Lingkaran

 $\color{blue}\textrm{A. Definisi Lingkaran}$.

Secara definisi lingkaran adalah tempat kedudukam titik-titik yang berjarak sama terhadap satu titik tertentu. Selanjutnya titik tertentu disebut sebagai pusat lingkaran sedangkan jarak yang salalu sama terhadapa titik tertentu tersebut disebut sebagai jari-jari atau radius (r).

Sebagai ilustrasi berikut diberikan gambar berkaitan kedudukan titik-titik tersebut

$\color{blue}\textrm{B. Persamaan Lingkaran Berpusat di O(0,0) }$.

Persamaan sebuah lingkaran dengan dengan jari-jari  $r$  dan berpusat di titik pusat koordinat dapat dilustrasikan sebagai berikut

Misalkan sebuah titik  $\textrm{P}(x,y)$  terletak pada sebuah lingkaran yang berpusat di O(0,0). Dan titik $\textrm{P}'(x,0)$ adalah proyeksi titik  P  pada sumbu-X sehingga  $\bigtriangleup \textrm{OP}'\textrm{P}$   berupa sebuah segitiga siku-siku di $\textrm{P}'$. Dengan rumus Pythagoras kita mendapatkan
$\begin{aligned}&OP^{2}=(OP')^{2}+(PP')^{2}\\ &\Leftrightarrow \: r^{2}=x^{2}+y^{2}\\ &\Leftrightarrow r=\sqrt{x^{2}+y^{2}} \end{aligned}$
Untuk lebih memudahkan pemahaman Anda, perhatikanlah ilustrasi berikut
Sehingga dapat disimpulkan persamaan lingkaran yang berpusat di O(0,0) adalah:
$\begin{array}{|ccc|}\hline &&\\ &\color{red}x^{2}+y^{2}=r^{2}&\\ &&\\\hline \end{array}$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Tentukan persamaan lingkaran yang }\\ & \textrm{berpusat di O dan berjari-jari}\: \: \displaystyle \frac{1}{2}\sqrt{10}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui pusat lingkaran di O}\\ &\textrm{dengan jarijari}\: \: r=\displaystyle \frac{1}{2}\sqrt{10}\\ &\textrm{Persamaan lingkarannya adalah}:\\ &\color{red}x^{2}+y^{2}=r^{2}\\ &\Leftrightarrow \: x^{2}+y^{2}=\left ( \displaystyle \frac{1}{2}\sqrt{10} \right )^{2}\\ &\Leftrightarrow \: x^{2}+y^{2}=\displaystyle \frac{10}{4},\quad \textrm{atau}\\ &\Leftrightarrow \: x^{2}+y^{2}=\displaystyle \frac{5}{2}\\ &\textrm{Jadi, persamaan lingkarannya}\\ &\textrm{adalah}\: \: \: x^{2}+y^{2}=\displaystyle \frac{5}{2} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Tentukan pusat dan jari-jari lingkaran}\\ & \textrm{yang memenuhi persamaan}\: \: \\ &x^{2}+y^{2}=6\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui persamaan lingkaran}\\ &\: \: x^{2}+y^{2}=6\\ &\textrm{maka }\\ &\bullet \: \: \textrm{pusat lingkaran adalah O}\\ &\qquad\color{red}x^{2}+y^{2}=r^{2}\\ &\bullet \: \: \textrm{dengan jari-jarinya adalah}\\ &\qquad r^{2}=6\Rightarrow \color{red}r=\sqrt{6}\\ &\textrm{Jadi, pusat lingkaran di O dengan}\\ &\textrm{jari-jari sebesar}\: \: r=\sqrt{6} \end{aligned} \end{array}$.

$\color{blue}\textrm{C.  Persamaan Lingkaran Berpusat di (a,b)}$.

Perhatikanlah ilustrasi berikut

Pada ilustrasi gambar di atas ditunjukkan sebuah lingkaran berpusat di $N(a,b)$ dengan jari-jari  $r$, misalkan kita ambil sebuah titik $P(x,y)$ pada keliling lingkaran, maka $NP=r$.

$\begin{aligned}&\sqrt{(x-a)^{2}+(y-b)^{2}}=r^{2}\\ &\color{red}(x-a)^{2}+(y-b)^{2}=r^{2}\\ &\textrm{persamaan di atas adalah}\: \: \textbf{Bentuk Umum}\\ &\textrm{dari}\: \: \textbf{Persamaan Lingkaran}\: \: \textrm{yang}\\ &\textrm{berpusat di}\: \: (a,b) \end{aligned}$

Selanjutnya perhatikanlah rangkuman berikut

$\begin{array}{|l|c|c|}\hline \textrm{Lingkaran} &x^{2}+y^{2}=r^{2}&(x-p)^{2}+(y-q)^{2}=r^{2}\\\hline \textrm{Pusat}&(0,0)&(p,q)\\\hline \textrm{Jari-jari}&r&r\\\hline \begin{aligned}&\textrm{Pesamaan garis}\\ &\textrm{singgung melalui}\\ &\textrm{titik}\: \: (x_{1},y_{1})\\ &\textrm{pada lingkaran} \end{aligned}&x_{1}x+y_{1}y=r^{2}&\begin{aligned}&(x_{1}-p)(x-p)\\ &\: +(y_{1}-q)(y-q)=r^{2} \end{aligned}\\\hline \begin{aligned}&\textrm{Persamaan garis}\\ &\textrm{singgung dengan}\\ &\textrm{gradien}\: \: m \end{aligned}&\begin{aligned}&y=mx\\ &\: \pm r\sqrt{m^{2}+1} \end{aligned}&\begin{aligned}&(y-q)=m(x-a)\\ &\: \pm r\sqrt{m^{2}+1} \end{aligned}\\\hline \end{array}$.

Kusus untuk yang pusat  $(a,b)$ adalah:

$\begin{array}{|l|c|}\hline \textrm{Lingkaran} &x^{2}+y^{2}+Ax+By+C=0\\\hline \textrm{Pusat}&\left ( -\frac{1}{2}A,-\frac{1}{2}B \right )\\\hline \textrm{Jari-jari}&r=\sqrt{\displaystyle \frac{1}{4}\left ( A^{2}+B^{2} \right )-C}\\\hline \begin{aligned}&\textrm{Pesamaan garis}\\ &\textrm{singgung melalui}\\ &\textrm{titik}\: \: (x_{1},y_{1})\\ &\textrm{pada lingkaran} \end{aligned}&\begin{aligned}&x_{1}x+y_{1}y\\ &\: +\displaystyle \frac{A}{2}(x_{1}+x)\\ &\: +\displaystyle \frac{B}{2}(y_{1}+y)+C=0 \end{aligned}\\\hline \begin{aligned}&\textrm{Persamaan garis}\\ &\textrm{singgung dengan}\\ &\textrm{gradien}\: \: m \end{aligned}&\begin{aligned}&y+\frac{1}{2}B=m(x+\frac{1}{2}A)\\ &\: \pm \sqrt{\displaystyle \frac{1}{4}\left ( A^{2}+B^{2} \right )-C}.\sqrt{m^{2}+1} \end{aligned}\\\hline \end{array}$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Tentukan persamaan lingkaran yang }\\ & \textrm{berpusat di (0,-2) dan berjari-jari}\: \: 5\\\\  &\color{blue}\textbf{Jawab}:\\  &\begin{aligned}&\textrm{Diketahui pusat lingkaran berpusat}\\ &\textrm{di}\: \: (0,-2)\: \: \textrm{dan berjari-jari}\: r=5\\ &\textrm{Persamaan lingkarannya adalah}:\\ &\color{red}(x-a)^{2}+(y-b)^{2}=r^{2}\\ &\Leftrightarrow \: (x-0)^{2}+(y-(-2))^{2}=\left ( 5 \right )^{2}\\ &\Leftrightarrow \: x^{2}+(y+2)^{2}=25,\quad \textrm{atau}\\ &\Leftrightarrow \: x^{2}+y^{2}+4y+4=25\\ &\textrm{Jadi, persamaan lingkarannya}\\ &\textrm{adalah}\: \: \: x^{2}+y^{2}+4y-21=0 \end{aligned}  \end{array}$,

$\begin{array}{ll}\\ 2.&\textrm{Tentukan persamaan lingkaran}\\ & \textrm{yang berpusat di titik}\: \: M(1,3)\\ &\textrm{dan melalui titik}\: \: N(-2,5)\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui jari-jari lingkaran}\\ &r=MN=\sqrt{(x_{M}-x_{N})^{2}+()^{2}}\\ &\Leftrightarrow \: \: =\sqrt{(-2-1)^{2}+(5-3)^{2}}\\ &\Leftrightarrow \: \: =\sqrt{(-3)^{2}+2^{2}}\\ &\Leftrightarrow \: \: =\sqrt{9+4}=\sqrt{13}\\ &\textrm{maka}\\ &\textrm{persamaan lingkarannya adalah}\\ &(x-1)^{2}+(y-3)^{2}=r^{2}\\ &\Leftrightarrow \: (x-1)^{2}+(y-3)^{2}=\left ( \sqrt{13} \right )^{2}\\ &\Leftrightarrow \: (x-1)^{2}+(y-3)^{2}=13\\ &\textrm{Jadi, jari-jari lingkarannya}\\ &\textrm{adalah}\: \: \sqrt{13}\: .\: \textrm{Dan persamaan}\\ &\textrm{lingkarannya adalah}:\: (x-1)^{2}+(y-3)^{2}=13 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah pusat dan jari-jari lingkaran berikut?}\\ &\textrm{a}.\quad L\equiv (x+1)^{2}+(y+2)^{2}=9\\ &\textrm{b}.\quad L\equiv (x+1)^{2}+(y-2)^{2}=9\\ &\textrm{c}.\quad L\equiv (x-1)^{2}+(y+2)^{2}=9\\ &\textrm{d}.\quad L\equiv (x-1)^{2}+(y-2)^{2}=9\\ &\textrm{e}.\quad L\equiv (x+3)^{2}+(y-3)^{2}=9\\ &\textrm{f}.\quad L\equiv (x-1)^{2}+(y-2)^{2}=25\\ &\textrm{g}.\quad L\equiv (x-1)^{2}+y^{2}=27\\ &\textrm{h}.\quad L\equiv x^{2}+(y-1)^{2}=27\\\\ &\textrm{Jawab}:\\ &L\equiv (x+1)^{2}+(y+2)^{2}=9,\: \: \textrm{pusat di}\: \: (-1,-2)\\  &\textrm{dan jari-jarinya adalah}\: \: \sqrt{9}=3\\ &\textrm{Selanjutnya, perhatikantabel berikut}\\ &\begin{array}{|c|l|c|l|}\hline 3.\textrm{a}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (-1,2)\\ \textrm{Jar-jari}:\sqrt{9}=3 \end{matrix}\right.&3.\textrm{b}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (-1,-2)\\ \textrm{Jar-jari}:\sqrt{9}=3 \end{matrix}\right.\\\hline 3.\textrm{c}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (1,-2)\\ \textrm{Jar-jari}:\sqrt{9}=3 \end{matrix}\right.&3.\textrm{d}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (1,2)\\ \textrm{Jar-jari}:\sqrt{9}=3 \end{matrix}\right.\\\hline 3.\textrm{e}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (-3,3)\\ \textrm{Jar-jari}:\sqrt{9}=3 \end{matrix}\right.&3.\textrm{f}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (1,2)\\ \textrm{Jar-jari}:\sqrt{25}=5 \end{matrix}\right.\\\hline 3.\textrm{g}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (1,0)\\ \textrm{Jar-jari}:\sqrt{27}=3\sqrt{3} \end{matrix}\right.&3.\textrm{h}&\left\{\begin{matrix} \textrm{Pusat}\: :\: (0,1)\\ \textrm{Jar-jari}:\sqrt{27}=3\sqrt{3} \end{matrix}\right.\\\hline \end{array} \end{array}$


$\begin{array}{ll}\\ 4.&\textrm{Tentukanlah pusat dan jari-jari dari }\\ &\textrm{persamaan lingkaran}\\\ & L\equiv 2x^{2}+2y^{2}-2x+6y-3=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Persamaan lingkaran}\\\ & L\equiv 2x^{2}+2y^{2}-2x+6y-3=0\\ &\Leftrightarrow \color{blue}x^{2}+y^{2}-x+3y-\displaystyle \frac{3}{2}=0\color{red}\begin{cases} A & =-1 \\ B & =3 \\ C & =-\displaystyle \frac{3}{2} \end{cases}\\ &\textrm{maka}\: \: \begin{cases} \textrm{Pusat} & =\left ( -\displaystyle \frac{-1}{2},- \frac{3}{2}\right )=\left ( \displaystyle \frac{1}{2},-\frac{3}{2} \right ) \\ \textrm{Jari-jari} & =r=\sqrt{\displaystyle \frac{(-1)^{2}}{4}+\frac{3^{2}}{4}-\left ( -\frac{3}{2} \right )}\\ &=\sqrt{\displaystyle \frac{1}{4}+\frac{9}{4}+\frac{6}{4}}=\sqrt{4}=2 \end{cases}\\ &\textrm{Jadi, lingkaran}\: \: 2x^{2}+2y^{2}-2x+6y-3=0\\\ & \textrm{berpusat di} \: \: \left ( \displaystyle \frac{1}{2},-\frac{3}{2} \right )\: \: \textrm{dan berjari-jari}\: \: 2\end{aligned} \end{array}$.

$\begin{array}{ll}\\ 5.&\textrm{Diketahui persamaan lingkaran}\\\ &L\equiv 2x^{2}+2y^{2}-4x+3py-30=0\\ & \textrm{dan melalui titik}\: \: (-2,1).\: \textrm{Tentukanlah }\\ &\textrm{persamaan lingkaran baru yang} \\ &\textrm{kosentris(sepusat) dan panjang jari-jarinya}\\ &\textrm{dua kali panjang jari-jari lingkaran semula?}\\\\ &\textbf{Jawab}\\ &\begin{aligned}&\textrm{Diketahui persamaan lingkaran}\\ &2x^{2}+2y^{2}-4x+3py-30=0,\: \: \textrm{melalui}\\ &(-2,1), \: \: \textrm{maka}\\ &\begin{aligned}&\textrm{kita tentukan harga}\: \: p\: \: \textrm{dulu, yaitu}:\\ &2(-2)^{2}+2(1)^{2}-4(-2)+3p(1)-30=0\\ &\Leftrightarrow \: \: 8+2+8+3p-30=0\\ &\Leftrightarrow \: \: 3p=12\\ &\Leftrightarrow \: \: \color{red}p=4 \end{aligned}\\ &\textrm{Akibatnya persamaan lingkaran menjadi}\\ &\begin{aligned}&2x^{2}+2y^{2}-4x+12y-30=0\\ &\Leftrightarrow \: \: x^{2}+y^{2}-2x+6y-15=0 \end{aligned}\\ &\begin{aligned}&\begin{cases} \color{blue}\textrm{Pusat}: \\ \left ( -\displaystyle \frac{1}{2}A,-\frac{1}{2}B \right )\\ =\left ( -\displaystyle \frac{1}{2}.(-2),-\frac{1}{2},6 \right )\\ =(1,-3) \\\\ \color{blue}\textrm{Jari-jari }:\\ \begin{aligned}r&=\sqrt{\left ( -\frac{1}{2}A \right )^{2}+\left ( -\frac{1}{2}B \right )-C}\\ &=\sqrt{1^{2}+(-3)^{2}-(-15)}\\ &=\sqrt{1+9+15}=5 \end{aligned} \end{cases} \\ & \end{aligned}\\ &\textrm{Selanjutnya}\\ &\begin{aligned}&\textrm{Persamaan}\: \textrm{lingkaran baru }\\ &\textrm{dengan pusat}\: \: (1,-3)\: \: \textrm{dan jari-jari}\\ & r_{\textrm{baru}}=2r=2.5=10\\ &(x-1)^{2}+(y+3)^{2}=(10)^{2}\\ &\Leftrightarrow \: \: x^{2}-2x+1+y^{2}+6x+9=100\\ &\Leftrightarrow \: \: \color{red}x^{2}+y^{2}-2x+6y-90=0\end{aligned} \end{aligned} \end{array}$

Berikut ilustrasi gambarnya





Irisan Kerucut

A. Pendahuluan

Irisan Kerucut yang dimasud di sini adalah bangun-bangun geometri yang diperoleh dengan cara mengiris sebuah kerucut tegak berselimut ganda dengan sebuah bidang datar dengan arah pengirisan tertentu. Garis potong antara bidang datar dan kerucut tegak tersebut akan menyebabkan beberapa kemungkinan, di antaranya:

  • lingkaran, jika kerucut dipotong oleh bidang datar tegak lurus dengan sumbu kerucut dan tidak melalui titik puncak kerucut atau dapat juga dengan kondisi dipotong oleh bidang datar dan sejajar dengan bidang alas
  • elips, jika kerucut dipotong pada bidang miringdari garis pelukis sampai garis pelukislainnya, atau dapat juga dikatakan dengan kondisi di mana kerucut dipotong oleh bidang datar membentuk sudut lancip terhadap sumbu dan tidak melalui puncak kerucut
  • parabola, jika bidang datar membentuk sejajar dengan garis pelukis kerucut dan tidak melalui puncak kerucut
  • hiperbola, jika bidang datar sejajar dengan sumbu kerucut dan tidak melalui titik nol
Kerucut tegak ganda

Kerucut dipotong oleh bidang datar sejajar alas kerucut, penampang irisannya berupa lingaran
penampang irisannya berupa elips

Penampang irisannya berupa parabola

Penampang irisannya berupa hiperbola



$\begin{aligned}&\textrm{Eksentrisitas}\\ &e=\displaystyle \frac{PF}{PL}\\ &\begin{array}{|c|c|c|c|}\hline \textrm{Lingkaran}&\textrm{Elips}&\textrm{Parabola}&\textrm{Hiperbola}\\ (\textrm{Circle})&(\textrm{Ellips})&(\textrm{Parabola})&(\textrm{Hyperbola})\\\hline e=0&e<1&e=1&e>1\\\hline \end{array} \end{aligned}$







DAFTAR PUSTAKA
  1. Kurnia, N, dkk. 2017. Jelajah Matematika SMA Kelas XI Peminatan MIPA. Jakarta: YUDHISTIRA

Rangkuman Materi dan Contoh Soal Pelajaran Matematika Kelas X Fase E Tahun 2024

Kelas X 

Kurikulum Merdeka

Fase E Kelas X

Semester Gasal

Eksponen dan Logaritma

Barisan dan Deret

(pilih  materi yang Anda butuhkan saja)
Sistem Persamaan dan Pertidaksamaan Linear

Semester Genap

Kelas XI dan Kelas XII 

Matematika Wajib

Matematika Peminatan

Contoh Soal 6 Fungsi Kuadrat (Kelas X/Fase E Semester Genap) Tahun 2024

 $\begin{array}{ll}\\ 26.&\textrm{Misalkan}\: \: F=\displaystyle \frac{6x^{2}+16x+3m}{6}\: \: \textrm{merupakan kuadrat}\\ &\textrm{dari bentuk linear terhadap}\: \: x(ax+b).\: \: \textrm{Nilai}\\ &m\: \: \textrm{yang memungkinkan kondisi tersebut terjadi}\\ &\textrm{terletak di antara}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle -6\: \: \textrm{dan}\: \: -5&&&&&\textrm{D}.&\displaystyle \textrm{4 dan 5}\\ \textrm{B}.&\displaystyle -4\: \: \textrm{dan}\: \: -3&&&\displaystyle &&\textrm{E}.&\displaystyle \textrm{5 dan 6}\\ \textrm{C}.&\color{red}\displaystyle 3\: \: \textrm{dan}\: \: 4 \end{array}\\\\ &\textbf{Jawab}:\textbf{C}\\ &\begin{aligned}&\textrm{Diketahui FK}:\displaystyle \frac{6x^{2}+16x+3m}{6}\\ &\textrm{merupakan bentuk kuadrat, maka}\\ &f(x)=\displaystyle \frac{6x^{2}+16x+3m}{6}=x^{2}+\displaystyle \frac{8}{3}x+\frac{1}{2}m\\ &\textrm{dengan}\: \: a=1,\: b=\displaystyle \frac{8}{3},\: \: \textrm{dan}\: \: \: c=\displaystyle \frac{1}{2}m\\ &\textrm{dan istilah bentuk linier mengarah kepada}\\ &\textrm{jenis akarnya real, maka}\: \: D=b^{2}-4ac>0\\ &\left ( \displaystyle \frac{8}{3} \right )^{2}-4.1.\left ( \displaystyle \frac{1}{2}m \right )>0\\ &\Leftrightarrow \displaystyle \frac{64}{9}-2m>0\\ &n \to \Leftrightarrow \displaystyle \frac{32}{9}-m>0\: \: \: (\textrm{dikali})-1\\ &m-\displaystyle \frac{32}{9}>0\\ &\Leftrightarrow m>\displaystyle \frac{32}{9}\Leftrightarrow m>\color{red}3\displaystyle \frac{5}{9} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 27.&\textrm{Ekspresi}\: \: 21x^{2}+ax+21\: \: \textrm{dapat dituliskan}\\ &\textrm{sebagai perkalian dua bentuk linear dengan}\\ &\textrm{koefisien bilangan bulat. Hal tersebut hanya}\\ &\textrm{dapat dilakukan jika}\: \: a\: \: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle \textrm{bilangan 0}&&&&&\\ \textrm{B}.&\displaystyle \textrm{beberapa bilangan ganjil}&&\\ \textrm{C}.&\color{red}\textrm{beberapa bilangan genap}\\ \textrm{D}.&\textrm{sembarang bilangan ganjil}\\ \textrm{E}.&\textrm{sembarang bilangan genap} \end{array}\\\\ &\textbf{Jawab}:\textbf{C}\\ &\textrm{Ekspresi dapat dituliskan dalam perkalian dua}\\ &\textrm{bentuk linear, maka}\: D=b^{2}-4ac\geq 0\\ &\textrm{Dari}\: \: 21x^{2}+ax+21\\&a=21,\: b=a,\: c=21,\: \: \textrm{maka}\\ &a^{2}-4.21.21\geq 0\\ &\Leftrightarrow a^{2}-42^{2}\geq 0\\ &\Leftrightarrow (a+42)(a-42)\geq 0\\ &\Leftrightarrow \color{red}a\leq -42\: \: \color{black}atau\: \: \color{red}a\geq 42 \end{array}$.

Hubungan Fungsi Kuadrat dan Sebuah garis linear

$\begin{array}{ll}\\ 28.&\textrm{Garis}\: \: 2x+y=p\: \: \textrm{akan memotong parabola}\\ &4x^{2}-y=0\: \: \textrm{di dua titik apabila nilai}\: \: p=\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&p<-\displaystyle \frac{1}{4}&&&&&\textrm{D}.&\displaystyle p<-\frac{3}{4}\\ \textrm{B}.&\color{red}\displaystyle p>-\displaystyle \frac{1}{4}&&&\displaystyle &&\textrm{E}.&\displaystyle p<-1\\ \textrm{C}.&\displaystyle p<\displaystyle \frac{1}{4}\end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\begin{aligned}&\textrm{Diketahui bahwa garis}\: \: 2x+y=p\Rightarrow y=p-2x\\ &\textrm{memotong parabola}\: \: 4x^{2}-y=0\: \:  \textrm{di dua titik}\\ &\textrm{berbeda, maka}\\ &4x^{2}-y=0\Leftrightarrow 4x^{2}-(p-2x)=0\\ &4x^{2}+2x-p=0,\: \: \textrm{dengan}\: a=4,b=2,\: c=-p\\ &\textrm{Syarat memotong di dua titik berbeda adalah}:\\ &D=b^{2}-4ac>0\\ &\Leftrightarrow 2^{2}-4.4.(-p)>0\\ &\Leftrightarrow 4+16p>0\Leftrightarrow 16p>-4\Leftrightarrow p>-\displaystyle \frac{4}{16}\\ &\Leftrightarrow p>\color{red}-\displaystyle \frac{1}{4} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 29.&\textrm{Jika}\: \: ax^{2}+bx+c=0\: \: \textrm{tidak mempunyai akar real}\\ &\textrm{maka grafik fungsi}\: \: y=ax^{2}+bx+c\: \: \textrm{akan}\\ &\textrm{menyinggung garis}\: \: y=x\: \: \textrm{apabila}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\color{red}b<\displaystyle \frac{1}{2}&&&&&\textrm{D}.&\displaystyle b>2\\ \textrm{B}.&\displaystyle b>\displaystyle \frac{1}{2}&&&\displaystyle &&\textrm{E}.&\displaystyle 1<b<2\\ \textrm{C}.&\displaystyle b>1\end{array}\\\\ &\textbf{Jawab}:\textbf{A}\\ &\begin{aligned}&\textrm{Diketahui sebuah kurva parabola}\\ &y=ax^{2}+bx+c\: \: (\textrm{tidak punya akar real})\\ &\textrm{dan}\: \: \textrm{garis}\: \: y=x\: \: \textrm{saling bersinggungan, }\\&\textrm{sehingga}\: \: y=y\\ &\Leftrightarrow ax^{2}+bx+c=x\\ &\Leftrightarrow ax^{2}+bx-x+c=0\\ &\Leftrightarrow ax^{2}+(b-1)x+c=0\\ &\textrm{dengan}\: \: a=a,\: b=b-1,\: c=c \\&\textrm{Selanjutnya syarat menyinggung adalah}:\\ &D=b^{2}-4ac=0\\ &\Leftrightarrow (b-1)^{2}-4ac=0\Leftrightarrow (b-1)^{2}=4ac.\\ &\textrm{Karena}\: \: ax^{2}+bx+c\: \: (\textrm{tidak punya akar real})\\ &\textrm{maka}\: \: D<0\Leftrightarrow b^{2}-4ac<0\\ &\Leftrightarrow b^{2}-(b-1)^{2}<0\Leftrightarrow b^{2}-(b^{2}-2b+1)<0\\ &\Leftrightarrow 2b-1<0\Leftrightarrow b<\color{red}\displaystyle \frac{1}{2} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 30.&\textrm{Grafik}\: \: y=2x^{2}+ax+b\: \: \textrm{berpotongan dengan}\\ &\textrm{garis}\: \: y=3x-1\: \: \textrm{di titik}\: \: (x_{1},y_{1})\: \: \textrm{dan}\: \: (x_{2},y_{2})\\ &\textrm{Jika}\: \: x_{1}+x_{2}=3\: \: \textrm{dan}\: \: x_{1}\times x_{2}=4,\: \textrm{maka}\\ &a+b=....\\ &\begin{array}{lllllllll}\textrm{A}.&1&&&&&\textrm{D}.&\color{red}\displaystyle 4\\ \textrm{B}.&\displaystyle 2&&&\displaystyle &&\textrm{E}.&\displaystyle 5\\ \textrm{C}.&\displaystyle 3\end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ & \end{array}$



Contoh Soal 5 Fungsi Kuadrat (Kelas X/Fase E Semester Genap) Tahun 2024

$\begin{array}{ll}\\ 21.&\textrm{Jika}\: \: y=\sqrt{x^{2}-2x+1}+\sqrt{x^{2}+2x+1}\\ &\textrm{maka nilai}\: \: y=....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle \displaystyle 2x&&&&&\textrm{D}.&\color{red}\displaystyle \left | x-1 \right |+\left | x+1 \right |\\ \textrm{B}.&\displaystyle 2(x+1)&&\textrm{C}.&\displaystyle 0&&\textrm{E}.&\displaystyle \textrm{tidak ada yang benar} \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\textrm{Diketahui}\: \: y=\sqrt{x^{2}-2x+1}+\sqrt{x^{2}+2x+1}\\ &\Leftrightarrow y=\sqrt{(x-1)^{2}}+\sqrt{(x+1)^{2}}\\ &\Leftrightarrow y=\color{red}\left | x-1 \right |+\left | x+1 \right | \end{array}$.

$\begin{array}{ll}\\ 22.&\textrm{Jika}\: \: x\: \: \textrm{bilangan real dan}\: \: 4y^{2}+4xy+x+6=0,\\ &\textrm{maka nilai semua nilai}\: \: x\: \: \textrm{agar nilai}\: \: y\: \: \textrm{real adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\color{red}\displaystyle x\leq -2\: \: \textrm{atau}\: \: x\geq 3&&&&&\textrm{D}.&\displaystyle -3\leq x\leq 2\\ \textrm{B}.&\displaystyle x\leq 2\: \: \textrm{atau}\: \: x\geq 3&&&\displaystyle &&\textrm{E}.&\displaystyle -2\leq x\leq 3\\ \textrm{C}.&\displaystyle x\leq -3\: \: \textrm{atau}\: \: x\geq 2 \end{array}\\\\ &\textbf{Jawab}:\textbf{A}\\ &\begin{aligned}&4y^{2}+(4x)y+(x+6)=0\\ &\textrm{agar}\: \: y\: \: \textrm{real, maka}\: \: D=b^{2}-4ac\geq 0\\ &(4x)^{2}-4(4)(x+6)\geq 0\\ &\Leftrightarrow 16x^{2}-16(x+6)\geq 0\\ &\Leftrightarrow x^{2}-x-6\geq 0\\ &\Leftrightarrow (x-3)(x+2)\geq 0\\ &\Leftrightarrow \color{red}\displaystyle x\leq -2\: \: \textrm{atau}\: \: x\geq 3 \end{aligned}\\\\ &\textrm{Jika kita diletakkan dalam garis bilangan}\\ &\textrm{akan tampak seperti berikut}\\\\ &\begin{aligned}&\underset{\begin{matrix} \color{red}\Downarrow\\  \color{red}\Downarrow \end{matrix} }{\textrm{Daerah Positif}}\\ &\begin{array}{cc|ccc|ccc}\\ &&&&&&\\ +\: +&+\: +&-\: -&-\: -&-\: -&+\: +&+\: +\\\hline &-\displaystyle 2&&&&3&&\textbf{Sumbu-X}\\  \end{array}\\ &\begin{matrix} \textrm{dengan}\\ \textrm{titik}\: \: \: \: \: \: \\ \textrm{uji}\qquad\\ \color{red}x=0\quad \end{matrix}\qquad \overset{\begin{matrix} \color{red}\Uparrow\\ \color{red}\Uparrow \end{matrix}}{\textrm{Daerah negatif}}\qquad \overset{\begin{matrix} \color{red}\Uparrow\\ \color{red}\Uparrow \end{matrix}}{\textrm{Daerah positif}} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 23.&\textrm{Diketahui}\: \: f(x)=\displaystyle \frac{x(x-1)}{2}\: ,\: \textrm{nilai}\: \: f(x+2)= ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle f(x)+f(2)&&&&&\textrm{D}.&\displaystyle \frac{xf(x)}{x+2}\\ \textrm{B}.&\displaystyle (x+2)f(x)&&&\displaystyle &&\textrm{E}.&\color{red}\displaystyle \displaystyle \frac{(x+2)f(x+1)}{x}\\ \textrm{C}.&\displaystyle x(x+2)f(x) \end{array}\\\\ &\textbf{Jawab}:\textbf{E}\\ &f(x)=\displaystyle \frac{x(x-1)}{2},\\ &f(x+1)=\displaystyle \frac{(x+1)(x)}{2}\Leftrightarrow \displaystyle \frac{x+1}{2}=\frac{f(x+1)}{x}\: ,\: \textrm{maka}\\ &\begin{aligned}f(x+2)&=\displaystyle \frac{(x+2)((x+2)-1)}{2}=\frac{(x+2)(x+1)}{2}\\ &=\displaystyle \frac{f(x+1)}{x}.(x+2)=\color{red}\displaystyle \displaystyle \frac{(x+2)f(x+1)}{x} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 24.&\textrm{Jika}\: \: r_{1}\: \: \textrm{dan} \: \: r_{2}\: \: \textrm{merupakan dua penyelesaian }\\ &\textrm{dari persamaan}\: \: x^{2}+px+8=0\: ,\: \textrm{maka}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\color{red}\displaystyle \left | r_{1}+r_{2} \right |>4\sqrt{2}&&&\textrm{D}.&\displaystyle r_{1}<0\: \: \textrm{dan}\: \: r_{2}<0\\ \textrm{B}.&\displaystyle \left | r_{1} \right |>3\: \: \textrm{dan}\: \: \left | r_{2} \right |>3 &\displaystyle &&\textrm{E}.&\displaystyle -\left | r_{1}+r_{2} \right |<4\sqrt{2}\\ \textrm{C}.&\displaystyle \left | r_{1} \right |>2\: \: \textrm{dan}\: \: \left | r_{2} \right |>2 \end{array}\\\\ &\textbf{Jawab}:\textbf{A}\\ &\begin{aligned}&\textrm{Diketahui PK}:x^{2}+px+8=0\\ &\textrm{dengan}\left\{\begin{matrix} r_{1}\\  r_{2} \end{matrix}\right.\: \: \textrm{akar-akarnya, maka}\\ &\bullet \quad r_{1}+r_{2}=-p\\ &\bullet \quad r_{1}\times r_{2}=8\\ &\textrm{Asumsikan kedua akarnya real dan berbeda,}\\&\textrm{sehingga kita pilih nilai} \: \: \: D=b^{2}-4ac>0\\  &\Leftrightarrow (-p)^{2}-4.1.8>0\\ &\Leftrightarrow p^{2}-32>0\\ &\Leftrightarrow (\left | r_{1}+r_{2} \right |+\sqrt{32})(\left | r_{1}+r_{2} \right |-\sqrt{32})>0\\ &\Leftrightarrow \left | r_{1}+r_{2} \right |<-\sqrt{32}\: \: \textrm{atau}\: \: \color{red}\left | r_{1}+r_{2} \right |>\sqrt{32}\\&\qquad\overset{\begin{matrix} \Downarrow\\  \Downarrow \end{matrix}}{\textbf{tidak mungkin}} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 25.&\textrm{Jika titik}\: \: (1,y_{1})\: \: \textrm{dan}\: \: (-1,y_{2})\: \: \textrm{terletak pada}\\ &\textrm{grafik}\: \: y=ax^{2}+bx+c\: \: \textrm{dan}\: \: y_{1}-y_{2}=-6\\ &\textrm{maka nilai}\: \: b=....\\ &\begin{array}{lllllllll}\textrm{A}.&\color{red}\displaystyle \displaystyle -3&&&&&\textrm{D}.&\displaystyle \sqrt{ac}\\ \textrm{B}.&\displaystyle 0&&\textrm{C}.&\displaystyle 3&&\textrm{E}.&\displaystyle \displaystyle \frac{a+c}{2} \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\textrm{Diketahui}\: \: y=ax^{2}+bx+c,\: \: \textrm{untuk}\\ &\bullet \quad (1,y_{1})\Rightarrow y_{1}=a+b+c\\ &\bullet \quad (-1,y_{1})\Rightarrow y_{2}=a-b+c\\ &\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ -\\ &\qquad\qquad y_{1}-y_{2}= 2b=-6\Rightarrow b=\color{red}-3\end{array}$.

Contoh Soal 4 Fungsi Kuadrat (Kelas X/Fase E Semester Genap) Tahun 2024

$\begin{array}{ll}\\ 16.&\textrm{Batas nilai}\: \: m\: \: \textrm{yang memenuhi agar fungsi}\\ &\textrm{kuadrat}\: \: y=mx^{2}+(m+2)x+m\: \: \\ &\textrm{memotong sumbu-X di dua titik yang}\\ &\textrm{berbeda adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\color{red}\displaystyle -\displaystyle \frac{2}{3}<m<2&&&&&\\ \textrm{B}.&\displaystyle -2<m<\displaystyle \frac{2}{3}&&\\ \textrm{C}.&m<-2\: \: \textrm{atau}\: \: m>2\\ \textrm{D}.&m<-2\: \: \textrm{atau}\: \: m>\displaystyle \frac{2}{3}\\ \textrm{E}.&m<-\displaystyle \frac{2}{3}\: \: \textrm{atau}\: \: m>2 \end{array}\\\\ &\textbf{Jawab}:\textbf{A}\\ &\begin{aligned}&\textrm{Diketahui bahwa}\: \: y=mx^{2}+(m+2)x+m\\ &\textrm{dengan}\: \: a=m,\: b=m+2,\: \&\: \: c=m\\ &\textrm{memotong sumbu-X di dua titik berbeda}\\ &\textrm{hal ini artinya nilai Diskriminan }D>0\\ &D=b^{2}-4ac>0\\ &(m+2)^{2}-4m.m>0\\ &\Leftrightarrow m^{2}+4m+4-4m^{2}>0\\ &\Leftrightarrow -3m^{2}+4m+4>0\: \: \: (\textrm{dikali} -1)\\ &\Leftrightarrow 3x^{2}-4m-4<0\\ &\Leftrightarrow (m-2)(3m+2)\color{red}<0\\ &\Leftrightarrow \color{red}-\displaystyle \frac{2}{3}<m<2\\ &\textbf{Anda bisa menggunakan titik uji dulu}\\ &\textrm{untuk memastikannya wilayah yg dimaksud}\\ &\textrm{misalkan pilih}\: \: m=0\\ &\textrm{lalu kita ujikan, yaitu}:\\ &m=0\Rightarrow (0-2)(3.0+2)=-4\color{red}<0\: \: (\textbf{benar})\\\\ &\textrm{Jika kita diletakkan dalam garis bilangan}\\ &\textrm{akan tampak seperti berikut}\\\\ &\begin{aligned}&\underset{\begin{matrix} \color{red}\Downarrow\\  \color{red}\Downarrow \end{matrix} }{\textrm{Daerah Positif}}\\ &\begin{array}{cc|ccc|ccc}\\ &&&&&&\\ +\: +&+\: +&-\: -&-\: -&-\: -&+\: +&+\: +\\\hline &-\displaystyle \frac{2}{3}&&&&2&&\textbf{Sumbu}-m\\  \end{array}\\ &\begin{matrix} \textrm{dengan}\\ \textrm{titik}\: \: \: \: \: \: \\ \textrm{uji}\qquad\\ \color{red}m=0\quad \end{matrix}\qquad \overset{\begin{matrix} \color{red}\Uparrow\\ \color{red}\Uparrow \end{matrix}}{\textrm{Daerah negatif}}\qquad \overset{\begin{matrix} \color{red}\Uparrow\\ \color{red}\Uparrow \end{matrix}}{\textrm{Daerah positif}} \end{aligned} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 17.&\textrm{Batas nilai}\: \: m\: \: \textrm{yang menyebabkan fungsi kuadrat}\\ & y=(m-1)x^{2}-2(m-1)x+(2m+1)\: \: \\ &\textrm{definit positif adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle m>-2&&&&&\\ \textrm{B}.&\color{red}\displaystyle m>1&&\\ \textrm{C}.&m<1\\ \textrm{D}.&-2<m<1\\ \textrm{E}.&m<-\displaystyle 2\: \: \textrm{atau}\: \: m>1 \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\begin{aligned}&\textrm{Diketahui FK}:\\ &y=(m-1)x^{2}-2(m-1)x+(2m+1)\\ &\textrm{Syarat fungsi kuadrat definit positif}:\\ &\bullet\quad a>0\\ &\bullet \quad D=b^{2}-4ac<0\\ &\textrm{maka}\\ &a=m-1>0\Leftrightarrow m>1,\: \: \textrm{dan}\\ &D=(2(m-1))^{2}-4(m-1)(2m+1)<0\\ &\Leftrightarrow 4(m-1)^{2}-(m-1)(8m+4)<0\\ &\Leftrightarrow (m-1)(4m-4)-(m-1)(8m+4)<0\\ &\Leftrightarrow (m-1)(4m-4-8m-4)<0\\ &\Leftrightarrow (m-1)(-4m-8)<0\: ,\: \textbf{dibagi}\: \: -4\\ &\Leftrightarrow (m-1)(m+2)\color{red}>0 \end{aligned}\\\\ &\textrm{Jika kita diletakkan dalam garis bilangan}\\ &\textrm{akan tampak seperti berikut}\\\\ &\begin{aligned}&\underset{\begin{matrix} \color{red}\Downarrow\\  \color{red}\Downarrow \end{matrix} }{\textrm{Daerah Positif}}\\ &\begin{array}{cc|ccc|ccc}\\ &&&&&&\\ +\: +&+\: +&-\: -&-\: -&-\: -&+\: +&+\: +\\\hline &-\displaystyle 2&&&&1&&\textbf{Sumbu}-m\\  \end{array}\\ &\begin{matrix} \textrm{dengan}\\ \textrm{titik}\: \: \: \: \: \: \\ \textrm{uji}\qquad\\ \color{red}m=0\quad \end{matrix}\qquad \overset{\begin{matrix} \color{red}\Uparrow\\ \color{red}\Uparrow \end{matrix}}{\textrm{Daerah negatif}}\qquad \overset{\begin{matrix} \color{red}\Uparrow\\ \color{red}\Uparrow \end{matrix}}{\textrm{Daerah positif}} \end{aligned}  \end{array}$.

$\begin{array}{ll}\\ 18.&\textrm{Luas}\: \: L\: \: \textrm{suatu segitiga}\: \: ABC\: \: \textrm{diketahui}\\ & x(7-x)\: \: \textrm{cm}^{2}.\: \textrm{Luas maksimum segitiga} \\ &\textrm{tersebut adalah}\: \: ...\: \: \textrm{cm}^{2}\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle 3\displaystyle \frac{1}{2}&&&&&\textrm{D}.&\displaystyle 10\displaystyle \frac{1}{4}\\\\ \textrm{B}.&\displaystyle 5\displaystyle \frac{1}{2}&&\textrm{C}.&\displaystyle 7\displaystyle \frac{1}{4}&&\textrm{E}.&\color{red}\displaystyle 12\displaystyle \frac{1}{4} \end{array}\\\\ &\textbf{Jawab}:\textbf{E}\\ &\textrm{Diketahui}\: \: \left [ ABC \right ]=x(7-x)=7x-x^{2}\\ &\textrm{dengan}\: \: a=-1,\: \: b=7,\: \textrm{dan}\: \: c=0\\ &\textrm{akan}\: \textbf{maksimum},\: \textrm{saat}\: \: \left (x_{ss},f(x_{ss})\right )\\ &\textrm{yaitu}:\\ &x_{ss}=-\displaystyle \frac{b}{2a}=-\frac{7}{2.(-1)}=\frac{7}{2},\: \: \textrm{maka}\\ &f\left ( \displaystyle \frac{7}{2} \right )=7\left ( \displaystyle \frac{7}{2} \right )-\left ( \displaystyle \frac{7}{2} \right )^{2}=\displaystyle \frac{49}{2}-\frac{49}{4}=\color{red}\displaystyle \frac{49}{4} \end{array}$.

$\begin{array}{ll}\\ 19.&\textrm{Perhatikan gambar persegi ABCD dengan}\\ &\textrm{panjang sisinya  10 cm} \end{array}$.

$.\quad\begin{array}{ll}\\ &\textrm{Jika}\: \: BP=DQ=x\: \: \textrm{cm, maka luas }\\ &\textrm{maksimum segitiga}\: \: APQ\: \: \textrm{adalah}\: ...\: \: \textrm{cm}^{2}\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle 35&&&&&\textrm{D}.&\displaystyle 75\\ \textrm{B}.&\color{red}\displaystyle 50&&\textrm{C}.&\displaystyle 60&&\textrm{E}.&80 \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\textrm{Diketahui bahwa}\\ &\begin{aligned}\left [ APQ \right ]&=L_{\square ABCD}-\left [ ADQ \right ]-\left [ QCP \right ]-\left [ APB \right ]\\ &=10^{2}-\displaystyle \frac{1}{2}x.10-\frac{1}{2}.(10-x)^{2}-\frac{1}{2}x.10\\ &=100-10x-\displaystyle \frac{1}{2}(10-x)^{2}\\ &=10(10-x)-\displaystyle \frac{1}{2}(10-x)^{2}\\ &=(10-x)\left ( 10-\displaystyle \frac{1}{2}(10-x) \right )\\ &=(10-x)\left ( 5+\displaystyle \frac{1}{2}x \right )\\ &=50-\displaystyle \frac{1}{2}x^{2} \end{aligned}\\ &x_{ss}=-\displaystyle \frac{b}{2a}=-\displaystyle \frac{0}{2.\displaystyle \frac{1}{2}}=0,\: \: \textrm{maka nilai}\\ &f(x_{ss})=f(0)=50-\displaystyle \frac{1}{2}.0^{2}=\color{red}50 \end{array}$.

$\begin{array}{ll}\\ 20.&\textrm{Fungsi}\: \: f(x)=a(b-c)x^{2}+b(c-a)x+c(a-b)\\ &\textrm{akan memotong sumbu-X di titik}\: \: (1,0)\: \: \textrm{dan}\\ &\textrm{memenuhi}\: \: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle \displaystyle \frac{b(c-a)}{a(b-c)}&&&&&\textrm{D}.&\color{red}\displaystyle \displaystyle \frac{c(a-b)}{a(b-c)}\\\\ \textrm{B}.&\displaystyle \displaystyle \frac{a(b-c)}{c(a-b)}&&\textrm{C}.&\displaystyle \displaystyle \frac{a(b-c)}{b(c-a)}&&\textrm{E}.&\displaystyle \displaystyle \frac{c(a-b)}{b(c-a)} \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\textrm{Diketahui bahwa FK}:\\ &f(x)=a(b-c)x^{2}+b(c-a)x+c(a-b)\\ &\textrm{maka nilai}\\ &\bullet \quad x_{1}+x_{2}=-\displaystyle \frac{b(c-a)}{a(b-c)}=\displaystyle \frac{b(a-c)}{a(b-c)}\\ &\bullet \quad x_{1}\times x_{2}=\color{red}\displaystyle \frac{c(a-b)}{a(b-c)} \end{array}$

Contoh Soal 3 Fungsi Kuadrat (Kelas X/Fase E Semester Genap) Tahun 2024

 $\begin{array}{ll}\\ 11.&\textrm{Perhatikan gambar berikut} \end{array}$.

$.\quad\begin{array}{ll}\\ &\textrm{Persamaan grafik fungsi kuadrat pada}\\ &\textrm{pada gambar tersebut di atas dengan}\\ &\textrm{titik balik}\: \: \left ( -2,\displaystyle \frac{9}{2} \right )\: \: \textrm{dan melalui}\: (-1,4)\\ &\textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle y=\displaystyle \frac{1}{2}\left (2+4x-x^{2}  \right )&&&&&\\ \textrm{B}.&\color{red}\displaystyle y=\displaystyle \frac{1}{2}\left (5-4x-x^{2}  \right )&&\\ \textrm{C}.&y=\displaystyle \frac{1}{2}\left (5-2x-x^{2}  \right )\\ \textrm{D}.&y=1-4x-x^{2}\\ \textrm{E}.&y=5+3x-x^{2} \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\begin{aligned}&\textrm{Diketahui FK}:f(x)=ax^{2}+bx+c,\: \: \textrm{dengan}\\ &\textrm{koordinat}\: \: \left ( x_{ss},y_{ss} \right )=\left ( -2,\displaystyle \frac{9}{2} \right )\: \: \textrm{dan melalui}\\ &\textrm{titik}\: \: (-1,4)\: ,\: (\color{red}-5\color{black},0)\: ,\: \textrm{serta}\: \: (\color{red}1\color{black},0),\: \textrm{maka}\\ &y=a(x-x_{ss})^{2}+y_{ss}=a(x-x_{1})(x-x_{2})\\ &\textrm{Pilih salah satunya, di sini saya pilih formula}\\ &\textrm{yang kedua, yaitu}:\color{red}y=a(x-x_{1})(x-x_{2})\\ &\Leftrightarrow 4=a(-1-(-5))(-1-1)\Leftrightarrow 4=a(4)(-2)\\ &\Leftrightarrow a=-\displaystyle \frac{1}{2}\\ &\textrm{Selanjutnya kembalikan ke formula semula}\\ &\textrm{yaitu}:\\ &y=a(x-x_{1})(x-x_{2})=-\displaystyle \frac{1}{2}(x-(-5))(x-1)\\ &\Leftrightarrow y=-\displaystyle \frac{1}{2}(x+5)(x-1)=\color{red}\displaystyle \frac{1}{2}(5-4x-x^{2}) \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 12.&\textrm{Gambar berikut adalah fungsi parabola}\\ &\textrm{dengan persamaan}\: \: y=ax^{2}-4x+k \end{array}$.

$.\quad\begin{array}{ll}\\ &\textrm{Jika nilai minimum}\: \: y\: \: \textrm{adalah}\: \: -8\: \: \textrm{maka}\\ &\textrm{nilai}\: \: k\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle -5&&&&&\textrm{D}.&\displaystyle 2\\ \textrm{B}.&\displaystyle -4&&\textrm{C}.&\color{red}\displaystyle -2&&\textrm{E}.&5 \end{array}\\\\ &\textbf{Jawab}:\textbf{C}\\ &\begin{aligned}&\textrm{Diketahui FK}:f(x)=ax^{2}-4x+k,\: \: \textrm{dengan}\\ &\textrm{koordinat}\: \: \left ( x_{ss},y_{ss} \right )=\left ( 3,-8 \right )\: \: \textrm{maka}\\ &y=a(x-x_{ss})^{2}+y_{ss}\\ &-2=a(0-3)^{2}+(-8)\Leftrightarrow -2+8=9.a\\&6=9a\Leftrightarrow a=\displaystyle \frac{6}{9}=\frac{2}{3}\\ &\textrm{Kembali ke persamaan awal, yaitu}:\\ &y=\displaystyle \frac{2}{3}(x-3)^{2}-8=\frac{2}{3}(x^{2}-6x+9)-8\\ &\Leftrightarrow y=\displaystyle \frac{2}{3}x^{2}-4x+6-8=\color{red}\displaystyle \frac{2}{3}x^{2}-4x-2\\ &\textrm{Jadi, nilai}\: \: \: k=\color{red}-2 \end{aligned} \end{array}$.

 $\begin{array}{ll}\\ 13.&\textrm{Perhatikan gambar berikut} \end{array}$.

$.\quad\begin{array}{ll}\\ &\textrm{Persamaan grafik fungsi kuadrat pada}\\ &\textrm{gambar di atas adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle y=-(x-3)^{2}-1&&&&&\\ \textrm{B}.&\displaystyle y=-(x-3)^{2}+1&&\\ \textrm{C}.&y=-\displaystyle \frac{1}{3}\left (x-3 \right )^{2}+1\\ \textrm{D}.&\color{red}y=-\displaystyle \frac{1}{3}\left (x-3 \right )^{2}-1\\ \textrm{E}.&y=-\displaystyle \frac{1}{3}\left (x+3 \right )^{2}-1 \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\begin{aligned}&\textrm{Diketahui FK dengan koordinat}\\ &\left ( x_{ss},y_{ss} \right )=\left ( 3,-1 \right )\: \: \textrm{dan melalui titik}\: \: (0,-4)\\ &\textrm{maka}\: \: y=a(x-x_{ss})^{2}+y_{ss}\\ &-4=a(0-3)^{2}+(-1)\Leftrightarrow -4+1=9.a\\&-3=9a\Leftrightarrow a=-\displaystyle \frac{1}{3}\\ &\textrm{Kembali ke persamaan awal, yaitu}:\\ &y=\color{red}-\displaystyle \frac{1}{3}(x-3)^{2}-1 \end{aligned} \end{array}$.

 $\begin{array}{ll}\\ 14.&\textrm{Perhatikan gambar berikut} \end{array}$.

$.\quad\begin{array}{ll}\\ &\textrm{Jika grafik fungsi kuadrat di atas adalah}\\ &y=ax^{2}+bx+c,\: \textrm{maka hasil kali dari}\\ &a.b.c\: \: \textrm{ adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle -20&&&&&\textrm{D}.&\displaystyle 3\\ \textrm{B}.&\displaystyle -6&&\textrm{C}.&\color{red}\displaystyle -3&&\textrm{E}.&20 \end{array}\\\\ &\textbf{Jawab}:\textbf{C}\\ &\begin{aligned}&\textrm{Diketahui FK}:ax^{2}+bx+c\\ &\left ( x_{ss},y_{ss} \right )=\left ( -2,-4 \right )\: \: \textrm{dan melalui titik}\: \: (0,-6)\\ &\textrm{maka}\: \: y=a(x-x_{ss})^{2}+y_{ss}\\ &-6=a(0-(-4))^{2}+(-2)\Leftrightarrow -6+2=16.a\\&-4=16a\Leftrightarrow a=-\displaystyle \frac{1}{4}\\ &\textrm{Kembali ke persamaan awal, yaitu}:\\ &y=\color{red}-\displaystyle \frac{1}{4}(x+4)^{2}-2\\ &=-\displaystyle \frac{1}{4}x^{2}-2x-6\left\{\begin{matrix} a=-\displaystyle \frac{1}{4}\\  b=-2\\  c=-6 \end{matrix}\right.\\ &\textrm{Sehingga nilai}\: \: abc=\left ( -\displaystyle \frac{1}{4} \right ).(-2).(-6)=\color{red}-3 \end{aligned}  \end{array}$.

$\begin{array}{ll}\\ 15.&\textrm{Grafik fungsi kuadrat}\: \: y=f(x)=x^{2}\\ &\textrm{digeser 1 satuan ke kanan dan dilanjutkan}\\ &\textrm{1 satuan ke atas. Persamaan parabola }\\ &\textrm{yang baru adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle y+1=(x+1)^{2}&&&&&\\ \textrm{B}.&\displaystyle y+1=x^{2}+1&&\\ \textrm{C}.&y-1=x^{2}-1\\ \textrm{D}.&\color{red}y-1=(x-1)^{2}\\ \textrm{E}.&y=(x+1)^{2}+1 \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\textrm{Sebagai pedoman bantuan, suatu fungsi}\\ &\textrm{di geser ke kanan berarti}:x-1\: \: \textrm{dan}\\ &\textrm{digeser ke atas berarti}:y-1\\ &\textbf{Catatan}:\\ &\textrm{Andai digeser ke kiri 1 kemudian ke bawah 1,}\\ &\textrm{maka garfik akan menjadi}:y+1=(x+1)^{2}\\&\textrm{Berikut ilustrasi grafiknya}  \end{array}$.



Contoh Soal 2 Fungsi Kuadrat (Kelas X/Fase E Semester Genap) Tahun 2024

 $\begin{array}{ll}\\ 6.&\textrm{Fungsi kuadrat}\: \: f(x)=(2x+p)^{2}+q\\ &\textrm{dengan titik balik minimum}\: \:  (-1,3).\\ &\textrm{Nilai}\: \: p+q\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle 2&&&&&\textrm{D}.&\displaystyle 6\\ \textrm{B}.&\displaystyle 4&&\textrm{C}.&\color{red}\displaystyle 5&&\textrm{E}.&7 \end{array}\\\\ &\textbf{Jawab}:\textbf{C}\\ &\begin{aligned}&\textrm{Diketahui FK}:f(x)=(2x+p)^{2}+q,\: \: \textrm{dengan}\\ &\textrm{titik}\: \: \left ( x_{ss},y_{ss} \right )=(-1,3),\: \: \textrm{maka}\\ &f(x)=4x^{2}+4px+p^{2}+q\: \: \textrm{dengan}\\ &x_{ss}=-1=-\displaystyle \frac{b}{2a}\Leftrightarrow 1=\displaystyle \frac{4p}{2.4}\Leftrightarrow p=2\\ &\textrm{Selanjutnya}\\ &f(-1)=(2.(-1)+2)^{2}+q=3\Leftrightarrow q=3\\ &\textrm{maka}\\ &p+q=\color{red}2+3=5 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 7.&\textrm{Jika grafik fungsi kuadrat}\: \: f(x)=ax^{2}+x+c\\ &\textrm{dengan titik balik minimum}\: \:  (-1,3)\: \: \textrm{dan melalui}\\ &(2,12)\: \: \textrm{maka}\: \: a+b+c\: \: \textrm{sama dengan}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\color{red}\displaystyle 7&&&&&\textrm{D}.&\displaystyle 13\\ \textrm{B}.&\displaystyle 9&&\textrm{C}.&\displaystyle 11&&\textrm{E}.&15 \end{array}\\\\ &\textbf{Jawab}:\textbf{A}\\&\begin{aligned}&\textrm{Diketahui FK}:f(x)=ax^{2}+bx+c,\: \: \textrm{dengan}\\ &\textrm{titik}\: \: \left ( x_{ss},y_{ss} \right )=(-1,3)\: \: \textrm{dan melalui titik}\\ &(2,12)\: ,\: \textrm{maka}\\ &\begin{array}{c|c}\hline \begin{aligned} &12=4a+2b+c\\ &3=a-b+c\\&\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ -\\ &9=3a+3b\\ &\Leftrightarrow 3=a+b \end{aligned}&\begin{aligned}&-\displaystyle \frac{b}{2a}=-1,\: \: \textrm{maka}\\&2a-b=0,\: \: \textrm{dan ingat}\\ &a+b=3\\ &\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ +\\ &3a=3\\ &\Leftrightarrow a=1,\: \: \textrm{maka}\: \: b=2 \end{aligned} \end{array}\\ &\textrm{dan}\\ &a-b+c=3\Rightarrow 1-2+c=3\Rightarrow c=4\\ &\textrm{Jadi, nilai}\: \: a+b+c=\color{red}1+2+4=7  \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 8.&\textrm{Nilai minimum grafik fungsi}\: \: f(x)=ax^{2}-2x+8\\ &\textrm{adalah 5. Nilai }\: \:  6a\: \: \: \textrm{sama dengan}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle 1&&&&&\textrm{D}.&\displaystyle 9\\ \textrm{B}.&\color{red}\displaystyle 2&&\textrm{C}.&\displaystyle 4&&\textrm{E}.&12 \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\begin{aligned}&\textrm{Diketahui FK}:f(x)=ax^{2}-2x+8,\: \: \textrm{dengan}\\ &\textrm{titik}\: \: \color{red}\left ( x_{ss},y_{ss} \right )=\left (-\displaystyle \frac{b}{2a},5  \right )\: \: \color{black}\textrm{maka}\\ &\bullet \quad x_{ss}=-\displaystyle \frac{b}{2a}=-\frac{-2}{2a}=\color{red}\frac{1}{a}\\ &\bullet \quad y_{ss}=f\left ( x_{ss} \right )=a\left ( \displaystyle \frac{1}{a} \right )^{2}-2\left ( \displaystyle \frac{1}{a} \right )+8=\color{red}5\\ &\qquad\quad \Leftrightarrow \displaystyle \frac{1}{a}-\frac{2}{a}=5-8\Leftrightarrow -\displaystyle \frac{1}{a}=-3\\ &\qquad\quad \Leftrightarrow a=\displaystyle \frac{1}{3}\\ &\textrm{maka nilai}\: \: 6a=6\left ( \displaystyle \frac{1}{3} \right )=\color{red}2  \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 9.&\textrm{Jika kurva fungsi}\: \: f(x)=x^{2}+bx+c\\ &\textrm{memotong sumbu-X di}\: \:  (1,0)\: \: \: \textrm{dan}\: \: (5,0),\\ &\textrm{maka nilai}\: \: b^{2}-c^{2}\: \: \textrm{sama dengan}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle -11&&&&&\textrm{D}.&\color{red}\displaystyle 11\\ \textrm{B}.&\displaystyle -3&&\textrm{C}.&\displaystyle 6&&\textrm{E}.&13 \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\begin{aligned}&\textrm{Diketahui FK}:f(x)=x^{2}+bx+c,\: \: \textrm{memotong}\\ &\textrm{sumbu-X di}\: \: (1,0)\:  \& \: (5,0)\: \: \textrm{artinya}\: x_{1}=1\: \&\: x_{2}=5\\ &\textrm{maka}\\ &x_{ss}=\displaystyle \frac{-b}{2.1}=\displaystyle \frac{x_{1}+x_{2}}{2}=\frac{1+5}{2}\Leftrightarrow b=-6\\ &\textrm{dan kita juga memiliki}\\ &f(1)=1+b+c=0\Rightarrow c=-b-1=6-1=5\\ &\textrm{Sehingga}\\ &b^{2}-c^{2}=(-6)^{2}-5^{2}=36-25=\color{red}11 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 10.&\textrm{Perhatikan gambar berikut} \end{array}$.

$.\quad\begin{array}{ll}\\ &\textrm{Persamaan grafik fungsi kuadrat pada}\\ &\textrm{pada gambar tersebut di atas adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle y=6x^{2}-12x+18&&&&&\\ \textrm{B}.&\displaystyle y=6x^{2}+12x+16&&\\ \textrm{C}.&y=6x^{2}-24x+17\\ \textrm{D}.&\color{red}y=6x^{2}-24x+19\\ \textrm{E}.&y=6x^{2}-24x+29 \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\begin{aligned}&\textrm{Diketahui FK}:f(x)=ax^{2}+bx+c,\: \: \textrm{dengan}\\ &\textrm{koordinat}\: \: \left ( x_{ss},y_{ss} \right )=(2,-5)\: \: \textrm{dan melalui}\\ &\textrm{titik}\: \: (3,1)\: ,\: \textrm{maka}\\ &y=a(x-x_{ss})^{2}+y_{ss}\Leftrightarrow 1=a(3-2)^{2}+(-5)\\ &\Leftrightarrow 6=a.1^{2}\Leftrightarrow a=6\\ &\textrm{maka persamaan fungsi kuadratnya adalah}:\\ &y=a(x-x_{ss})^{2}+y_{ss}\\ &\Leftrightarrow y=6(x-2)^{2}-5\Leftrightarrow y=6(x^{2}-4x+4)-5\\ &\Leftrightarrow y=\color{red}6x^{2}-24x+19 \end{aligned} \end{array}$


Contoh Soal 1 Fungsi Kuadrat (Kelas X/Fase E Semester Genap) Tahun 2024

$\begin{array}{ll}\\ 1.&\textrm{Diketahui fungsi}\: \: f(x)=x^{2}-2x-15. \: \: \textrm{Jika}\\ &\textrm{domain}\: \: \left \{ x|-4\leq x\leq 2,x\in \mathbb{R} \right \}\: ,\: \textrm{maka}\\ &range\textrm{-nya adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&-15\leq f(x)\leq 20&&&\\ \textrm{B}.&-15\leq f(x)\leq 9&&\\ \textrm{C}.&\color{red}\displaystyle -16\leq f(x)\leq 9&&\\ \textrm{D}.&\displaystyle -16\leq f(x)\leq 20&&\\ \textrm{E}.&-15\leq f(x)\leq 5&&\\ \end{array}\\\\ &\textbf{Jawab}:\textbf{C}\\ &\begin{aligned}&\textrm{Diketahui FK}:f(x)=x^{2}-2x-15,\: \: \textrm{dengan}\\ &\textrm{D}_{f}=\left \{ x|-4\leq x\leq 2,x\in \mathbb{R} \right \},\\ &\textrm{maka}\: \: range\: \: \textrm{fungsinya adalah}\: \:  \textrm{R}_{f},\: \: \textrm{di mana}\\ &\textrm{R}_{f}\: \: \textrm{diperoleh dengan cara di antaranya}\\ &\textrm{mensubstitusikan langsung ke fungsinya, yaitu}:\\ &f(-4)=(-4)^{2}-2(-4)-15=\color{red}9\\ &f(-3)=(-3)^{2}-2(-3)-15=0\\ &f(-2)=(-2)^{2}-2(-2)-15=-7\\ &f(-1)=(-1)^{2}-2(-1)-15=-12\\ &f(0)=(0)^{2}-2(0)-15=-15\\&f(1)=(1)^{2}-2(1)-15=\color{red}-16\\&f(2)=(2)^{2}-2(2)-15=-15\\ &\textrm{Jadi, range fungsinya}:\textrm{R}_{f}=\color{red}\displaystyle -16\leq f(x)\leq 9 \end{aligned}  \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Daerah hasil fungsi}\: \: f(x)=-x^{2}+6x-5 \: \: \textrm{untuk}\\ &\textrm{daerah asal}\: \: \left \{ x|-1\leq x\leq 6,x\in \mathbb{R} \right \}\: \: \textrm{dan}\\ &y=f(x)\: \: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\left \{ y|-5\leq y\leq 0,y\in \mathbb{R} \right \}&&&\\ \textrm{B}.&\color{red}\left \{ y|-12\leq y\leq 4,y\in \mathbb{R} \right \}&&\\ \textrm{C}.&\displaystyle \left \{ y|-4\leq y\leq 1,y\in \mathbb{R} \right \}&&\\ \textrm{D}.&\displaystyle \left \{ y|-5\leq y\leq 4,y\in \mathbb{R} \right \}&&\\ \textrm{E}.&\left \{ y|-1\leq y\leq 6,y\in \mathbb{R} \right \}&&\\ \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\begin{aligned}&\textrm{Masih sama dengan cara di atas. Diketahui FK}:\\ &f(x)=-x^{2}+6x-5,\: \: \textrm{dengan}\\ &\textrm{D}_{f}=\left \{ x|-1\leq x\leq 6,x\in \mathbb{R} \right \},\\ &\textrm{maka}\: \: range\: \: \textrm{fungsinya adalah}\: \:  \textrm{R}_{f},\: \: \textrm{di mana}\\ &\textrm{R}_{f}\: \: \textrm{diperoleh dengan cara di antaranya}\\ &\textrm{mensubstitusikan langsung ke fungsinya, yaitu}:\\ &f(-1)=-(-1)^{2}+6(-1)-5=\color{red}-12\\ &f(0)=-(0)^{2}+6(0)-5=-5\\ &f(1)=-(1)^{2}+6(1)-5=0\\ &f(2)=-(2)^{2}+6(2)-5=3\\ &f(3)=-(3)^{2}+6(3)-5=\color{red}4\\&f(4)=-(4)^{2}+6(1)-5=3\\&f(5)=-(5)^{2}+6(5)-5=0\\ &f(6)=-(6)^{2}+6(6)-5=-5\\ &\textrm{Jadi, range fungsinya}:\textrm{R}_{f}=\color{red}\left \{ y|-12\leq y\leq 4,y\in \mathbb{R} \right \} \end{aligned}  \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Titik balik parabola}\: \: y=f(x)=-3x^{2}-18x+2\\ &\textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle (-3,19)&&&&&\textrm{D}.&\displaystyle (3,27)\\ \textrm{B}.&\color{red}\displaystyle (-3,29)&&\textrm{C}.&\displaystyle (-3,23)&&\textrm{E}.&(3,29) \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\begin{aligned}&\textrm{Diketahui FK}:y=f(x)=-3x^{2}-18x+2\\ &\textrm{Koordinat titik baliknya}=\color{red}\left ( x_{ss},y_{ss} \right )\\ &=\left ( \displaystyle -\frac{b}{2a},-\frac{D}{4a} \right )=\left ( \displaystyle -\frac{b}{2a},-\frac{b^{2}-4ac}{4a} \right )\: \: \textrm{atau}\\ &=\left ( -\displaystyle \frac{b}{2a},f\left ( -\displaystyle \frac{b}{2a} \right ) \right )\\ &=\left ( -\displaystyle \frac{-18}{2(-3)},-\displaystyle \frac{(-18)^{2}-4.(-3).(2)}{4(-3)} \right )\\ &=\color{red}\left (-3,29  \right ) \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 4.&\textrm{Fungsi kuadrat dengan titik balik minimum}\\ &(3,-4)\: \: \textrm{dan melalui titik}\: \:  (0,5)\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\color{red}y=x^{2}-6x+5&&&\\ \textrm{B}.&y=x^{2}+6x+5&&\\ \textrm{C}.&\displaystyle y=2x^{2}-6x+5&&\\ \textrm{D}.&\displaystyle y=2x^{2}+6x+5&&\\ \textrm{E}.&y=2x^{2}-6x-5&&\\ \end{array}\\\\ &\textbf{Jawab}:\textbf{A}\\ &\begin{aligned}&\textrm{Diketahui FK}:y=f(x)=a\left ( x-x_{ss} \right )^{2}+y_{ss}\\ &\textrm{Koordinat titik baliknya}=\color{red}\left ( x_{ss},y_{ss} \right )=(3,-4)\\ &\textrm{dan melalui titik}\: \: (0,5),\: \textrm{maka}\\ &5=a(0-\color{red}3\color{black})^{2}+(\color{red}-4\color{black})\Leftrightarrow 5+4=a.9\Leftrightarrow a=\displaystyle \frac{9}{9}=1\\ &\textrm{Sehingga Fk-nya dengan}\: \: a=1\: \: \textrm{adalah}:\\ &f(x)=a\left ( x-x_{ss} \right )^{2}+y_{ss}=1.(x-3)^{2} +(-4)\\ &\qquad =(x^{2}-6x+9)-4\\ &\qquad=\color{red}x^{2}-6x+5 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 5.&\textrm{Fungsi kuadrat yang melalui titik}\: \: (0,2)\: \: \textrm{dan}\\ &(-1,0)\: \: \textrm{dengan sumbu simetri garis}\\ &x=\displaystyle \frac{1}{2}\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\color{red}y=(x+1)(2-x)&&&\\ \textrm{B}.&y=(x-1)(x+2)&&\\ \textrm{C}.&\displaystyle y=2-x-x^{2}&&\\ \textrm{D}.&\displaystyle y=x^{2}-x+2&&\\ \textrm{E}.&y=-(x-1)(x+2)&&\\ \end{array}\\\\ &\textbf{Jawab}:\textbf{A}\\ &\begin{aligned}&\textrm{Diketahui FK}:y=f(x)=a\left ( x-x_{ss} \right )^{2}+y_{ss}\\ &\textrm{atau}\: \: y=f(x)=a(x-x_{1})(x-x_{2})\: \: \textrm{dengan}\\ &x_{1}\: \: \textrm{dan}\: \: x_{2}\: \: \textrm{sebagai akar-akarnya}\\ &\textrm{Dan diketahui pula sebagaimana keterangan}\\ &\textrm{dalam soal, maka},\: \: x_{1}=-1,\: x_{ss}=\displaystyle \frac{1}{2}\\ &\textrm{Sehingga}\\ &x_{ss}=-\displaystyle \frac{b}{2a}=\displaystyle \frac{x_{1}+x_{2}}{2}\Leftrightarrow \displaystyle \frac{1}{2}=\frac{-1+x_{2}}{2}\Leftrightarrow x_{2}=2\\ &\textrm{Selanjutnya garfik melalui}\: \: (0,2),\: \textrm{maka}\\ &y=a(x-x_{1})(x-x_{2})\Leftrightarrow 2=a(0-(-1))(0-2)\\ &\Leftrightarrow 2=a(1)(-2)\Leftrightarrow a=-1\\ &\textrm{Sehingga fungsi akan berupa}\\ &f(x)=a(x-x_{1})(x-x_{2})=-1(x+1)(x-2)\\ &\qquad =\color{red}(x+1)(2-x) \end{aligned} \end{array}$.

Contoh Soal 4 Persamaan Kuadrat (Kelas X/Fase E Semester Genap) Tahun 2024

$\begin{array}{ll}\\ 16.&\textrm{Terdapat dua bilangan bulat positif yang akan}\\ &\textrm{disusun di antara 3 dan 9 sehingga tiga bilangan}\\ &\textrm{pertama membentuk barisan geometri, sedangkan}\\ &\textrm{tiga barisan terakhir membentuk barisan aritmetika}.\\ &\textrm{Jumlah dari dua bilangan tersebut adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&13\displaystyle \frac{1}{2}&&&&&\textrm{D}.&\displaystyle 10\\ \textrm{B}.&\color{red}\displaystyle 11\frac{1}{4}&&\textrm{C}.&\displaystyle 10\frac{1}{2}&&\textrm{E}.&9\displaystyle \frac{1}{2} \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\begin{aligned}&\textrm{Misalkan bilangan yang dimaksud adalah}:3,x,y,9\\ &\textrm{maka}\\ &\bullet \quad\textrm{Membentuk barisan geometri}:3,x,y\Rightarrow x^{2}=3y\\ &\bullet \quad\textrm{Membentuk barisan aritmetika}:x,y,9\Rightarrow 2y=x+9\\ &\textrm{Selanjutnya}\\ &x^{2}=3y=3\left ( \displaystyle \frac{x+9}{2} \right )\Leftrightarrow 2x^{2}-3x-27=0\\ &\Leftrightarrow x_{1,2}=\displaystyle \frac{3\pm \sqrt{3^{2}+4.2.27}}{2.2}=\displaystyle \frac{3\pm 15}{4}\\ &\textrm{Pilih}\: \: x=\displaystyle \frac{3+15}{4}=\frac{9}{2}\Rightarrow y=\displaystyle \frac{\displaystyle \frac{9}{2}+9}{2}=\frac{27}{4},\\ &\textrm{maka nilai}\: \: x+y=\displaystyle \frac{9}{2}+\frac{27}{4}=\frac{18+27}{4}=\frac{45}{4}=\color{red}11\displaystyle \frac{1}{4}  \end{aligned} \end{array}$

Contoh Soal 3 Persamaan Kuadrat (Kelas X/Fase E Semester Genap) Tahun 2024

 $\begin{array}{ll}\\ 11.&\textrm{Jumlah kuadrat dari penyelesaian persamaan}\\ &\textrm{kuadrat}\: \: x^{2}+2hx=3\: \: \textrm{adalah 10. Nilai mutlak}\\ &\textrm{dari}\: \: h\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\color{red}\displaystyle -1&&&&&\textrm{D}.&\displaystyle 2\\ \textrm{B}.&\displaystyle \displaystyle \frac{1}{2}&&\textrm{C}.&\displaystyle \displaystyle \frac{3}{2}&&\textrm{E}.&\textrm{Salah semua} \end{array}\\\\ &\textbf{Jawab}:\textbf{A}\\ &\textrm{Misalkan penyelesaian dari PK}:x^{2}+2hx-3=0\\ &\alpha \: \: \textrm{dan}\: \: \beta ,\: \textrm{maka}\: \: \alpha ^{2}+\beta ^{2}=10\Leftrightarrow (\alpha +\beta )^{2}-2\alpha \beta =10\\ &\Leftrightarrow \left (  -\displaystyle \frac{b}{a}\right )^{2}-2\left ( \displaystyle \frac{c}{a} \right )=10\Leftrightarrow (-2h)^{2}-2(-3)=10\\ &\Leftrightarrow 4h^{2}=10-6=4\Leftrightarrow h^{2}=1\Leftrightarrow \left | h \right |=1\Leftrightarrow h=\pm 1\\ &\textrm{Jadi, nilai yang memenuhi adalah}\: \: \color{red}h=-1 \end{array}$.

$\begin{array}{ll}\\ 12.&\textrm{Jika}\: \: x^{2}+2\left | x \right |-8=0\: ,\: \textrm{maka nilai}\: \: x\\ &\textrm{yang memenuhi adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle -4&&&&&\textrm{D}.&\displaystyle 0\\ \textrm{B}.&\color{red}\displaystyle -2&&\textrm{C}.&\displaystyle -1&&\textrm{E}.&4 \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &x^{2}+2\left | x \right |-8=0\Leftrightarrow \left ( \left | x \right |+4 \right )\left ( \left | x \right |-2 \right )=0\\ &\Leftrightarrow \left | x \right |=-4\: (\textrm{bukan solusi})\: \: \textrm{atau}\: \: \left | x \right |=2\: (\textrm{solusi})\\ &\textrm{Pilih}\: \: \left | x \right |=2\Rightarrow x=\color{red}\pm 2 \end{array}$.

$\begin{array}{ll}\\ 13.&\textrm{Jika}\: \: \alpha \: \: \textrm{dan}\: \: \beta \: \: \textrm{akar-akar dari persamaan}\\ &x^{2}-2x=\left | x-1 \right |+5,\: \textrm{maka nilai }\\ &\alpha +\beta\: \:  \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle -2&&&&&\textrm{D}.&\displaystyle 1\\ \textrm{B}.&\displaystyle -1&&\textrm{C}.&\displaystyle 0&&\textrm{E}.&\color{red}2 \end{array}\\\\ &\textbf{Jawab}:\textbf{E}\\ &\begin{aligned}&x^{2}-2x=\left | x-1 \right |+5\Leftrightarrow x^{2}-2x-5=\left | x-1 \right |\\ &\color{blue}\textrm{Untuk}\: \: \color{black}x\geq 1,\color{blue}\: \: \textrm{persamaan akan menjadi}\\ &x^{2}-2x-5=x-1\Leftrightarrow x^{2}-2x-x-5+1=0\\ &x^{2}-3x-4=0\Leftrightarrow (x-4)(x+1)=0\\ &\Leftrightarrow x=4\: (\textrm{memenuhi})\: \: \textrm{atau}\: \: x=-1\: (\textrm{tidak})\\ &\color{blue}\textrm{Untuk}\: \: \color{black}x<1,\color{blue}\: \: \textrm{persamaan akan menjadi}\\ &x^{2}-2x-5=1-x\Leftrightarrow x^{2}-2x+x-5-1=0\\ &x^{2}-x-6=0\Leftrightarrow (x-3)(x+2)=0\\ &\Leftrightarrow x=3\: (\textrm{tidak})\: \: \textrm{atau}\: \: x=-2\: (\textrm{memenuhi})\\ &\color{blue}\textrm{Pilih}\: \: \alpha =4,\: \textrm{dan}\: \: \beta =-2,\: \textrm{maka}\\ &\alpha +\beta =4+(-2)=\color{red}2   \end{aligned}  \end{array}$.

$\begin{array}{ll}\\ 14.&\textrm{Persamaan kuadrat}\: \: x^{2}-2x+m=0 \: \: \textrm{mempunyai }\\ &\textrm{akar-akar yang rasional, maka nilai}\: \: m\: \: \textrm{yang}\\ &\textrm{mungkin adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\color{red}1-\displaystyle \frac{k^{2}}{4}&\textrm{untuk}&k=0,1,2,\cdots &&&\\ \textrm{B}.&1+\displaystyle \frac{k^{2}}{4}&\textrm{untuk}&k=0,1,2,\cdots &&\\ \textrm{C}.&\displaystyle \frac{k^{2}}{4}&\textrm{untuk}&k=0,1,2,\cdots &&\\ \textrm{D}.&\displaystyle \frac{k^{2}-1}{4}&\textrm{untuk}&k=0,1,2,\cdots &&\\ \textrm{E}.&1-\displaystyle \frac{k}{4}&\textrm{untuk}&k=0,1,2,\cdots &&\\ \end{array}\\\\ &\textbf{Jawab}:\textbf{A}\\ &\begin{aligned}&\textrm{Akar-akar dari PK}:x^{2}-2x+m=0\\ &x_{1,2}=\displaystyle \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}=\frac{2\pm \sqrt{4-4m}}{2}\\  &\textrm{Agar nilai}\: \: m\: \: \textrm{rasional, maka}\\ &4-4m=k^{2}\Leftrightarrow 4m=4-k^{2}\Leftrightarrow m=\color{red}1-\displaystyle \frac{k^{2}}{4}  \end{aligned}  \end{array}$.

$\begin{array}{ll}\\ 15.&\textrm{Penyelesaian terbesar dikurangi penyelesaian}\\ &\textrm{terkecil dari persamaan kuadrat}\\ &\left ( 7+4\sqrt{3} \right )x^{2}+\left ( 2+\sqrt{3} \right )x-2=0\: \:  \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle -2+3\sqrt{3}&&&&&\textrm{D}.&\color{red}\displaystyle 6-3\sqrt{3}\\ \textrm{B}.&\displaystyle 2-\sqrt{3}&&\textrm{C}.&\displaystyle 6+3\sqrt{3}&&\textrm{E}.&3\sqrt{3}+2 \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\begin{aligned}&\textrm{Misalkan}\: \: \alpha \: \: \textrm{dan}\: \: \beta \: \: \textrm{adalah akar-akarnya, maka}\\&\alpha -\beta =\left |\displaystyle \frac{\sqrt{D}}{a}  \right |=\frac{\sqrt{b^{2}-4ac}}{a}\\ &\qquad=\left |\displaystyle \frac{\sqrt{(2+\sqrt{3})^{2}-4(7+4\sqrt{3})(-2)}}{7+4\sqrt{3}}  \right |\\ &\qquad=\left |\displaystyle \frac{\sqrt{4+3+4\sqrt{3}+56+32\sqrt{3}}}{7+4\sqrt{3}}  \right |\\ &\qquad=\left |\displaystyle \frac{\sqrt{63+36\sqrt{3}}}{7+4\sqrt{3}}  \right |=\left |\displaystyle \frac{\sqrt{9(7+4\sqrt{3})}}{7+4\sqrt{3}}   \right |\\ &\qquad=\displaystyle \frac{3}{\sqrt{7+4\sqrt{3}}}=\frac{3}{\sqrt{(2+\sqrt{3})^{2}}}=\displaystyle \frac{3}{2+\sqrt{3}}\\ &\qquad=\displaystyle \frac{3}{2+\sqrt{3}}\frac{2-\sqrt{3}}{2-\sqrt{3}}=3(2-\sqrt{3})=\color{red}6-3\sqrt{3} \end{aligned}  \end{array}$.

Contoh Soal 2 Persamaan Kuadrat (Kelas X/Fase E Semester Genap) Tahun 2024

$\begin{array}{ll}\\ 6.&\textrm{Diketahui}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\: \: \textrm{akar-akar dari persamaan}\\ &x^{2}-3x-4=0\: .\: \textrm{Persamaan kuadrat baru yang}\\ &\textrm{memiliki akar-akar}\: \: 2x_{1}\: \: \textrm{dan}\: \: 2x_{2}\: \: \textrm{adalah}\: ....\\  &\begin{array}{lllllllll}\textrm{A}.&\displaystyle 2x^{2}+6x-16=0&&&&&\textrm{D}.&\color{red}\displaystyle x^{2}-6x-16=0\\ \textrm{B}.&\displaystyle 2x^{2}-6x-16=0&&&&&\textrm{E}.&\displaystyle x^{2}+6x-16=0\\ \textrm{C}.&x^{2}+6x+16=0&& \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\textrm{Diketahui bahwa PK}:x^{2}-3x-4=0\\ &\textrm{dengan}\: \: a=1,\: b=-3,\: \: \textrm{dan}\: \: c=-4\\ &\color{blue}\textrm{Alternatif 1}\\ &\textrm{Misalkan Persamaan Kuadrat baru dengan}\\ &\textrm{akar-akar}\: \: \alpha=2x_{1}\: \: \textrm{dan}\: \: \beta =2x_{2},\: \textrm{adalah}\\ &\color{red}x^{2}-(\alpha +\beta )x+\alpha \beta =0\\ &\Leftrightarrow x^{2}-(2x_{1}+2x_{2})x+2x_{1}\times 2x_{2}=0\\ &\Leftrightarrow x^{2}-2(x_{1}+x_{2})x+4x_{1}x_{2}=0\\ &\Leftrightarrow x^{2}-2\left (\displaystyle  -\frac{b}{a} \right )x+4\left ( \displaystyle \frac{c}{a} \right )=0\\ &\Leftrightarrow x^{2}-2(3)x+4(-4)=0\Leftrightarrow \color{red}x^{2}-6x-16=0\\ &\color{blue}\textrm{Alternatif 2}\\ &\begin{aligned}&\textrm{PK lama}:x^{2}-3x-4=0\\ &\qquad\qquad\textrm{dengan}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\\ &\textrm{PK baru dengan}\: \: 2x_{1}\: \: \textrm{dan}\: \: 2x_{2}\\ &\textrm{PK baru}:x^{2}-3(\color{red}2\color{black})x-4(\color{red}2^{2}\color{black})=0\\ &\qquad\qquad\Leftrightarrow  \color{red}x^{2}-6x-16=0\\ &\textrm{Formula tersebut dapat digunakan},\\ &\textrm{syaratnya koefisien dari}\: \: x^{2}=1\\ \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 7.&\textrm{Diketahui}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\: \: \textrm{akar-akar dari persamaan}\\ &2x^{2}-3x+4=0\: .\: \textrm{Persamaan kuadrat baru yang}\\ &\textrm{memiliki akar-akar}\: \: 2x_{1}-1\: \: \textrm{dan}\: \: 2x_{2}-1\: \: \textrm{adalah}\: ....\\  &\begin{array}{lllllllll}\textrm{A}.&\displaystyle 2x^{2}+x-6=0&&&&&\textrm{D}.&\color{red}\displaystyle x^{2}+x-6=0\\ \textrm{B}.&\displaystyle x^{2}+5x+6=0&&&&&\textrm{E}.&\displaystyle x^{2}-x+6=0\\ \textrm{C}.&x^{2}-5x+6=0&& \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\textrm{Diketahui bahwa PK}:2x^{2}-3x+4=0\\ &\textrm{dengan}\: \: a=2,\: b=-3,\: \: \textrm{dan}\: \: c=4\\ &\begin{aligned}&\textrm{Misalkan Persamaan Kuadrat baru dengan}\\ &\textrm{akar-akar}\: \: \alpha=2x_{1}-1\: \: \textrm{dan}\: \: \beta =2x_{2}-1,\: \textrm{adalah}\\ &\color{red}x^{2}-(\alpha +\beta )x+\alpha \beta =0\\ &\Leftrightarrow x^{2}-(2x_{1}-1+2x_{2}-1)x+(2x_{1}-1)\times (2x_{2}-1)=0\\ &\Leftrightarrow x^{2}-\left (2(x_{1}+x_{2})-2  \right )x+4x_{1}x_{2}-2(x_{1}+x_{2})+1=0\\ &\Leftrightarrow x^{2}-\left (2\left (\displaystyle  -\frac{b}{a} \right )-2  \right )x+4\left ( \displaystyle \frac{c}{a} \right )-2\left ( -\displaystyle \frac{b}{a} \right )+1=0\\ &\Leftrightarrow x^{2}-(2(3/2)-2)x+4(4/2)-2(3/2)+1=0\\ &\Leftrightarrow x^{2}-x+(8-3+1)=0\Leftrightarrow \color{red}x^{2}-x+6=0 \end{aligned}   \end{array}$.

$\begin{array}{ll}\\ 8.&\textrm{Misalkan Persamaan Kuadrat baru dengan}\\ &\left ( \displaystyle \frac{a+b}{2} \right )\: \textrm{adalah 6 dan rata-rata geometri}\\ & \sqrt{ab}\: \: \textrm{dari kedua bilangan tersebut adalah 10}\\ &\textrm{Persamaan kuadrat yang akar-akarnya kedua}\\ &\textrm{kedua bilangan tersebut adalah}\: ....\\  &\begin{array}{lllllllll}\textrm{A}.&\displaystyle x^{2}+12x-100=0&&&&&\textrm{D}.&\color{red}\displaystyle x^{2}-12x+100=0\\ \textrm{B}.&\displaystyle x^{2}+6x+100=0&&&&&\textrm{E}.&\displaystyle x^{2}-6x+100=0\\ \textrm{C}.&x^{2}-12x-10=0&& \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\textrm{Formula PK}:x^{2}-(a+b)x+ab=0\\ &\textrm{dengan}\: \: \left\{\begin{matrix} \left ( \displaystyle \frac{a+b}{2} \right )\Rightarrow a+b=12\\ \sqrt{ab}=10\Rightarrow ab=100 \end{matrix}\right.\\ &\textrm{PK yang diinginkan}:\color{red}x^{2}-12x+100=0 \end{array}$.

$\begin{array}{ll}\\ 9.&\textrm{Akar-akar dari persamaan}\: \: x^{2}+(m-1)x-5=0\\ &\textrm{adalah}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}.\: \textrm{Jika}\: \: x_{1}^{2}+x_{2}^{2}-2x_{1}x_{2}=8m,\\ &\textrm{maka nilai}\: \: m\: \: \textrm{ adalah}\: ....\\  &\begin{array}{lllllllll}\textrm{A}.&\displaystyle -6\: \: \textrm{atau}\: \: -14&&&&&\textrm{D}.&\color{red}\displaystyle 3\: \: \textrm{atau}\: \: 7\\ \textrm{B}.&\displaystyle 6\: \: \textrm{atau}\: \: 14&&&&&\textrm{E}.&\displaystyle -3\: \: \textrm{atau}\: \: -7\\ \textrm{C}.&3\: \: \textrm{atau}\: \: -7&& \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\begin{aligned}&\textrm{Diketahui} \: \: x^{2}+(m-1)x-5=0\\ &\textrm{dengan akar-akar}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\: \left\{\begin{matrix} x_{1}+ x_{2}=1-m\\ x_{1}\times  x_{2}=-5\: \: \: \: \: \:  \end{matrix}\right.\\ &\textrm{Selanjutnya},\\ &x_{1}^{2}+x_{2}^{2}-2x_{1}x_{2}=8m\\ &\Leftrightarrow \left ( x_{1}+ x_{2} \right )^{2}-4x_{1}x_{2}=8\Leftrightarrow (1-m)^{2}-4(-5)=8m\\ &\Leftrightarrow 1-2m+m^{}+20-8m=0\\ &\Leftrightarrow m^{2}-10m+21=0\Leftrightarrow (m-3)(m-7)=0\\ &\Leftrightarrow m=3\: \: atau\: \: m=7 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 10.&\textrm{Agus dan Budi dapat menyelesaikan pengecatan }\\ &\textrm{secara bersama-sama dalam 8 hari. Jika bekerja }\\ &\textrm{sendiri, Budi membutuhkan waktu 12 hari lebih}\\ &\textrm{lama dari Agus. Waktu yang Agus jika ia bekerja}\\ &\textrm{sendiri mengecat rumah tersebut adalah}\: ...\: \textrm{hari}\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle 10&&&&&\textrm{D}.&\displaystyle 16\\ \textrm{B}.&\color{red}\displaystyle 12&&\textrm{C}.&\displaystyle 14&&\textrm{E}.&18 \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\textrm{Diketahui bahwa}\\ &\begin{aligned}&\color{blue}\textrm{Waktu yang dibutuhkan}\\ &\bullet \: \textrm{Waktu yang dibutuhkan Agus}=x\: \: \textrm{hari}\\ &\bullet \: \textrm{Waktu yang dibutuhkan Budi}=x+12\: \: \textrm{hari, dan}\\ &\bullet \: \textrm{Waktu yang dibutuhkan Agus dan Budi}=8\: \: \textrm{hari}\\ &\color{blue}\textrm{Hasil pekerjaan pengecatan rumah dalam sehari}\\ &\bullet \: \textrm{Agus dalam 8 hari}=\displaystyle \frac{8}{x}\: \: \textrm{bagian}\\ &\bullet \: \textrm{Budi dalam 8 hari}=\displaystyle \frac{8}{x+12}\: \: \textrm{bagian, dan}\\ &\bullet \: \textrm{Bagian Agus dan Budi dalam 8 hari}\\&\qquad\qquad\qquad\qquad\qquad \displaystyle \frac{8}{x}+\frac{8}{x+12}=1\\ &\textrm{Sehingga}\\ &\displaystyle \frac{8}{x}+\frac{8}{x+12}=1\Leftrightarrow \frac{8(x+12)+8(x)}{x(x+12)}-1=0\\ &\Leftrightarrow \displaystyle \frac{8x+96+8x-x(x+12)}{x(x+12)}=0\\ &=\Leftrightarrow -x^{2}+4x+96=0\Leftrightarrow x^{2}-4x-96=0\\ &\Leftrightarrow (x-12)(x+8)=0\\ &x=12\: (\textrm{solusi})\: \: \textrm{atau}\: \: x=-8\: (\textrm{bukan})     \end{aligned} \\ &\textrm{Jadi, waktu yang dibutuhkan Agus adalah}\: \: \color{red}\displaystyle 12\: \: \textrm{hari} \end{array}$