BC}=\vec{q}\: \: \textrm{dan}\\ & \overline{AD}:\overline{DC}=1:2,\: \textrm{maka vektor}\: \: \overline{BD}\\ &\textrm{bila dinyatakan dalam}\: \: \vec{p}\: \: \textrm{dan}\: \: \vec{q}\: \: \textrm{adalah}.... \\ &\textrm{a}.\quad \displaystyle \frac{1}{3}\left ( 3\vec{p}-2\vec{q} \right )\\ &\textrm{b}.\quad \color{red}\displaystyle \frac{1}{3}\left ( 3\vec{q}-2\vec{p} \right )\\ &\textrm{c}.\quad \displaystyle \left ( \vec{p}-\displaystyle \frac{1}{3}\vec{q} \right )\\ &\textrm{d}.\quad \displaystyle \frac{1}{3}\left ( \vec{p}-2\vec{q} \right )\\ &\textrm{e}.\quad \displaystyle \frac{1}{3}\left ( \vec{p}-\vec{q} \right )\\\\ &\textrm{Jawab}\\ &\begin{aligned}\overline{AC}:\overline{CD}&=3:-2\\ \overline{CD}&=-\displaystyle \frac{2}{3}\, \overline{AC}\\ &=\displaystyle -\frac{2}{3}\vec{p}\\ \textrm{maka}\, ,\qquad&\\ \overline{BD}&=\overline{BC}+\overline{CD}\\ &=\vec{q}+\left ( -\displaystyle \frac{2}{3}\vec{p} \right )\\ &=\color{red}\displaystyle \frac{1}{3}\left ( 3\vec{q}-2\vec{p} \right ) \end{aligned} \end{array}$

$\begin{array}{ll}\\ 25.&\textrm{Jika titik}\: \: A(2,6)\: \: \textrm{dan}\: \: B(5,3)\: \: \textrm{demikian }\\ &\textrm{juga titik}\: \: P\: \: \textrm{terletak pada}\: \: \overline{AB}\\ &\textrm{dengan}\: \: \overline{AP}:\overline{PB}=2:1,\: \textrm{maka vektor }\\ &\textrm{posisi}\: \: \vec{p}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \color{red}\begin{pmatrix} 4\\ 4 \end{pmatrix}\\ &\textrm{b}.\quad \begin{pmatrix} 4\\ 5 \end{pmatrix}\\ &\textrm{c}.\quad \begin{pmatrix} -4\\ 4 \end{pmatrix}\\ &\textrm{d}.\quad \begin{pmatrix} 4\\ 2 \end{pmatrix}\\ &\textrm{e}.\quad \begin{pmatrix} -4\\ 6 \end{pmatrix}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\overline{AP}:\overline{PB}&=2:1\\ \overline{AP}&=2\, \overline{PB}\\ \vec{p}-\vec{a}&=2\left ( \vec{b}-\vec{p} \right )\\ \vec{p}+2\vec{p}&=\vec{a}+2\vec{b}\\ 3\vec{p}&=\vec{a}+2\vec{b}\\ \vec{p}&=\displaystyle \frac{1}{3}\left ( \vec{a}+2\vec{b} \right )\\ &=\displaystyle \frac{1}{3}\begin{pmatrix} 2+2.5\\ 6+2.3 \end{pmatrix}\\ &=\displaystyle \frac{1}{3}\begin{pmatrix} 12\\ 12 \end{pmatrix}\\ &=\color{red}\begin{pmatrix} 4\\ 4 \end{pmatrix} \end{aligned} \end{array}$



Contoh 4 Vektor

 $\begin{array}{ll}\\ 16.&\textrm{Diketahui titik A(-1,1,0) dan titik B(1,-2,2)}\\ &\textrm{maka panjang vektor}\: \: \overrightarrow{BA}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\sqrt{2}&&&\textrm{d}.&\color{red}\sqrt{17}\\ \textrm{b}.&\sqrt{5}&\textrm{c}.&\sqrt{9}&\textrm{e}.&\sqrt{21} \end{array}\\\\ &\textbf{Jawab}\\ &\begin{aligned}&\textrm{Diketahui}\: \, \textrm{sebagaimana pada soal}\\ &\textrm{maka pan}\textrm{jang vektor}\: \: \overrightarrow{BA}\: \: \textrm{adalah}\\ &\left | \overrightarrow{BA} \right |=\sqrt{(1-(-1))^{2}+(-2-1)^{2}+(2-0)^{2}}\\ &=\sqrt{2^{2}+(-3)^{2}+2^{2}}\\ &=\sqrt{4+9+4}\\ &=\color{red}\sqrt{17} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 17.&\textrm{Vektor satuan untuk vektor}\: \: \vec{a}=\begin{pmatrix} 2, & 1, &-2 \end{pmatrix}=\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\begin{pmatrix} -\displaystyle \frac{2}{3}, & -\displaystyle \frac{1}{3}, &\displaystyle \frac{2}{3} \end{pmatrix}&\\\\ \textrm{b}.&\color{red}\begin{pmatrix} \displaystyle \frac{2}{3}, & \displaystyle \frac{1}{3}, &-\displaystyle \frac{2}{3} \end{pmatrix}&\\\\ \textrm{c}.&\begin{pmatrix} \displaystyle \frac{2}{4}, & \displaystyle \frac{1}{4}, &-\displaystyle \frac{2}{4} \end{pmatrix}&\\\\ \textrm{d}.&\begin{pmatrix} -\displaystyle \frac{2}{4}, & -\displaystyle \frac{1}{4}, &\displaystyle \frac{2}{4} \end{pmatrix}\\\\ \textrm{e}.&\begin{pmatrix} -\displaystyle \frac{2}{9}, &-\displaystyle \frac{1}{9}, & \displaystyle \frac{2}{9} \end{pmatrix} \end{array}\\\\ &\textbf{Jawab}\\ &\begin{aligned}\textrm{Vektor }&\: \textrm{satuan dari vektor}\: \: \vec{a}\: \: \textrm{adalah}:\\ \hat{a}&=\displaystyle \frac{\vec{a}}{\left | \vec{a} \right |}\\ &=\displaystyle \frac{\begin{pmatrix} 2, & 1, & -2 \end{pmatrix}}{\sqrt{2^{2}+1^{2}+(-2)^{2}}}\\ &=\displaystyle \frac{\begin{pmatrix} 2, & 1, & -2 \end{pmatrix}}{\sqrt{9}}\\ &=\displaystyle \frac{\begin{pmatrix} 2, & 1, & -2 \end{pmatrix}}{3}\\ &=\color{red}\begin{pmatrix} \displaystyle \frac{2}{3}, & \displaystyle \frac{1}{3}, &-\displaystyle \frac{2}{3} \end{pmatrix} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 18.&\textrm{Jika titik A(-2,3,5) dan B(4,1,-3)},\\ & \textrm{maka vektor posisi AB adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\begin{pmatrix} -6, & 2, &8 \end{pmatrix}&\\ \textrm{b}.&\begin{pmatrix} 8, & 2, &-6 \end{pmatrix}&\\ \textrm{c}.&\color{red}\begin{pmatrix} 6, & -2, &-8 \end{pmatrix}&\\ \textrm{d}.&\begin{pmatrix} -8 & -2, &6 \end{pmatrix}\\ \textrm{e}.&\begin{pmatrix} 2, &4, & 2 \end{pmatrix} \end{array}\\\\ &\textbf{Jawab}\\ &\begin{aligned}\textrm{Vektor posisi}&\: \textrm{dari}\: \: \overrightarrow{AB}\: \: \textrm{adalah}:\\ \overrightarrow{AB}&=\overrightarrow{OB}-\overrightarrow{OA}\\ &=\begin{pmatrix} 4\\ 1\\ -3 \end{pmatrix}-\begin{pmatrix} -2\\ 3\\ 5 \end{pmatrix}\\ &=\begin{pmatrix} 4+2\\ 1-3\\ -3-5 \end{pmatrix}\\ &=\begin{pmatrix} 6\\ -2\\ -8 \end{pmatrix}\quad\: \textbf{atau}\\ &=\color{red}\begin{pmatrix} 6, & -2, & -8 \end{pmatrix} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 19.&\textrm{Jika}\: \: \vec{p}=\begin{pmatrix} ^{2}\log 8x\\ \left ( ^{2}\log x \right )^{y} \end{pmatrix}\: \: \textrm{dan}\: \: \vec{q}=\begin{pmatrix} 5\\ 8 \end{pmatrix}\\ &\textrm{sehingga}\: \: \vec{p}=\vec{q}\: \: \: \textrm{nilai dari}\: \: x.y=.... \\ &\textrm{a}.\quad 6\\ &\textrm{b}.\quad \color{red}12\\ &\textrm{c}.\quad 18\\ &\textrm{d}.\quad 24\\ &\textrm{e}.\quad 30\\\\ &\textrm{Jawab}\\ &\begin{aligned}\textrm{Diketahui}\: &\: \textrm{bahwa}:\quad \vec{p}=\vec{q}\\ \begin{pmatrix} ^{2}\log 8x\\ \left ( ^{2}\log x \right )^{y} \end{pmatrix}&=\begin{pmatrix} 5\\ 8 \end{pmatrix},\quad\: \: \textrm{maka}\\ 8x&=2^{5}=32\\ \Leftrightarrow x&=\displaystyle \frac{32}{8}=4\\ \left (^{2}\log 4 \right )^{y}&=8\\ \Leftrightarrow 2^{y}&=8=2^{3}\\ \Leftrightarrow y&=3\\ \textrm{Sehingga}&\\ x.y&=4\times 3=\color{red}12 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 20.&\textrm{Jika}\: \: \vec{p}=\begin{pmatrix} 3x\\ 4x+y \end{pmatrix}\: \: \textrm{dan}\: \: \vec{q}=\begin{pmatrix} \displaystyle \frac{2x-4}{2}\\ 6 \end{pmatrix}\\ & \textrm{sehingga}\: \: \vec{p}=\vec{q}\: \: \: \textrm{nilai dari}\: \: 2x+y=.... \\ &\textrm{a}.\quad -12\\ &\textrm{b}.\quad 0\\ &\textrm{c}.\quad 8\\ &\textrm{d}.\quad \color{red}9\\ &\textrm{e}.\quad 19\\\\ &\textrm{Jawab}\\ &\begin{aligned}\textrm{Diketahui}\: &\: \textrm{bahwa}:\quad \vec{p}=\vec{q}\\ \begin{pmatrix} 3x\\ 4x+y \end{pmatrix}&=\begin{pmatrix} \displaystyle \frac{2x-4}{2}\\ 6 \end{pmatrix}\\ 3x&=\displaystyle \frac{2x-4}{2}\Leftrightarrow 6x=2x-4\\ \Leftrightarrow x&=-1\\ 4(-1)+y&=6\Leftrightarrow -4+y=6\\ \Leftrightarrow y&=6+4\\ y&=10\\ x+y&=(-1)+10=\color{red}9 \end{aligned} \end{array}$


Contoh 3 Vektor

$\begin{array}{ll}\\ 11.&\textrm{Jika vektor}\: \: \vec{a}=\begin{pmatrix} 6\\ -4 \end{pmatrix}\: \: \textrm{dan}\: \: \vec{b}=\begin{pmatrix} 3\\ 2 \end{pmatrix},\\ &\textrm{maka}\: \: 3\vec{a}-2\vec{b}\: \: \textrm{adalah}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}\begin{pmatrix} 12\\ -16 \end{pmatrix}&&\textrm{d}.\quad \begin{pmatrix} 24\\ 16 \end{pmatrix}\\ \textrm{b}.\quad \begin{pmatrix} 24\\ -16 \end{pmatrix}&\textrm{c}.\quad \begin{pmatrix} 12\\ 16 \end{pmatrix}&\textrm{e}.\quad \begin{pmatrix} -12\\ -16 \end{pmatrix} \end{array}\\\\ &\textbf{Jawab}\\ &\begin{aligned}3\vec{a}-2\vec{b}&=3\begin{pmatrix} 6\\ -4 \end{pmatrix}-2\begin{pmatrix} 3\\ 2 \end{pmatrix}\\ &=\begin{pmatrix} 18-6\\ -12-4 \end{pmatrix}\\ &=\color{red}\begin{pmatrix} 12\\ -16 \end{pmatrix} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 12.&\textrm{Diketahui jajar genjang ABCD }\\ &\textrm{dengan titik E adalah perpotongan }\\ &\textrm{diagonal jajar genjang}. \end{array}$

$\begin{array}{ll}\\ .\, \quad&\textrm{Jika}\: \: \overline{AB}=\vec{b}\: \: \textrm{dan}\: \: \overline{AD}=\vec{a},\: \textrm{maka}\: \: \overline{CE}\\ & \textrm{bila dinyatakan dalam}\: \: \vec{a}\: \: \textrm{dan}\: \: \vec{b}\: \: \textrm{adalah}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle \frac{1}{2}\left ( \vec{a}+\vec{b} \right )&\\ \textrm{b}.\quad \displaystyle \frac{1}{2}\left ( \vec{a}-\vec{b} \right )&\\ \textrm{c}.\quad \displaystyle \frac{1}{2}\left ( \vec{b}-\vec{a} \right )&\\ \textrm{d}.\quad \color{red}\displaystyle -\frac{1}{2}\left ( \vec{a}+\vec{b} \right )\\ \textrm{e}.\quad -\displaystyle \frac{1}{2}\left ( 2\vec{a}+\vec{b} \right ) \end{array}\\\\ &\textbf{Jawab}\\ &\begin{aligned} \overline{AC}&=\overline{AD}+\overline{DC}\\ \overline{CA}&=\overline{CD}+\overline{DA}\\ \overline{CE}&=\displaystyle \frac{1}{2}\, \overline{CA}\\ &=\displaystyle \frac{1}{2}\left ( -\vec{b}-\vec{a} \right )\\ &=\color{red}-\displaystyle \frac{1}{2}\left ( \vec{a}+\vec{b} \right ) \end{aligned} \end{array}$

$\begin{array}{ll}\\ 13.&\textrm{Pada segi enam beraturan ABCDEF},\\ & \textrm{jika}\: \: \overrightarrow{AB}=\vec{u}\: \: \textrm{dan}\: \: \overrightarrow{AF}=\vec{v}\: \: \textrm{maka vektor}\\ &\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}+\overrightarrow{AE}+\overrightarrow{AF}=....\\ &\begin{array}{llllllll}\\ \textrm{a}.&2\vec{u}+2\vec{v}&&&\textrm{d}.&\color{red}6\vec{u}+6\vec{v}\\ \textrm{b}.&4\vec{u}+4\vec{v}&\textrm{c}.&5\vec{u}+5\vec{v}&\textrm{e}.&8\vec{u}+8\vec{v} \end{array}\\\\ &\textbf{Jawab}\\ &\textrm{Perhatikanlah ilustrasi gambar berikut} \end{array}$

$\begin{aligned}.\: \, \qquad &\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}+\overrightarrow{AE}+\overrightarrow{AF}\\ &=\overrightarrow{AB}+\left (\overrightarrow{AO}+\overrightarrow{OC} \right )+2\overrightarrow{AO}+\left (\overrightarrow{AO}+\overrightarrow{OE} \right )+\overrightarrow{AF}\\ &=\vec{u}+\left (2\vec{u}+\vec{v} \right )+2\left ( \vec{v}+\vec{u} \right )+\left ( 2\vec{v}+\vec{u} \right )+\vec{v}\\ &=\color{red}6\vec{u}+6\vec{v} \end{aligned}$

$\begin{array}{ll}\\ 14.&\textrm{Perhatikanlah juga ilustrasi gambar berikut} \end{array}$

$\begin{array}{ll}\\ .\, \quad&\textrm{maka vektor}\: \: \vec{w}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\color{red}8\vec{i}-6\vec{j}-13\vec{k}&\\ \textrm{b}.&8\vec{i}-13\vec{j}-6\vec{k}\\ \textrm{c}.&6\vec{i}-8\vec{j}-13\vec{k}&\\ \textrm{d}.&-6\vec{i}+8\vec{j}-13\vec{k}\\ \textrm{e}.&-6\vec{i}-13\vec{j}+8\vec{k} \end{array}\\\\ &\textbf{Jawab}\\ &\textrm{Kita perhatikan juga ilustrasi }\\ &\textrm{gambarnya semisal dengan soal No.1}\\ &\textrm{Misalkan titiknya adalah titik }\\ &\textrm{W dengan koordinat (8,-6,-13)},\\ &\textrm{maka vektor posisi titik }\\ &\textrm{W tersebut adalah}\: \: \overrightarrow{OW}=\vec{w}\\ & \textrm{di mana}\\ &\begin{aligned}&\textrm{Vektor}\: \: \vec{w}\: \textrm{jika dinyatakan }\\ &\textrm{dalam kombinasi linear adalah}\\ &\vec{w}=\color{red}8\vec{i}-6\vec{j}-13\vec{k} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 15.&\textrm{Jika titik Z(4,-5,2)},\: \textrm{maka panjang }\\ &\textrm{vektor posisi titik Z adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&1&&&\textrm{d}.&5\sqrt{2}\\ \textrm{b}.&2\sqrt{5}&\textrm{c}.&\color{red}3\sqrt{5}&\textrm{e}.&5\sqrt{3} \end{array}\\\\ &\textbf{Jawab}\\ &\begin{aligned}\textrm{Vektor posisi}&\: \, \textrm{titik Z tersebut adalah}\\ \overrightarrow{OZ}=\vec{z}&=\begin{pmatrix} 4, & -5, & 2 \end{pmatrix},\\ \textrm{Dan panjang}&\: \, \textrm{vektor}\: \: \vec{z}\: \: \textrm{ini adalah}\\ \left | \vec{z} \right |&=\sqrt{4^{2}+(-5)^{2}+2^{2}}\\ &=\sqrt{16+25+4}\\ &=\sqrt{45}=\sqrt{9\times 5}\\ &=\color{red}3\sqrt{5} \end{aligned} \end{array}$.


Contoh 2 Vektor

$\begin{array}{ll}\\ 6.&\textrm{Diketahui titik}\: \: P(n,2),\: Q(1,-2),\: n>0\\ &\textrm{dan panjang}\: \: \overline{PQ}=5,\: \: \textrm{maka nilai}\: \: n\\ & \textrm{adalah}....\\ &\textrm{a}.\quad 1\\ &\textrm{b}.\quad 2\\ &\textrm{c}.\quad 3\\ &\textrm{d}.\quad \color{red}4\\ &\textrm{e}.\quad 5\\\\ &\textrm{Jawab}\\ &\begin{aligned}\overline{PQ}&=5\\ \sqrt{(x_{Q}-x_{P})^{2}+(y_{Q}-y_{P})^{2}}&=5\\ (x_{Q}-x_{P})^{2}+(y_{Q}-y_{P})^{2}&=25\\ (1-n)^{2}+(-2-2)^{2}&=25\\ (1-n)^{2}+16&=25\\ (1-n)^{2}-3^{2}&=0\\ (1+3-n)(1-3-n)&=0\\ \color{red}n=4\: \: \color{black}\textrm{atau}\: \: \color{red}n=-2& \end{aligned} \end{array}$

$\begin{array}{ll}\\ 7.&\textrm{Diketahui vektor}\: \: \vec{u}=\begin{pmatrix} 3\\ 4 \end{pmatrix}\: \: \textrm{dan}\: \: \vec{v}=\begin{pmatrix} 2\\ -1 \end{pmatrix}.\\ & \textrm{Nilai}\: \: \left | \vec{u}+\vec{v} \right |\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \sqrt{28}\\ &\textrm{b}.\quad \sqrt{30}\\ &\textrm{c}.\quad \color{red}\sqrt{34}\\ &\textrm{d}.\quad \sqrt{44}\\ &\textrm{e}.\quad \sqrt{50}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{u}+\vec{v}&=\begin{pmatrix} 3\\ 4 \end{pmatrix} + \begin{pmatrix} 2\\ -1 \end{pmatrix}\\ &=\begin{pmatrix} 3+2\\ 4+(-1) \end{pmatrix}\\ &=\begin{pmatrix} 5\\ 3 \end{pmatrix}\\ \left | \vec{u}+\vec{v} \right |&=\sqrt{5^{2}+3^{2}}\\ &=\sqrt{25+9}\\ &=\color{red}\sqrt{34} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 8.&\textrm{Vektor satuan}\: \: \vec{u}=\begin{pmatrix} -5\\ -12 \end{pmatrix}\: \: \textrm{adalah}.... \\ &\textrm{a}.\quad \color{red}\displaystyle -\frac{1}{13}\begin{pmatrix} 5\\ 12 \end{pmatrix}\\ &\textrm{b}.\quad \displaystyle \frac{1}{15}\begin{pmatrix} -5\\ -12 \end{pmatrix}\\ &\textrm{c}.\quad \displaystyle -\frac{1}{17}\begin{pmatrix} 5\\ 12 \end{pmatrix}\\ &\textrm{d}.\quad \displaystyle -\frac{1}{17}\begin{pmatrix} 5\\ 12 \end{pmatrix}\\ &\textrm{e}.\quad \displaystyle \frac{1}{2} \begin{pmatrix} 5\\ 12 \end{pmatrix}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{e}_{\vec{u}}&=\displaystyle \frac{\vec{u}}{\left | \vec{u} \right |},\quad \textrm{maka}\\ \vec{e}_{\begin{pmatrix} -5\\ -12 \end{pmatrix}}&=\displaystyle \frac{\begin{pmatrix} -5\\ -12 \end{pmatrix}}{\left | \begin{pmatrix} -5\\ -12 \end{pmatrix} \right |}\\ &=\displaystyle \frac{\begin{pmatrix} -5\\ -12 \end{pmatrix}}{\sqrt{(-5)^{2}+(-12)^{2}}}\\ &=\displaystyle \frac{-\begin{pmatrix} 5\\ 12 \end{pmatrix}}{\sqrt{169}}\\ &=\color{red}-\displaystyle \frac{1}{13}\begin{pmatrix} 5\\ 12 \end{pmatrix} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 9.&\textrm{Jika vektor}\: \: \vec{p}=\begin{pmatrix} 8\\ 7 \end{pmatrix}\: \: \textrm{dan}\: \: \vec{q}=\begin{pmatrix} -3\\ 9 \end{pmatrix}\\ & \textrm{Hasil dari}\: \: \vec{p}+\vec{q}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \begin{pmatrix} 6\\ 14 \end{pmatrix}\\ &\textrm{b}.\quad \begin{pmatrix} 6\\ 13 \end{pmatrix}\\ &\textrm{c}.\quad \begin{pmatrix} 6\\ 15 \end{pmatrix}\\ &\textrm{d}.\quad \color{red}\begin{pmatrix} 5\\ 16 \end{pmatrix}\\ &\textrm{e}.\quad \begin{pmatrix} 5\\ 48 \end{pmatrix}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{p}+\vec{q}&=\begin{pmatrix} 8\\ 7 \end{pmatrix}+\begin{pmatrix} -3\\ 9 \end{pmatrix}\\ &=\begin{pmatrix} 8-3\\ 7+9 \end{pmatrix}\\ &=\color{red}\begin{pmatrix} 5\\ 16 \end{pmatrix} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 10.&\textrm{Jika vektor}\: \: \vec{p}=\begin{pmatrix} ^{2}\log 32\\ -\, ^{3}\log \displaystyle \frac{1}{81} \end{pmatrix}\: \: \textrm{dan}\: \: \vec{q}=\begin{pmatrix} -9\\ -21 \end{pmatrix}\\ & \textrm{Hasil dari}\: \: \vec{p}+\vec{q}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \begin{pmatrix} 6\\ 17 \end{pmatrix}\\ &\textrm{b}.\quad \begin{pmatrix} -6\\ -17 \end{pmatrix}\\ &\textrm{c}.\quad \begin{pmatrix} 4\\ 17 \end{pmatrix}\\ &\textrm{d}.\quad \color{red}\begin{pmatrix} -4\\ -17 \end{pmatrix}\\ &\textrm{e}.\quad \begin{pmatrix} 5\\ -16 \end{pmatrix}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{p}+\vec{q}&=\begin{pmatrix} ^{2}\log 32\\ -\, ^{3}\log \displaystyle \frac{1}{81} \end{pmatrix}+\begin{pmatrix} -9\\ -21 \end{pmatrix}\\ &=\begin{pmatrix} 5-9\\ 4-21 \end{pmatrix}\\ &=\color{red}\begin{pmatrix} -4\\ -17 \end{pmatrix} \end{aligned} \end{array}$

Contoh 1 Vektor

$\begin{array}{ll}\\ 1.&\textrm{Perhatikanlah ilustrasi gambar berikut} \end{array}$


$\begin{array}{ll}\\ .\, \quad&\textrm{maka vektor}\: \: \vec{u}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&3\vec{i}+5\vec{j}&&&\textrm{d}.&-3\vec{i}-5\vec{j}\\ \textrm{b}.&5\vec{i}+3\vec{j}&\textrm{c}.&\color{red}-3\vec{i}+5\vec{j}&\textrm{e}.&-5\vec{i}+3\vec{j} \end{array}\\\\ &\textbf{Jawab}\\ &\textrm{Kita perhatikan lagi gambarnya}\\ &\begin{aligned}&\textrm{Vektor}\: \: \vec{u}\: \: \textrm{jika dinyatakan sebagai }\\ &\textrm{kombinasi linear adalah}\: \: \vec{u}=\color{red}-3\vec{i}+5\vec{j} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Panjang vektor}\: \: \vec{p}=\begin{pmatrix} 4\\ -8 \end{pmatrix}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \displaystyle \sqrt{4}\\ &\textrm{b}.\quad \sqrt{12}\\ &\textrm{b}.\quad \sqrt{20}\\ &\textrm{d}.\quad \color{red}\displaystyle \sqrt{80}\\ &\textrm{e}.\quad \sqrt{100}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{p}&=\begin{pmatrix} 4\\ -8 \end{pmatrix},\: \: \textrm{maka besar dari vektor}\\ \vec{p}&\: \: \textrm{adalah}=\left | \vec{p} \right |=\sqrt{x^{2}+y^{2}}\\ &\textrm{Yaitu}\\ \left | \vec{p} \right |&=\sqrt{4^{2}+(-8)^{2}}\\ &=\sqrt{16+64}=\color{red}\sqrt{80} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Perhatikanlah gambar berikut}\\ & \end{array}$.

$\begin{array}{ll}\\ .\quad &\textrm{Panjang vektor}\: \: \vec{h}\: \: \textrm{tersebut di atas adalah}....\\ &\textrm{a}.\quad 5\\ &\textrm{b}.\quad 7\\ &\textrm{c}.\quad \color{red}10\\ &\textrm{d}.\quad 12\\ &\textrm{e}.\quad 15\\\\ &\textrm{Jawab}\\ &\begin{aligned}\textrm{Diketahui}&\quad \vec{h}=\overline{OH}=8\vec{i}+6\vec{j}\\ \vec{h}&=\sqrt{x_{H}^{2}+y_{H}^{2}}\\ &=\sqrt{8^{2}+6^{2}}\qquad \textbf{(ingat tripel Pythagoras)}\\ &=\sqrt{10^{2}}=\color{red}10 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 4.&\textrm{Vektor satuan dari}\: \: \vec{q}=3\vec{i}-4\vec{j}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \displaystyle \frac{4}{5}\vec{i}-\frac{3}{5}\vec{j}\\ &\textrm{b}.\quad \color{red}\displaystyle \frac{3}{5}\vec{i}-\frac{4}{5}\vec{j}\\ &\textrm{c}.\quad 3\vec{i}-4\vec{j}\\ &\textrm{d}.\quad 4\vec{i}-3\vec{j}\\ &\textrm{e}.\quad 15\vec{i}-20\vec{j}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{q}&=3\vec{i}-4\vec{j}\\ &\textrm{Vektor satuan dari vektor}\: \: \vec{q}\: \: \textrm{adalah}:\\ &\: \hat{e}_{_{\vec{q}}}=\displaystyle \frac{1}{\left | \vec{q} \right |}. \vec{q}\\ &\textrm{Sehingga}\\ \hat{e}_{_{\vec{q}}}&=\displaystyle \frac{1}{\sqrt{3^{2}+(-4)^{2}}}.\begin{pmatrix} 3\\ -4 \end{pmatrix}\\ &=\displaystyle \frac{1}{5}\begin{pmatrix} 3\\ -4 \end{pmatrix}\\ &\textrm{atau dalam vektor basis}\\ &=\color{red}\displaystyle \frac{3}{5}\vec{i}-\frac{4}{5}\vec{j} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 5.&\textrm{Vektor berikut yang memiliki panjang}\\ & 29\: \: \textrm{satuan adalah}....\\ &\textrm{a}.\quad \displaystyle 18\vec{i}-19\vec{j}\\ &\textrm{b}.\quad \displaystyle 19\vec{i}-20\vec{j}\\ &\textrm{c}.\quad 20\vec{i}-21\vec{j}\\ &\textrm{d}.\quad \color{red}21\vec{i}-22\vec{j}\\ &\textrm{e}.\quad 22\vec{i}-23\vec{j}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\textrm{Ingat}&\textrm{lah akan tigaan Pythagoras}\\ &\begin{cases} (3,4,5) &\Rightarrow 3^{2}+4^{2}=5^{2} \\ (5,12,13) & \Rightarrow 5^{2}+12^{2}=13^{2} \\ (8,15,17) &\Rightarrow \cdots \\ (20,21,29)&\Rightarrow \cdots \\ \vdots & dll \end{cases}\\ \textrm{Sehin}&\textrm{gga}\\ \textrm{yang}&\: \: \textrm{paling mungkin adalah}\: : \: \\ &=\sqrt{20^{2}+21^{2}}=\sqrt{400+441}\\ &=\sqrt{841}\\ &=\color{red}29 \end{aligned} \end{array}$



Contoh Soal 2 Limit Fungsi Aljabar

$\begin{array}{ll}\\ 6.&\textrm{Diketahui bahwa}\: \: f(x)=x^{2}-2,\\ & \textrm{maka nilai}\: \: \: \underset{h\rightarrow 0 }{\textrm{Lim}}\: \: \displaystyle \frac{f(x+h)-f(x)}{h}=....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle x^{2}-2&&\textrm{d}.\quad \displaystyle x\\\\ \textrm{b}.\quad \displaystyle x^{2}\quad &\textrm{c}.\quad \displaystyle 2x\quad &\textrm{e}.\quad \displaystyle 2x-2 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{Diketahui}&\: \textrm{bahwa}\: f(x)=x^{2}-2,\\ \textrm{maka nila}&\textrm{i untuk}\\ \underset{h\rightarrow 0 }{\textrm{Lim}}\: &\: \displaystyle \frac{f(x+h)-f(x)}{h}\, \, \, \, \\ &=\underset{h\rightarrow 0 }{\textrm{Lim}}\: \: \displaystyle \frac{\left ((x+h)^{2}-2 \right )-\left ( x^{2}-2 \right )}{h}\\ &=\underset{h\rightarrow 0 }{\textrm{Lim}}\: \: \displaystyle \displaystyle \frac{x^{2}+2xh+h^{2}-2-x^{2}+2}{h}\\ &=\underset{h\rightarrow 0 }{\textrm{Lim}}\: \: \displaystyle \displaystyle \frac{2xh+h^{2}}{h}\\ &=\underset{h\rightarrow 0 }{\textrm{Lim}}\: \: \displaystyle \left (2x+h \right )\\ &=\color{red}2x \end{aligned} \end{array}$

$\begin{array}{ll}\\ 7.&\textrm{Diketahui}\: \: f(x)=\sqrt{x-1},\\ & \textrm{maka nilai}\: \: \: \underset{h\rightarrow 0 }{\textrm{Lim}}\: \:\displaystyle \frac{f(2+h)-f(2)}{h}=....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}\displaystyle \frac{1}{2}&&\textrm{d}.\quad \displaystyle 1\\\\ \textrm{b}.\quad -\displaystyle \frac{1}{2}\quad &\textrm{c}.\quad \displaystyle 0\quad &\textrm{e}.\quad \displaystyle -1\end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{Diketa}&\textrm{hui bahwa}\: f(x)=\sqrt{x-1},\\ \textrm{maka}\: \: & \textrm{nilai untuk}\\ \underset{h\rightarrow 0 }{\textrm{Lim}}\: &\: \displaystyle \frac{f(2+h)-f(2)}{h}\\ &=\underset{h\rightarrow 0 }{\textrm{Lim}}\: \: \displaystyle \frac{\sqrt{(2+h)-1}-\sqrt{2-1}}{h}\\ &=\underset{h\rightarrow 0 }{\textrm{Lim}}\: \: \displaystyle \displaystyle \frac{\sqrt{h+1}-1}{h}\\ &=\underset{h\rightarrow 0 }{\textrm{Lim}}\: \: \displaystyle \displaystyle \frac{\sqrt{h+1}-1}{h}\times \displaystyle \frac{\sqrt{h+1}+1}{\sqrt{h+1}+1}\\ &=\underset{h\rightarrow 0 }{\textrm{Lim}}\: \: \displaystyle \frac{(h+1)-1}{h\times \left ( \sqrt{h+1}+1 \right )}\\ &=\underset{h\rightarrow 0 }{\textrm{Lim}}\: \: \displaystyle \frac{1}{\left ( \sqrt{h+1}+1 \right )}\\ &=\displaystyle \frac{1}{\sqrt{0+1}+1}\\ &=\color{red}\displaystyle \frac{1}{2} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 8.&\textbf{(Mat Das SIMAK UI 2013)}\\ &\textrm{Nilai}\: \: \underset{x\rightarrow 5}{\textrm{Lim}}\: \: \displaystyle \frac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x-2\sqrt{x+1}}}=....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \sqrt{3}+\sqrt{2}&&\textrm{d}.\quad 5\\ \textrm{b}.\quad 5-2\sqrt{6}\quad &\textrm{c}.\quad 2\sqrt{6}\quad &\textrm{e}.\quad \color{red}5+2\sqrt{6}\end{array}\\\\ &\textrm{Jawab}:\\ & \begin{aligned}\underset{x\rightarrow 5}{\textrm{Lim}}\: &\: \displaystyle \frac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x-2\sqrt{x+1}}}\\ &=\displaystyle \frac{\sqrt{5+2\sqrt{5+1}}}{\sqrt{5-2\sqrt{5+1}}}\\ &=\displaystyle \frac{\sqrt{5+2\sqrt{6}}}{\sqrt{5-2\sqrt{6}}}\\ &=\displaystyle \frac{\sqrt{3+2+2\sqrt{3.2}}}{\sqrt{3+2-2\sqrt{3.2}}}\\ &=\displaystyle \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\\ &=\displaystyle \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times \displaystyle \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}\\ &=\displaystyle \frac{3+2+2\sqrt{6}}{3-2}\\ &=\color{red}5+2\sqrt{6} \end{aligned}\end{array}$

$\begin{array}{ll}\\ 9.&\textbf{(Mat IPA SBMPTN 2014)}\\\\ &\textrm{Jika}\: \: \underset{x\rightarrow a}{\textrm{Lim}}\: \: \displaystyle \left ( f(x)+\frac{1}{g(x)} \right )=4\\ & \textrm{dan}\: \: \underset{x\rightarrow a}{\textrm{Lim}}\: \: \displaystyle \left ( f(x)-\frac{1}{g(x)} \right )=-3,\\\\ &\textrm{maka nilai}\: \: \underset{x\rightarrow a}{\textrm{Lim}}\: \: \displaystyle f(x).g(x)=....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle \frac{1}{14}&&\textrm{d}.\quad \displaystyle \frac{4}{14}\\\\ \textrm{b}.\quad \color{red}\displaystyle \frac{2}{14}\quad &\textrm{c}.\quad \displaystyle \frac{3}{14}\quad &\textrm{e}.\quad \displaystyle \frac{5}{14}\end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Perhatikan bahwa}\: ,\\ &\begin{array}{lll}\\ \underset{x\rightarrow a}{\textrm{Lim}}\: \: \displaystyle \left ( f(x)+\frac{1}{g(x)} \right )=4&&\\ &&\\ \underset{x\rightarrow a}{\textrm{Lim}}\: \: \displaystyle \left ( f(x)-\frac{1}{g(x)} \right )=-3&+&\\ &&\\\hline &&\\ 2\underset{x\rightarrow a}{\textrm{Lim}}\: \: \displaystyle f(x)\qquad\qquad\: \: =1&&\\ &&\\ \qquad\qquad\: \: \: \: \underset{x\rightarrow a}{\textrm{Lim}}\: \: f(x)=\displaystyle \frac{1}{2},&&\\\end{array}\\ &\textrm{sehingga}\: \: \underset{x\rightarrow a}{\textrm{Lim}}\: \: f(g)=\displaystyle \frac{2}{7}\\ &&\\ &\textrm{maka},\\ &\underset{x\rightarrow a}{\textrm{Lim}}\: \: f(x).g(x)=\displaystyle \frac{1}{2}\times \frac{2}{7}=\color{red}\displaystyle \frac{2}{14} \end{aligned} \end{array}$

Contoh Soal 1 Limit Fungsi Aljabar

$\begin{array}{ll}\\ 1&\textrm{Nilai}\: \: \underset{x\rightarrow 2}{\textrm{Lim}}\: \left ( \displaystyle \frac{6-x}{x^{2}-4}-\frac{1}{x-2} \right )=....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}-\displaystyle \frac{1}{2}&&\textrm{d}.\quad \displaystyle \frac{1}{4}\\\\ \textrm{b}.\quad -\displaystyle \frac{1}{4}\quad &\textrm{c}.\quad 0\quad &\textrm{e}.\quad \displaystyle \frac{1}{2}\end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\underset{x\rightarrow 2}{\textrm{Lim}}\: \left ( \displaystyle \frac{6-x}{x^{2}-4}-\frac{1}{x-2} \right )&= \left ( \displaystyle \frac{6-2}{2^{2}-4}-\frac{1}{2-2} \right )\\ &=\left ( \displaystyle \frac{4}{0}-\frac{1}{0} \right )=\color{blue}\infty -\infty \\ &\: \: \textrm{hal ini tidak diperkenankan}\\ \textrm{Sehingga},\, \qquad\qquad\qquad &\\ \underset{x\rightarrow 2}{\textrm{Lim}}\: \left ( \displaystyle \frac{6-x}{x^{2}-4}-\frac{1}{x-2} \right )&=\underset{x\rightarrow 2}{\textrm{Lim}}\: \left ( \displaystyle \frac{6-x}{x^{2}-4}-\frac{(x+2)}{(x-2)(x+2)} \right )\\ &=\underset{x\rightarrow 2}{\textrm{Lim}}\: \left ( \displaystyle \frac{6-x}{x^{2}-4}-\frac{x+2}{x^{2}-4} \right )\\ &=\underset{x\rightarrow 2}{\textrm{Lim}}\: \left ( \displaystyle \frac{4-2x}{x^{2}-4} \right )\\ &=\underset{x\rightarrow 2}{\textrm{Lim}}\: \left ( \displaystyle \frac{-2(x-2)}{(x+2)(x-2)} \right )\\ &=\underset{x\rightarrow 2}{\textrm{Lim}}\: \left ( \displaystyle \frac{-2}{x+2} \right )\\ &=\displaystyle -\frac{2}{(2+2)}\\ &=\color{red}-\displaystyle \frac{1}{2} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Nilai}\: \: \underset{x\rightarrow 4}{\textrm{Lim}}\: \: \displaystyle \frac{x-4}{2\sqrt{x}-x}=....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}-\displaystyle 2&&\textrm{d}.\quad \displaystyle \frac{1}{2}\\\\ \textrm{b}.\quad -\displaystyle \frac{1}{2}\quad &\textrm{c}.\quad 0\quad &\textrm{e}.\quad \displaystyle 2\end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\underset{x\rightarrow 4}{\textrm{Lim}}\: \: \displaystyle \frac{x-4}{2\sqrt{x}-x}&= \left ( \displaystyle \frac{4-4}{2^{4}-4} \right )\\ &=\color{blue}\displaystyle \frac{0}{0} \\ &\: \: \textrm{hal ini juga tidak diperkenankan}\\ \textrm{Sehingga},\: \: \: \: \quad&\\ \underset{x\rightarrow 4}{\textrm{Lim}}\: \: \displaystyle \frac{x-4}{2\sqrt{x}-x}&=\underset{x\rightarrow 4}{\textrm{Lim}}\: \: \displaystyle \frac{\left ( \sqrt{x}+2 \right )\left ( \sqrt{x}-2 \right )}{\sqrt{x}\left ( 2-\sqrt{x} \right )} \\ &=\underset{x\rightarrow 4}{\textrm{Lim}}\: \: \displaystyle \frac{\left ( \sqrt{x}+2 \right )\left ( \sqrt{x}-2 \right )}{-\sqrt{x}\left ( \sqrt{x}-2 \right )}\\ &=\underset{x\rightarrow 4}{\textrm{Lim}}\: \: -\displaystyle \frac{\left ( \sqrt{x}+2 \right )}{\sqrt{x}}\\ &=-\displaystyle \frac{\sqrt{4}+2}{\sqrt{4}}\\ &=-\displaystyle \frac{2+2}{2}\\ &=\color{red}-2 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Nilai}\: \: \underset{x\rightarrow 1}{\textrm{Lim}}\: \: \displaystyle \frac{\left ( 2x-3\sqrt{x}+1 \right )\left ( \sqrt{x}-1 \right )}{\left ( \sqrt{x}-1 \right )^{2}}=....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle \frac{1}{4}&&\textrm{d}.\quad \displaystyle 2\\\\ \textrm{b}.\quad \displaystyle \frac{1}{2}\quad &\textrm{c}.\quad \color{red}1\quad &\textrm{e}.\quad \displaystyle 4\end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\underset{x\rightarrow 1}{\textrm{Lim}}\:& \: \displaystyle \frac{\left ( 2x-3\sqrt{x}+1 \right )\left ( \sqrt{x}-1 \right )}{\left ( \sqrt{x}-1 \right )^{2}}\\ &= \displaystyle \frac{\left ( 2-3+1 \right )\left ( 1-1 \right )}{\left ( 1-1 \right )^{2}} \\ &=\displaystyle \frac{0\times 0}{0^{2}}\\ &=\color{blue}\displaystyle \frac{0}{0} \\ &\: \: \textrm{hal ini juga tidak diperkenankan}\\ \textrm{Sehi}&\textrm{ngga},\\ \underset{x\rightarrow 1}{\textrm{Lim}}\: &\: \displaystyle \frac{\left ( 2x-3\sqrt{x}+1 \right )\left ( \sqrt{x}-1 \right )}{\left ( \sqrt{x}-1 \right )^{2}}\\ &=\underset{x\rightarrow 1}{\textrm{Lim}}\: \: \displaystyle \frac{\left ( \left ( 2\sqrt{x}-1 \right )\times \left ( \sqrt{x}-1 \right ) \right )\left ( \sqrt{x}-1 \right )}{\left ( \sqrt{x}-1 \right )\left ( \sqrt{x}-1 \right )}\\ &=\underset{x\rightarrow 1}{\textrm{Lim}}\: \: \left ( 2\sqrt{x}-1 \right )\\ &=2.1-1\\ &=2-1\\ &=\color{red}1 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 4.&\textrm{Nilai}\: \: \underset{x\rightarrow 3}{\textrm{Lim}}\: \: \displaystyle \frac{\sqrt{x+4}-\sqrt{2x+1}}{x-3}=....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}-\displaystyle \frac{1}{14}\sqrt{7}&&\textrm{d}.\quad \displaystyle \frac{1}{7}\sqrt{7}\\\\ \textrm{b}.\quad -\displaystyle \frac{1}{7}\sqrt{7}\quad &\textrm{c}.\quad 0\quad &\textrm{e}.\quad \displaystyle \frac{1}{14}\sqrt{7}\end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\underset{x\rightarrow 3}{\textrm{Lim}}\: &\: \displaystyle \frac{\sqrt{x+4}-\sqrt{2x+1}}{x-3}\\ &=\underset{x\rightarrow 3}{\textrm{Lim}}\: \: \displaystyle \frac{\sqrt{x+4}-\sqrt{2x+1}}{x-3}\times \displaystyle \frac{\sqrt{x+4}+\sqrt{2x+1}}{\sqrt{x+4}+\sqrt{2x+1}}\\ &=\underset{x\rightarrow 3}{\textrm{Lim}}\: \: \displaystyle \frac{\left ( x+4 \right )-\left ( 2x+1 \right )}{\left ( x-3 \right )\left ( \sqrt{x+4}+\sqrt{2x+1} \right )}\\ &=\underset{x\rightarrow 3}{\textrm{Lim}}\: \: -\displaystyle \frac{-x+3}{\left ( x-3 \right )\left ( \sqrt{x+4}+\sqrt{2x+1} \right )}\\ &=\underset{x\rightarrow 3}{\textrm{Lim}}\: \: \displaystyle \frac{-1}{\left ( \sqrt{x+4}+\sqrt{2x+1} \right )}\\ &=-\displaystyle \frac{1}{\left ( \sqrt{7}+\sqrt{7} \right )}\\ &=-\displaystyle \frac{1}{2\sqrt{7}}\\ &=-\displaystyle \frac{1}{2\sqrt{7}}\times \displaystyle \frac{\sqrt{7}}{\sqrt{7}}\\ &=\color{red}-\displaystyle \frac{1}{14}\sqrt{7} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 5.&\textrm{Jika}\: \: \underset{x\rightarrow 2}{\textrm{Lim}}\: \: \displaystyle \frac{ax-2a}{\sqrt{2x}-x}=6,\: \: \textrm{maka nilai}\: \: a\: \: \textrm{adalah}....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle 2&&\textrm{d}.\quad \displaystyle -2\\\\ \textrm{b}.\quad \displaystyle 1\quad &\textrm{c}.\quad -1\quad &\textrm{e}.\quad \displaystyle \color{red}-3\end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\underset{x\rightarrow 2}{\textrm{Lim}}\: &\: \displaystyle \frac{ax-2a}{\sqrt{2x}-x}=6\\ &\textrm{dengan bantuan limit kanan }\\ &\textrm{yaitu}\: \: x=2+h\: \Rightarrow \: h\rightarrow 0\\ \underset{h\rightarrow 0}{\textrm{Lim}}\: &\: \displaystyle \frac{a\left ( 2+h \right )-2a}{\sqrt{2\left ( 2+h \right )}-\left ( 2+h \right )}=6\\ 6&=\underset{h\rightarrow 0}{\textrm{Lim}}\: \: \displaystyle \frac{2a+ah-2a}{\sqrt{4+2h}-\left ( 2+h \right )}\\ 6&=\underset{h\rightarrow 0}{\textrm{Lim}}\: \: \displaystyle \frac{ah}{\sqrt{4+2h}-\left ( 2+h \right )}\times \displaystyle \frac{\left ( \sqrt{4+2h}+\left ( 2+h \right ) \right )}{\left (\sqrt{4+2h} +\left ( 2+h \right ) \right )}\\ 6&=\underset{h\rightarrow 0}{\textrm{Lim}}\: \: \displaystyle \frac{ah\times \left (\sqrt{4+2h} +\left ( 2+h \right ) \right )}{4+2h-\left ( 4+4h+h^{2} \right )}\\ 6&=\underset{h\rightarrow 0}{\textrm{Lim}}\: \: \displaystyle \frac{ah\times \left (\sqrt{4+2h} +\left ( 2+h \right ) \right )}{-2h-h^{2}}\\ 6&=\underset{h\rightarrow 0}{\textrm{Lim}}\: \: \displaystyle \frac{a\times \left (\sqrt{4+2h} +\left ( 2+h \right ) \right )}{-2-h}\\ 6&=\displaystyle \frac{a\times \left (\sqrt{4+0} +\left ( 2+0 \right ) \right )}{-2-0}\\ 6&=\displaystyle \frac{a\left ( \sqrt{4}+2 \right )}{-2}\\ \displaystyle \frac{a(4)}{-2}&=6\\ a(-2)&=6\\ a&=\color{red}-3 \end{aligned} \end{array}$

MATEMATIKA WAJIB MA/SMA untuk KONDISI KHUSUS TAHUN 2020-2021

 $\color{blue}\textrm{A. Kelas X (Sepuluh)}$

$\color{red}\begin{aligned}&\textrm{A.1 Persamaan dan pertidaksamaan}\\ &\qquad \textrm{nilai mutlak dari bentuk linear}\\ &\qquad \textrm{satu variabel} \end{aligned}$

$\color{red}\begin{aligned}&\textrm{A.2 Pertidaksamaan rasional}\\ &\qquad \textrm{dan irasional satu variabel} \end{aligned}$

$\color{red}\begin{aligned}&\textrm{A.3 Sistem persamaan linear tiga}\\ &\qquad \textrm{variabel} \end{aligned}$

$\color{red}\begin{aligned}&\textrm{A.4 Sistem pertidaksamaan dua}\\ &\qquad \textrm{variabel-linear-linear} \end{aligned}$

$\color{black}\begin{aligned}&\textrm{A.5 Fungsi} \end{aligned}$

$\color{black}\begin{aligned}&\textrm{A.6 Fungsi Komposisi dan invers} \end{aligned}$

$\color{black}\begin{aligned}&\textrm{A.7 Rasio trigonometri}\\ &\qquad \textrm{pada segitiga siku-siku} \end{aligned}$

$\color{black}\begin{aligned}&\textrm{A.8 Rasio trigonometri}\\ &\qquad \textrm{sudut-sudut diberbagai}\\ &\qquad \textrm{kuadran} \end{aligned}$

$\color{black}\begin{aligned}&\textrm{A.9 Aturan sinus dan cosinus} \end{aligned}$

$\color{blue}\textrm{B. Kelas XI (Sebelas)}$

$\color{red}\begin{aligned}&\textrm{B.1 Program linear} \end{aligned}$

$\color{red}\begin{aligned}&\textrm{B.2 Matriks} \end{aligned}$

$\color{red}\begin{aligned}&\textrm{B.3 Determinan dan invers matriks}\\ &\qquad \textrm{ordo 2x2} \end{aligned}$

$\color{red}\begin{aligned}&\textrm{B.4 Pola bilangan dan jumlah}\\ &\qquad \textrm{pada barisan aritmetika}\\ &\qquad \textrm{dan geometri} \end{aligned}$

$\color{black}\begin{aligned}&\textrm{B.5 Limit fungsi aljabar} \end{aligned}$

$\color{black}\begin{aligned}&\textrm{B.6 Turunan fungsi aljabar} \end{aligned}$

$\color{black}\begin{aligned}&\textrm{B.7 Keberkaitan Turunan fungsi} \end{aligned}$

$\color{black}\begin{aligned}&\textrm{B.8 Integral tak tentu}\\ &\qquad \textrm{fungsi aljabar} \end{aligned}$

$\color{blue}\textrm{C. Kelas XII (Duabelas)}$

$\color{red}\begin{aligned}&\textrm{C.1 Jarak dalam ruang} \end{aligned}$

$\color{red}\begin{aligned}&\textrm{C.2 Statistika} \end{aligned}$

$\color{black}\begin{aligned}&\textrm{C.3 Aturan pencacahan} \end{aligned}$

$\color{black}\begin{aligned}&\textrm{C.4 Peluang kejadian majumuk} \end{aligned}$