Contoh Soal 1 Persamaan Kuadrat (Kelas X/Fase E Semester Genap) Tahun 2024

$\begin{array}{ll}\\ 1.&\textrm{Penyelesaian terkecil dari persamaan kuadrat}\\ & \left ( x-\displaystyle \frac{3}{4} \right )\left ( x-\displaystyle \frac{3}{4} \right )+\left ( x-\displaystyle \frac{3}{4} \right )\left ( x-\displaystyle \frac{1}{2} \right )=0\\ &\textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&-\displaystyle \frac{3}{4}&&&&&\textrm{D}.&\displaystyle \frac{3}{4}\\ \textrm{B}.&\displaystyle \frac{1}{2}&&\textrm{C}.&\color{red}\displaystyle \frac{5}{8}&&\textrm{E}.&1 \end{array}\\\\ &\textbf{Jawab}:\textbf{C}\\ &\begin{aligned}&\left ( \color{blue}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( x-\displaystyle \frac{3}{4} \right )+\left ( \color{blue}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( x-\displaystyle \frac{1}{2} \right )=0\\ &\Leftrightarrow \left ( \color{blue}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( x-\displaystyle \frac{3}{4}+x-\frac{1}{2} \right )=0\\ &\Leftrightarrow \left ( \color{blue}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( 2x-\displaystyle \frac{5}{4} \right )=0\\ &\Leftrightarrow x-\displaystyle \frac{3}{4}=0\: \: \textrm{atau}\: \: 2x-\frac{5}{4}=0\\ &\Leftrightarrow x=\displaystyle \frac{3}{4}\: \: \textrm{atau}\: \: 2x=\frac{5}{4}\\ &\Leftrightarrow x=\displaystyle \frac{6}{8}\: \: \textrm{atau}\: \: x=\frac{5}{8}\\  \end{aligned} \\ &\textrm{Jadi, nilai terkecilnya adalah}\: \: \color{red}\displaystyle \frac{5}{8} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Jika}\: \: m\: \: \textrm{dan}\: \: n\: \: \textrm{adalah penyelesaian dari}\\ &\textrm{persamaan kuadrat}\: \: x^{2}+mx+n=0,\\ &\textrm{dengan}\: \: m\neq 0\: \: \textrm{dan}\: \: n\neq 0\: \: \textrm{jumlah kedua}\\ &\textrm{penyelesaian tersebut adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle -\frac{1}{2}&&&&&\textrm{D}.&\displaystyle 1\\ \textrm{B}.&\color{red}\displaystyle -1&&\textrm{C}.&\displaystyle \frac{1}{2}&&\textrm{E}.&\displaystyle \textrm{tidak dapat ditentukan} \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\textrm{Diketahui bahwa PK}:x^{2}+mx+n=0\\ &\textrm{dengan}\: \: a=1,\: b=m,\: \: \textrm{dan}\: \: c=n\\ &\begin{aligned}&\bullet \quad x_{1}+ x_{2}=-\displaystyle \frac{b}{a}\Leftrightarrow m+n=-\frac{m}{1}\\ &\bullet \quad x_{1}\times x_{2}=\displaystyle \frac{c}{a}\quad\Leftrightarrow mn=\frac{n}{1}\Leftrightarrow m=1\\ &\textbf{Dari persamaan pertama akan diperoleh}\\ &m+n=-m=\color{red}-1 \end{aligned}\\ &\textrm{Jadi, nilai m+n adalah}\: \: \color{red}\displaystyle -1 \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Jika persamaan}\: \: 2x^{2}-3x-14=0\: \: \textrm{mempunyai}\\&\textrm{akar-akar}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\: \: \textrm{dengan}\: \: x_{1}>x_{2}, \: \: \textrm{maka}\\ &2x_{1}+3x_{2}\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle 2&&&&&\textrm{D}.&\displaystyle -2\\ \textrm{B}.&\color{red}\displaystyle 1&&\textrm{C}.&\displaystyle -1&&\textrm{E}.&-5 \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\textrm{Diketahui bahwa PK}\: :\: 2x^{2}-3x-14=0\\ &\begin{aligned}&2x^{2}-3x-14=0\Leftrightarrow \displaystyle \frac{(2x-7)(2x+4)}{2}=0\\ &\Leftrightarrow (2x-7)(x+2)=0\\ &\Leftrightarrow 2x-7=0\: \: \textrm{atau}\: \:  x+2=0\\ &x=\displaystyle \frac{7}{2}\: \: \textrm{atau}\: \:  x=-2\\ &\textrm{Karena nilai dari}\: \: x_{1}>x_{2},\: \: \textrm{maka}\\ &x_{1}=\displaystyle \frac{7}{2}\: \: \textrm{dan}\: \:  x_{2}=-2\\ \end{aligned}\\ &\textrm{Sehingga nilai}\: \: 2x_{1}+3x_{2}=\color{blue}2\displaystyle \frac{7}{2}+3(-2)\color{black}=7-6=\color{red}1 \end{array}$.

$\begin{array}{ll}\\ 4.&\textrm{Jika}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\: \: \textrm{adalah akar-akar dari}\\ &\textrm{persamaan kuadrat}\: \: x^{2}+6x+2=0,\\ &\textrm{nilai dari}\: \: x_{1}^{2}+x_{2}^{2}-4x_{1}x_{2}\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle 28&&&&&\textrm{D}.&\displaystyle 18\\ \textrm{B}.&\displaystyle 26&&\textrm{C}.&\color{red}\displaystyle 24&&\textrm{E}.&\displaystyle 16 \end{array}\\\\ &\textbf{Jawab}:\textbf{C}\\ &\textrm{Diketahui bahwa PK}:x^{2}+6x+2=0\\ &\textrm{dengan}\: \: a=1,\: b=6,\: \: \textrm{dan}\: \: c=2\\ &\color{blue}\textrm{Alternatif 1}\\ &\begin{aligned}&\color{blue}x_{1}^{2}+x_{2}^{2}\color{black}-4x_{1}x_{2}\\ &=\color{blue}\left ( x_{1}+x_{2} \right )^{2}-2x_{1}x_{2}\color{black}-4x_{1}x_{2}\\ &=\left ( x_{1}+x_{2} \right )^{2}-6x_{1}x_{2}\\ &=\left ( -\displaystyle \frac{b}{a} \right )^{2}-6\left ( \displaystyle \frac{c}{a} \right )=(-6)^{2}-6(2)\\ &=36-12\\ &=\color{red}24 \end{aligned}\\ &\color{blue}\textrm{Alternatif 2}\\ &\begin{aligned}&x^{2}+6x+2=0\Leftrightarrow x^{2}=-6x-2\\ &\bullet \quad x=x_{1}\Rightarrow x_{1}^{2}=-6x_{1}-2\\ &\bullet \quad x=x_{2}\Rightarrow x_{2}^{2}=-6x_{2}-2\\ &\qquad \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\quad+ \\ & \Leftrightarrow \quad x_{1}^{2}+x_{2}^{2}=-6\left (x_{1}+x_{2}  \right )-4\\ & \Leftrightarrow \quad x_{1}^{2}+x_{2}^{2}-4x_{1}x_{2}=-6\left (x_{1}+x_{2}  \right )-4x_{1}x_{2}-4\\  &\qquad\qquad\qquad=-6\left ( -\displaystyle \frac{b}{a} \right )-4\left ( \frac{c}{a} \right )-4\\ &\qquad\qquad\qquad=-6(-6)-4(2)-4\\ &\qquad\qquad\qquad=36-8-4\\ &\qquad\qquad\qquad=\color{red}24\\ \end{aligned}\\ &\textrm{Jadi, nilai yang dimaksud adalah}\: \: \color{red}\displaystyle 24 \end{array}$.

$\begin{array}{ll}\\ 5.&\textrm{Diketahui akar-akar dari persamaan}\: \: 7x=4x^{2}+3\\ &\textrm{adalah}\: \: \alpha \: \: \textrm{dan}\: \: \beta .\: \textrm{Nilai} \: \: \displaystyle \frac{\alpha }{\beta }+\frac{\beta }{\alpha }=....\\  &\begin{array}{lllllllll}\textrm{A}.&\color{red}\displaystyle \frac{25}{12}&&&&&\textrm{D}.&\displaystyle \frac{16}{25}\\\\ \textrm{B}.&\displaystyle \frac{24}{12}&&\textrm{C}.&\displaystyle \frac{20}{25}&&\textrm{E}.&\displaystyle \frac{12}{25} \end{array}\\\\ &\textbf{Jawab}:\textbf{A}\\ &\textrm{Diketahui bahwa PK}:4x^{2}-7x+3=0\\ &\textrm{dengan}\: \: a=4,\: b=-7,\: \: \textrm{dan}\: \: c=3\\ &\begin{aligned}&\displaystyle \frac{\alpha }{\beta }+\frac{\beta }{\alpha }=\displaystyle \frac{\alpha ^{2}+\beta ^{2}}{\alpha \beta }=\frac{(\alpha +\beta )^{2}-2\alpha \beta }{\alpha \beta }\\ &=\displaystyle \frac{\left (\displaystyle -\frac{b}{a} \right )^{2} -2\left (\displaystyle \frac{c}{a}  \right )}{\displaystyle \frac{c}{a}}=\displaystyle \frac{\left ( \displaystyle \frac{7}{4} \right )^{2}-2\left ( \displaystyle \frac{3}{4} \right )}{\displaystyle \frac{3}{4}}\\ &=\displaystyle \frac{\displaystyle \frac{49}{16}-\frac{6}{4}}{\displaystyle \frac{3}{4}}=\displaystyle \frac{\displaystyle \frac{49-24}{16}}{\displaystyle \frac{3}{4}}=\displaystyle \frac{\displaystyle \frac{25}{16}}{\displaystyle \frac{3}{4}}=\displaystyle \frac{25}{16}\times \frac{4}{3}\\ &=\color{red}\displaystyle \frac{25}{12} \end{aligned} \end{array}$.



Sumber Referensi:
  1. Budhi, Wono S. 2014. Bupena Matematika Kelompok Wajib untuk SMA/MA Kelas X. Jakarta: ERLANGGA.

Fungsi Kuadrat (Kelas X/Fase E Semester 2)

 B. Fungsi Kuadrat

B. 1 Fungsi
Silahkan lihat materi sebelumnya, cari di blog ini

B. 2 Fungsi Kuadrat
Perhatikan tabel berikut

$\begin{array}{|l|l|}\hline \textrm{Pengertian}&\begin{aligned}&\textrm{Suatu fungsi yang berbentuk}\\ &f(x)=ax^{2}+bx+c\\ & a,\: b,\: c,\: \in \mathbb{R},\: a\neq 0 \end{aligned}\\\hline \textrm{Grafik Fungsi}&\textrm{Keterangan}\\\hline \textrm{Titik potong sumbu x}&\textrm{Jika ada}\\\hline &\begin{aligned}&\textrm{untuk titik potong}\\ &\textrm{terhadap sumbu x }\\ &\textrm{Jika y = 0 maka }\\ &ax^{2}+bx+c=0\\ &\textrm{Selanjutnya tinggal}\\ &\textrm{menentukan nilai D}\\ &D=b^{2}-4ac\: \: \textrm{adalah}\\ &\: \: \: \: \: \: \: \: \: \textrm{nilai diskriminan}.\\ &\textrm{Jika} \: D>0\\ &\textrm{maka grafik}\\ &\textrm{memotong sumbu x}\\ &\textrm{di dua tempat berbeda}\\ &\textrm{yaitu di} \: (x_{1},0)\: \textrm{dan}\: (x_{2},0).\\ &\textrm{dan jika D = 0}\\ &\textrm{maka grafik}\\ &\textrm{ hanya menyinggung}\\ &\textrm{sumbu x di satu titik}\\ &\textrm{yaitu di }\: (x_{1},0)\\ &\textrm{dan jika}\: D<0 \\ &\textrm{maka grafik}\\ &\textrm{tidak memotong}\\ &\textrm{atau menyinggung sumbu x} \end{aligned}\\\hline \textrm{Titik potong sumbu y}&\begin{aligned}&\textrm{titik potong terhadap}\\ &\textrm{sumbu y, jika x = 0}\\ &y=f(x)=ax^{2}+bx+c\\ &y=f(0)=a(0)^{2}+b(0)+c\\ &y=c \end{aligned}\\\hline \textrm{Sumbu Simetri (SS)}&x=\displaystyle \frac{-b}{2a}\\\hline \textrm{Titik Puncak}&\left ( \displaystyle \frac{-b}{2a},\displaystyle \frac{D}{-4a} \right )\\\hline \textrm{Posisi grafik}&\textrm{Jika}\: a>0\: \textrm{maka}\\ &\textrm{grafik terbuka ke atas}\\ &\textrm{Dan jika nilai}\: a<0\: \textrm{maka}\\ &\textrm{grafik terbuka ke bawah}\\\hline \end{array}$.

Selanjutnya cara membuat grafik fungsi kudratnya adalah sebagai berikut:

$\begin{array}{|c|c|}\hline \textrm{Jika memotong sumbu}-\textrm{X}&\textrm{Jika menyinggung sumbu}-\textrm{X}\\ \textrm{di titik}\: \left ( x_{1},0 \right )\: \textrm{dan}\: \left ( x_{2},0 \right )&\textrm{di titik}\: \left ( x_{1},0 \right )\: \textrm{dan melalui}\\ \textrm{dan melalui sebuah titik lain}&\textrm{sebuah titik lain} \\\hline &\\ y=f(x)=a\left ( x-x_{1} \right )\left ( x-x_{2} \right )&y=f(x)=a\left ( x-x_{1} \right )^{2}\\ &\\\hline \textrm{Jika grafik fungsi itu melalui}&\textrm{Jika grafik fungsi itu melalui}\\\hline \textrm{Titik puncak}\: \: P\left ( x_{p},y_{p} \right )\: \textrm{dan}&\textrm{tiga buah titik yaitu}\: \left ( x_{1},y_{1} \right )\\ \textrm{sebuah titik lain}&\left ( x_{2},y_{2} \right )\: \: \textrm{dan}\: \: \left ( x_{3},y_{3} \right )\\\hline &\\ y=f(x)=a\left ( x-x_{p} \right )^{2}+y_{p}&y=f(x)=ax^{2}+bx+c\\ &\\\hline \end{array}$.

B. 3 Masalah yang Melibatkan Fungsi Kuadrat

$\begin{aligned}&y=f(x)=ax^{2}+bx+c\\ &\quad \textrm{dengan}\: a,b,c\in \mathbb{R},\: a\neq 0 \end{aligned}$.

B.3.1 Titik Stasioner
$\begin{aligned}&y_{ekstrim}=\color{red}-\displaystyle \frac{D}{4a}\color{black}\Rightarrow \left\{\begin{matrix} y_{\textrm{minimum}},\: \textrm{jika}\: a>0\\  y_{\textrm{maksimum}},\: \textrm{jika}\: a<0 \end{matrix}\right.\\ &y_{\textrm{ekstrim}}\: \textrm{tercapai saat}\: \: x=\color{red}-\displaystyle \frac{b}{2a}\\ &\textbf{Sehingga titik stasionernya adalah}\\ &\qquad\qquad\qquad =\left ( x_{ss},y_{ss} \right )=\left ( -\displaystyle \frac{b}{2a},-\displaystyle \frac{D}{4a} \right ) \end{aligned}$.

B.3.2 Definit Positif dan Definit Negatif
$\begin{aligned}&\textrm{Jika}\: \: D<0\: \: \textrm{dan}\left\{\begin{matrix} a>0,\: \: \textrm{maka}\: \: y\: \: \textrm{akan selalu positif}\\  a<0,\: \: \textrm{maka}\: \: y\: \: \textrm{akan selalu negatif} \end{matrix}\right.\\ &\textrm{untuk setiap nilai}\: \: x \end{aligned}$.

Perhatikan tambahan penjelasan berikut
$\begin{aligned}&\textrm{Tentang definit positif dan negatif}\\ &\begin{array}{cccc}\\a>0.D<0&\textrm{Gambar}&\LARGE\cup &\textbf{Sumbu-X}\\\hline a<0,D<0&\textrm{Gambar}&\cap &\\ & \end{array} \end{aligned}$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Jika}\: \: f\: \: \textrm{adalah fungsi linear dengan}\\ & f(2)-f(-2)=8,\\ & \textrm{maka nilai dari}\: \: f(4)-f(-2)\: \: \textrm{adalah}\: ....\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}:\\ &f(x)=ax+b\\ &f(2)-f(-2)\\ &=\left (a(2)+b \right )-\left ( a(-2)+b \right )=8\\ &8=2a+2a\\ &8=4a\\ &2=a\\ &f(x)=2x+b,\quad \textrm{dengan}\: \: b\: \: \textrm{konstan}\\ &\textrm{Sehingga nilai}\quad\\ &f(4)-f(-2)=\left (2(4)+b \right )-\left (2(-2)+b \right )\\ &=8+b+4-b\\ &=\color{red}12 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Ubahlah}\: \: 8-6x-x^{2}\: \: \textrm{ke dalam bentuk}\\ & a-(x+b)^{2},\: \textrm{selanjutnya tentukan}\\ & \textrm{daerah hasil dari}\: \: f(x)=8-6x-x^{2}\\ & \textrm{untuk}\: \: x\: \: \textrm{bilangan real}\\ &\qquad(\textit{NTU Entrance Examination AO-level})\\\\ &\textbf{Jawab}:\\ &\begin{array}{|c|l|}\hline 1.&\color{blue}\textrm{Diketahui}\\\hline &\begin{aligned}\textrm{Misal}\quad\qquad&\\ 8-6x-x^{2}&=f(x)\\ f(x)&=-x^{2}-6x+8\\ &=-\left ( x^{2}+6x-8 \right )\\ &=-\left ( x^{2}+6x+9-17 \right )\\ &=-\left ( (x+3)^{2}-17 \right )\\ &=-(x+3)^{2}+17\\ & \end{aligned}\\\hline 2.&\color{blue}\textrm{Mencari koordinat}\: \: \left ( x_{SS},y_{SS} \right )\\\hline &\begin{aligned}f(x)&=-x^{2}-6x+8\left\{\begin{matrix} a=-1\\ b=-6\\ c=\: \: 8\: \: \end{matrix}\right.\\ \textrm{Maka}&\\ x_{SS}&=\frac{-b}{2a}=\displaystyle \frac{-(-6)}{2(-1)}\\ &=-3\\ y_{SS}&=f(-3)=-\left ( -3+3 \right )^{2}+17=17\\ \therefore &\left ( x_{SS},y_{SS} \right )=(-3,17) \end{aligned}\\\hline 3.&\color{blue}\textrm{Nilai fungsi}\\\hline &\begin{aligned}\textrm{Karena}&\: \: a=-1<0\\ \textrm{maka f}&\textrm{ungsi menghadap}\\ \textbf{ke ba}&\textbf{wah},\: \: \textrm{sehingga}\\ \textrm{daerah}&\: \: \textrm{hasilnya}\: \: \left (R_{f} \right )\\ \textrm{adalah}&:\\ &\left \{ -\infty <y\leq 17 \right \}\\ &\\ &\textrm{Berikut ilustrasinya} \end{aligned}\\\hline \end{array} \end{array}$.


$\begin{array}{ll}\\ 3.&\textrm{Jika}\: \: \alpha \: \: \textrm{dan}\: \: \beta \: \: \textrm{adalah akar-akar dari }\\ &\textrm{persamaan kuadrat}\: \: x^{2}+mx+m=0,\\ &\textrm{maka nilai}\: \: m\: \: \textrm{yang menyebabkan }\\ &\textrm{jumlah kuadrat akar-akar mencapai}\\ &\textrm{minimum adalah}\: ....\\ &\qquad \: \textbf{(UM UNDIP 2014 Mat Das)}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\: \: x^{2}+mx+m=0\\ & \textbf{persamaan kuadrat}\: \textrm{dalam}\: \: x,\\ & \textrm{maka}\\ &x^{2}+mx+m=x^{2}-(\alpha +\beta )x+(\alpha \beta )=0\\ &\begin{cases} \alpha +\beta &=-m \\ & \\ \alpha \beta &=m \end{cases}\\ &\textrm{Selanjutnya}\\ &\alpha ^{2}+\beta ^{2}=\left ( \alpha +\beta \right )^{2}-2\alpha \beta\\ &=(-m)^{2}-2m\: \: \textrm{dan dapat kita tuliskan sebagai}\\ &f(m)=m^{2}-2m\begin{cases} a &=1 \\ b &=-2 \\ c &=0 \end{cases} \\ &\textrm{fungsi kuadrat dalam}\: \: m,\\ &\textrm{sehingga kita perlu mencari titik}\: \: \left ( m_{SS},f\left ( m_{SS} \right ) \right ),\\ & \textrm{tetapi yang kita perlukan}\\ &\textrm{cuma}\: \: m-\textrm{nya saja, yaitu}:\: \: m=m_{SS},\\ &\textrm{dengan}\quad m_{SS}=\displaystyle \frac{-b}{2a}=\frac{-(-2)}{2.1}=1 \end{aligned} \end{array}$.



Sumber Referensi:
  1. Budhi, Wono S. 2014. Bupena Matematika Kelompok Wajib untuk SMA/MA Kelas X. Jakarta: ERLANGGA.
  2. Kurnianingsih, Sri, Kuntarti & Sulistiyono. 2007. Matematika SMA dan MA untuk Kelas X Semester 1. Jakarta: ESIS.
  3. Noormandiri. 2022. Matematika untuk SMA/MA Kelas X.Jakarta: ERLANGGA
  4. Sobirin. 2005. Kompas Matematika: Strategi Praktis Menguasai Tes Matematika SMA Kelas 1. Jakarta: KAWAN PUSTAKA.

Persamaan Kuadrat (Kelas X/Fase E Semester 2)

  Semester Genap

  • Persamaan dan Fungsi Kuadrat
  • Statistika
  • Aturan Pencacahan dan Peluang
A. Persamaan dan Fungsi Kuadrat

A. 1  Bentuk umum persamaan kuadrat

$\begin{aligned}&\color{red}\mathbf{ax^{2}+bx+c=0}\\ &\textrm{dengan}\: \: a,b,c\in \mathbb{R},\: \color{blue}a\neq 0 \end{aligned}$.

Adapun cara penyelesaian persamaan kuadrat, jika $x_{1}\: \: dan\: \: x_{2}$ sebagai akar-akarya adalah:

$\begin{array}{|l|l|l|}\hline \qquad \textbf{Pemfaktoran}&\textrm{Melengkapkan}&\textbf{Rumus ABC}\\ &\textbf{kuadrat sempurna}&\\\hline \qquad\qquad(1)&\qquad\qquad(2)&\qquad\qquad(3)\\\hline \begin{aligned}&ax^{2}+bx+c=0\\ &\left ( x-x_{1} \right )\left ( x-x_{2} \right )=0\\ &\textrm{Jika koefisien}\: \: x^{2}\\ &\textrm{lebih dari 1, maka}\\ &\color{blue}\textrm{ubahlah ke bentuk}\\ &\displaystyle \frac{1}{a}\left ( ax-x_{1} \right )\left ( ax-x_{2} \right )\\ &\\ &\\ &\\ &\\ &\\ &\\ &\\ & \end{aligned}&\begin{aligned}&ax^{2}+bx+c=0\\ &x^{2}+\displaystyle \frac{b}{a}x+\frac{c}{a}=0\\ &x^{2}+\displaystyle \frac{b}{a}x=-\frac{c}{a}\\ &\textbf{selanjutnya}\\ &x^{2}+\displaystyle \frac{b}{a}x+\left (\frac{b}{2a}  \right )^{2}\\ &\quad =-\displaystyle \frac{c}{a}+\left (\frac{b}{2a}  \right )^{2}\\ &\left ( x+\displaystyle \frac{b}{2a} \right )^{2}\\ &\quad =\displaystyle \frac{b^{2}-4ac}{4a^{2}} \end{aligned}&\begin{aligned}&\textrm{Dari bentuk 2, kita}\\ &\textrm{akan mendapatkan}\\ &\left ( x+\displaystyle \frac{b}{2a} \right )^{2}\\ &\quad =\displaystyle \frac{b^{2}-4ac}{4a^{2}}\\ &x-\displaystyle \frac{b}{2a}=\pm \sqrt{\displaystyle \frac{b^{2}-4ac}{4a^{2}}}\\ &x=-\displaystyle \frac{b}{2a}\pm \frac{\sqrt{b^{2}-4ac}}{\sqrt{4a^{2}}}\\ &x=\displaystyle \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\\ &\\ &\\ \end{aligned} \\\hline \end{array}$.

A. 2.  Jenis-Jenis Akar Persamaan Kuadrat

Pada kondisi ini, akar-akar dari persamaan kuadrat tergantung pada nilai di bawah tanda akar yang selanjutnya dikenal dengan nilai Diskriminan yang selanjutnya disingkat dengan huruf D, dengan nilai $D=b^{2}-4ac$.
$\begin{array}{|c|c|l|}\hline \textrm{No}&\textrm{Jenis nilai}\: \: \textbf{D}&\textrm{Penjelasan nilai}\: \: \textbf{D}\\\hline  1&\textbf{D}>0&\textrm{Persamaan kuadrat mempunyai dua akar }\\ &&\textrm{riil dan}\: \: \color{red}\textrm{berbeda}\\\hline 2&\textbf{D}=0&\textrm{Persamaan kuadrat mempunyai dua akar }\\ &&\textrm{riil dan}\: \: \textit{sama}\\\hline 3&\textbf{D}<0&\textrm{Persamaan kuadrat mempunyai dua akar }\\ &&\textrm{tidak riil dan}\: \: \color{purple}\textrm{berbeda}\\\hline \end{array}$.

A. 3  Jumlah dan Hasil Kali serta Selisih Akar-Akar Persamaan Kuadrat

$\begin{array}{|c|c|l|}\hline \textrm{No}&\textrm{Kondisi akar-akar}\: \: x_{1}\:  \&\: x_{2}&\textrm{Dari posisi}\: \: \color{red}ax^{2}+bx+c=0\\\hline  1&x_{1}+x_{2}=-\displaystyle \frac{b}{a}&\textrm{akar-akarnya tidak harus}\: \: \: x_{1}\:  \&\: x_{2}\\ &&\textrm{terkadang dituliskan dengan}\: \: \color{red}\alpha \: \: \color{black}\textrm{dan}\: \color{red}\: \beta \\\hline 2&x_{1}\times x_{2}=\displaystyle \frac{c}{a}&\textrm{Baik rumus jumlah maupun hasil kali}\\ &&\textrm{Anda juga dapat melihat dari jenis akarnya}\\\hline 3&x_{1}-x_{2}=\left | \displaystyle \frac{\sqrt{D}}{a} \right |&\textrm{Ingat nilai}\: \: D=\color{purple}b^{2}-4ac\\\hline \end{array}$.

A. 4.  Menyusun Persamaan Kuadrat Baru

Persamaan kuadrat dengan akar-akar $x_{1}\: \: dan\: \: x_{2}$  dapat disusun dengan rumus:
$\LARGE x^{2}-\left ( x_{1}+x_{2} \right )x+x_{1}\times x_{2}=0$.



$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Tentukan kar-akar dari persamaan kuadrat}\\ &(\textrm{a})\quad x^{2}-2x-8=0\\ &(\textrm{b})\quad 2x^{2}-3x-5=0\\\\ &\textbf{Jawab}:\\ &\begin{array}{|c|c|}\hline (\textbf{a})&(\textbf{b})\\\hline \begin{aligned}&x^{2}\color{red}-2\color{black}x-8=0\\ &\Leftrightarrow (x\color{red}-4\color{black})(x\color{red}+2\color{black})=0\\ &\Leftrightarrow x-4=0\: \: \textrm{atau}\: \: x+2=0\\ &\Leftrightarrow x=4\: \: \textrm{atau}\: \: x=-2\\ &\\ &\\ & \end{aligned}&\begin{aligned}&2x^{2}\color{red}-3\color{black}x-5=0\\ &\Leftrightarrow \displaystyle \frac{ (2x\color{red}-5\color{black})(2x\color{red}+2\color{black})}{\color{blue}2}=0\\ &\Leftrightarrow (2x-5)(\color{blue}x+1\color{black})=0\\ &\Leftrightarrow 2x-5=0\: \: \textrm{atau}\: \: x+1=0\\ &\Leftrightarrow 2x=5\: \: \textrm{atau}\: \: x=-1\\ &\Leftrightarrow x=\displaystyle \frac{5}{2}\: \: \textrm{atau}\: \: x=-1 \end{aligned}\\\hline \end{array} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Penyelesaian terkecil dari persamaan kuadrat}\\ & \left ( x-\displaystyle \frac{3}{4} \right )\left ( x-\displaystyle \frac{3}{4} \right )+\left ( x-\displaystyle \frac{3}{4} \right )\left ( x-\displaystyle \frac{1}{2} \right )=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\left ( \color{red}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( x-\displaystyle \frac{3}{4} \right )+\left ( \color{red}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( x-\displaystyle \frac{1}{2} \right )=0\\ &\Leftrightarrow \left ( \color{red}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( x-\displaystyle \frac{3}{4}+x-\frac{1}{2} \right )=0\\ &\Leftrightarrow \left ( \color{red}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( 2x-\displaystyle \frac{5}{4} \right )=0\\ &\Leftrightarrow x-\displaystyle \frac{3}{4}=0\: \: \textrm{atau}\: \: 2x-\frac{5}{4}=0\\ &\Leftrightarrow x=\displaystyle \frac{3}{4}\: \: \textrm{atau}\: \: 2x=\frac{5}{4}\\ &\Leftrightarrow x=\displaystyle \frac{6}{8}\: \: \textrm{atau}\: \: x=\frac{5}{8}\\  \end{aligned}\\ &\textrm{Jadi, nilai terkecilnya adalah}\: \: \color{blue}\displaystyle \frac{5}{8} \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Jika persamaan}\: \: 2x^{2}-3x-14=0\: \: \textrm{mempunyai}\\&\textrm{akar-akar}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\: \: \textrm{dengan}\: \: x_{1}>x_{2}, \: \: \textrm{maka}\\ &2x_{1}+3x_{2}\: \: \textrm{adalah}\: ....\\\\ &\textbf{Jawab}:\\ &\textrm{Diketahui bahwa PK}\: :\: 2x^{2}-3x-14=0\\ &\begin{aligned}&2x^{2}-3x-14=0\Leftrightarrow \displaystyle \frac{(2x-7)(2x+4)}{2}=0\\ &\Leftrightarrow (2x-7)(x+2)=0\\ &\Leftrightarrow 2x-7=0\: \: \textrm{atau}\: \:  x+2=0\\ &x=\displaystyle \frac{7}{2}\: \: \textrm{atau}\: \:  x=-2\\ &\textrm{Karena nilai dari}\: \: x_{1}>x_{2},\: \: \textrm{maka}\\ &x_{1}=\displaystyle \frac{7}{2}\: \: \textrm{dan}\: \:  x_{2}=-2\\ \end{aligned}\\ &\textrm{Sehingga nilai}\: \: 2x_{1}+3x_{2}=\color{red}2\displaystyle \frac{7}{2}+3(-2)\color{black}=7-6=\color{blue}1 \end{array}$.

$\begin{array}{ll}\\ 4.&\textrm{Diketahu}i\: \: \alpha \: \: \textrm{dan}\: \: \beta \: \: \textrm{adalah akar-akar dari }\\ &\textrm{persamaan kuadrat}\: \: x^{2}-x-2=0,\\ &\textrm{tentukanlah nilai untuk}\\ &\begin{array}{ll}\\ \textrm{a}.\quad \alpha +\beta \: \: \textrm{dan}\: \: \alpha \beta&\textrm{e}.\quad \alpha ^{2}+\beta ^{2}\\ \textrm{b}.\quad \left ( \alpha -\beta \right )^{2}&\textrm{f}.\quad \alpha ^{2}-\beta ^{2}\\ \textrm{c}.\quad \displaystyle \frac{\alpha }{\beta }+\frac{\beta }{\alpha }&\textrm{g}.\quad \displaystyle \frac{1}{\beta -2}+\frac{1}{\alpha -2}\\ \textrm{d}.\quad \displaystyle \frac{1}{\beta }+\frac{1}{\alpha }&\textrm{h}.\quad \displaystyle \frac{\alpha }{\beta ^{2}}+\frac{\beta }{\alpha ^{2}}\\ \end{array}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{Diketahui}&\: \: \textrm{bahwa}\\ &x^{2}-x-2=0\left\{\begin{matrix} \alpha \\ \\ \beta \end{matrix}\right.\textrm{dan}\: \: \left\{\begin{matrix} a=1\\ b=-1\\ c=-2 \end{matrix}\right.\\ & \end{aligned}\\ &\begin{array}{|l|l|}\hline \begin{aligned}\textrm{a}.\quad &\alpha +\beta =-\frac{b}{a}=-\frac{(-1)}{1}=1\\ &\alpha \beta =\frac{c}{a}=\frac{(-2)}{1}=-2 \end{aligned}&\begin{aligned}\textrm{e}.\quad \alpha ^{2}+\beta ^{2}&=\left ( \alpha +\beta \right )^{2}-2\alpha \beta \\ &=1^{2}-2(-2)\\ &=1+4=5 \end{aligned}\\\hline \begin{aligned}\textrm{b}.\quad \left ( \alpha -\beta \right )^{2}&=\frac{D}{a^{2}}\\ &=\frac{b^{2}-4ac}{a^{2}}\\ &=\frac{(-1)^{2}-4.(1).(-2)}{(1)^{2}}\\ &=1+8=9 \end{aligned}&\begin{aligned}\textrm{f}.\quad \alpha ^{2}-\beta ^{2}&=\left ( \alpha +\beta \right )\left ( \alpha -\beta \right )\\ &=(1).(9)=9\\ &\\ &\\ & \end{aligned}\\\hline \begin{aligned}\textrm{c}.\quad \displaystyle \frac{\alpha }{\beta }+\frac{\beta }{\alpha }&=\frac{\alpha ^{2}+\beta ^{2}}{\alpha \beta }\\ &=\displaystyle \frac{5}{-2}\\ &=-\frac{5}{2}\\ &\\ &\\ & \end{aligned}&\begin{aligned}\textrm{g}.\quad \displaystyle \frac{1}{\beta -2}+\frac{1}{\alpha -2}&=\frac{(\alpha -2)+(\beta -2)}{(\alpha -2).(\beta -2)}\\ &=\displaystyle \frac{\alpha +\beta -4}{\alpha \beta -2(\alpha +\beta )+4}\\ &=\displaystyle \frac{(-1)-4}{(-2)-2(-1)+4}\\ &=\displaystyle \frac{-5}{-2+2+4}\\ &=-\frac{5}{4} \end{aligned}\\\hline \begin{aligned}\textrm{d}.\quad \displaystyle \frac{1}{\beta }+\frac{1}{\alpha }&=\frac{\alpha +\beta }{\alpha \beta }\\ &=\displaystyle \frac{(-1)}{(-2)}\\ &=\frac{1}{2} \end{aligned}&\begin{aligned}\textrm{h}.\quad \displaystyle \frac{\alpha }{\beta ^{2}}+\frac{\beta }{\alpha ^{2}}&=\frac{\alpha ^{3}+\beta ^{3}}{(\alpha \beta )^{2}}\\ &=\displaystyle \frac{(\alpha +\beta )^{3}-3\alpha \beta (\alpha +\beta )}{(\alpha \beta )^{2}}\\ &=.... \end{aligned}\\\hline \end{array} \end{array}$.

$\begin{array}{ll}\\ 5.&\textrm{Diketahu}i\: \: p \: \: \textrm{dan}\: \: q \: \: \textrm{adalah akar-akar dari persamaan kuadrat}\\ &x^{2}+2x-5=0,\: \: \textrm{tentukanlah nilai untuk}\\ &\begin{array}{ll}\\ \textrm{a}.\quad p^{2}+q^{2}&\textrm{e}.\quad (p-3)^{2}+(q-3)^{2}\\ \textrm{b}.\quad \displaystyle \frac{p}{q}+\frac{q}{p}&\textrm{f}.\quad p^{2}q+pq^{2}\\ \textrm{c}.\quad p^{3}+q^{3}&\textrm{g}.\quad (p+q)^{2}-(p-q)^{2}\\ \textrm{d}.\quad p^{3}-q^{3}&\textrm{h}.\quad (p^{3}+q^{3})-(p^{3}-q^{3}) \end{array}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{Diketahui}&\: \: \textrm{bahwa}\\ &x^{2}+2x-5=0\left\{\begin{matrix} p \\ \\ q \end{matrix}\right.\textrm{dan}\: \: \left\{\begin{matrix} a=1\\ b=2\\ c=-5 \end{matrix}\right.\\ & \end{aligned}\\ &\begin{array}{|l|l|}\hline  \begin{aligned}\textrm{a}.\quad p^{2}+q^{2}&=(p+q)^{2}-2pq\\ &=(-\frac{b}{a})^{2}-2\left ( \frac{c}{a} \right )\\ &=\left ( -\frac{2}{1} \right )^{2}-2\left ( \frac{(-5)}{1} \right )\\ &=4+10\\ &=14 \end{aligned}&\begin{aligned}\textrm{e}.\quad &(p-3)^{2}+(q-3)^{2}\\ &=p^{2}-6p+9+q^{2}-6q+9\\ &=p^{2}+q^{2}-6(p+q)+18\\ &=14-6(-2)+18\\ &=14+12+18\\ &=44 \end{aligned}\\\hline \begin{aligned}\textrm{b}.\quad \displaystyle \frac{p}{q}+\frac{q}{p}&=\frac{p^{2}+q^{2}}{pq}\\ &=\displaystyle \frac{14}{-5}\\ &=-\frac{14}{5} \end{aligned}&\begin{aligned}\textrm{f}.\quad p^{2}q+pq^{2}&=pq(p+q)\\ &=(-5)(-2)\\ &=10\\ &\\ & \end{aligned}\\\hline \begin{aligned}\textrm{c}.\quad p^{3}+q^{3}&=(p+q)^{3}-3pq(p+q)\\ &=\left ( -\frac{b}{a} \right )^{3}-3\left ( \frac{c}{a} \right )\left ( -\frac{b}{a} \right )\\ &=\left ( -\frac{2}{1} \right )^{3}-3\left ( \frac{(-5)}{1} \right )\left ( -\frac{2}{1} \right )\\ &=-8-30\\ &=-38\\ & \end{aligned}&\begin{aligned}\textrm{d}.\quad p^{3}&-q^{3}\\ &=(p-q)^{3}+3pq(p-q)\\ &=\left ( \frac{\sqrt{b^{2}-4ac}}{a} \right )^{^{3}}+3\left ( \frac{c}{a} \right )\left ( \frac{\sqrt{b^{2}-4ac}}{a} \right )\\ &=\left ( \displaystyle \frac{\sqrt{2^{2}-4.1.(-5)}}{1} \right )^{3}+3\left ( \frac{-5}{1} \right )....\\ &=....\\ & \end{aligned}\\\hline \end{array} \end{array}$.

$\begin{array}{ll}\\ 6.&\textrm{Tentukanlah akar-akar persamaan kuadrat dengan rumus kuadrat}\\ &\begin{array}{ll}\\ \textrm{a}.\quad x^{2}-2=0&\textrm{f}.\quad 2p^{2}-5p-12=0\\ \textrm{b}.\quad x^{2}+3x-1=0&\textrm{g}.\quad 3q^{2}-11q+10=0\\ \textrm{c}.\quad x^{2}+2x-3=0&\textrm{h}.\quad 4x^{2}+11x+6=0\\ \textrm{d}.\quad x^{2}+5x-6=0&\textrm{i}.\quad 5z^{2}-z-4=0\\ \textrm{e}.\quad x^{2}-7x-8=0&\textrm{j}.\quad 6x^{2}+17x+7=0 \end{array}\\\\ &\textbf{Jawab}:\\ &\begin{array}{|l|l|}\hline \begin{aligned}\textrm{a}.\quad x^{2}&-2=0\\ &\begin{cases} a & =1 \\ b & =0 \\ c & =-2 \end{cases}\\ x_{1,2}&=\displaystyle \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\\ x_{1,2}&=\displaystyle \frac{0\pm \sqrt{0^{2}-4.1.(-2)}}{2.1}\\ &=\displaystyle \frac{\pm \sqrt{8}}{2}=\frac{\pm \sqrt{4.2}}{2}\\ &=\displaystyle \frac{\pm 2\sqrt{2}}{2}\\ &=\pm \sqrt{2}\\ x_{1}&=\sqrt{2}\quad \textrm{atau}\quad x_{2}=-\sqrt{2}\end{aligned}&\begin{aligned}\textrm{i}.\quad 5z^{2}&-z-4=0\\ &\begin{cases} a & =5 \\ b & =-1 \\ c & =-4 \end{cases}\\ z_{1,2}&=\displaystyle \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\\ z_{1,2}&=\displaystyle \frac{-(-1)\pm \sqrt{(-1)^{2}-4.5.(-4)}}{2.5}\\ &=\displaystyle \frac{1\pm \sqrt{1+80}}{10}=\frac{1\pm \sqrt{81}}{10}\\ &=\displaystyle \frac{1\pm 9}{10}\\ z_{1}&=\displaystyle \frac{1+9}{10}=1\quad \textrm{atau}\quad z_{2}=\frac{1-9}{10}=\frac{-8}{10}=-\frac{4}{5}\\ &\end{aligned}\\\hline \end{array} \end{array}$.

$\begin{array}{ll}\\ 7.&\textrm{Tunjukkan bahwa untuk}\: \: m\in \textrm{rasional},\: \textrm{maka kedua akar persamaan}\\ &\textrm{a}.\quad x^{2}+(m+2)x+2m=0,\: \textrm{adalah rasional juga}\\ &\textrm{b}.\quad 2x^{2}+(m+4)x+(m-1)=0,\: \textrm{selalu memiliki dua akar real yang berlainan}\\ &\textrm{c}.\quad x^{2}+(m+4)x-2m^{2}-m+3=0,\: \textrm{selalu memiliki dua akar real dan rasional}\\\\ &\textbf{Bukti}:\\ &\begin{array}{|c|c|c|}\hline  x^{2}+(m+2)x+2m=0&2x^{2}+(m+4)x+(m-1)=0&x^{2}+(m+4)x-2m^{2}-m+3=0\\\hline \begin{aligned}a&=1,\: b=(m+2),\: c=2m \end{aligned}&\begin{aligned}a&=2,\: b=m+4,\: c=m-1 \end{aligned}&\begin{aligned}a&=1,\: b=m+4,\: c=-2m^{2}-m+3 \end{aligned}\\\hline \begin{aligned}D&=(m+2)^{2}-4.1.(2m)\\ &=m^{2}+4m+4-8m\\ &=m^{2}-4m+4\\ &=(m-2)^{2} \end{aligned}&\begin{aligned}D&=(m+4)^{2}-4.2.(m-1)\\ &=m^{2}+8m+16-8m+8\\ &=m^{2}+24\\ & \end{aligned}&\begin{aligned}D&=(m+4)^{2}-4.1.(-2m^{2}-m+3)\\ &=m^{2}+8m+16+8m^{2}+4m-12\\ &=9m^{2}+12m+4\\ &=(3m+2)^{2} \end{aligned}\\\hline  \begin{aligned}&\textrm{2 akar rasional} \end{aligned}&\begin{aligned}&\textrm{2 akar real dan berbeda} \end{aligned}&\begin{aligned}&\textrm{2 akar rasional} \end{aligned}\\\hline \end{array} \end{array}$

$\begin{array}{ll}\\ 8.&\textrm{Carilah nilai}\: \: x\: \: \textrm{yang memenuhi persamaan}\\ &\displaystyle \frac{1}{x^{2}-10x-29}+\frac{1}{x^{2}-10x-45}-\frac{2}{x^{2}-10x-69}=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\displaystyle \frac{1}{x^{2}-10x-29}+\frac{1}{x^{2}-10x-45}&=\frac{2}{x^{2}-10x-69}\\ \displaystyle \frac{1}{\left (x^{2}-10x-37 \right )+8}+\frac{1}{\left (x^{2}-10x-37 \right )-8}&=\frac{2}{\left (x^{2}-10x-37 \right )-32}\\ \textrm{Misalkan}\: \: x^{2}-10x-37=p, \: \: \textrm{maka}\qquad&\\ \displaystyle \frac{1}{p+8}+\frac{1}{p-8}&=\frac{2}{p-32}\\ \displaystyle \frac{p-8+p+8}{(p+8)(p-8)}&=\frac{2}{p-32}\\ \displaystyle \frac{2p}{(p+8)(p-8)}&=\frac{2}{p-32}\\ \displaystyle \frac{p}{p^{2}-64}&=\frac{1}{p-32}\\ p^{2}-32p&=p^{2}-64\\ p&=\displaystyle \frac{-64}{-32}\\ p&=2,\\ \textnormal{kita kembali ke bentuk semula}&\\ x^{2}-10x-37&=2\\ x^{2}-10x-39&=0\\ (x-13)(x+3)&=0\\ x=13\: \: \textrm{atau}\: \: x=-3& \end{aligned}\\ &\textrm{Jadi},\: \: \color{red}x=13 \end{array}$.

$\begin{array}{ll}\\ 9.&\textrm{Diketahui akar-akar persamaan kuadrat}\\ &x^{2}+x-3=0\: \: \textrm{adalah}\: \: \alpha \: \: \textrm{dan}\: \beta .\: \textrm{Tentukanlah nilai dari}\\ &\alpha ^{3}-4\beta ^{2}+19\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\\ &\begin{array}{|l|l|l|}\hline x^{2}+x-3=0&\begin{aligned}\alpha ^{2}+\alpha -3&=0\\ &\\ \Leftrightarrow \alpha ^{2}&=3-\alpha.....(1) \end{aligned}&\begin{aligned}\beta ^{2}+\beta -3&=0\\ &\\ \Leftrightarrow \beta ^{2}&=3-\beta.....(2) \end{aligned}\\\hline \left\{\begin{matrix} \alpha +\beta =\displaystyle \frac{-b}{a}=-1\\ \alpha \beta =\displaystyle \frac{c}{a}=-3 \end{matrix}\right.&\begin{aligned}\alpha ^{3}+\alpha ^{2}-3\alpha &=0\\ &\\ \Leftrightarrow \alpha ^{3}&=3\alpha -\alpha ^{2}.....(3) \end{aligned}&\begin{aligned}\beta ^{3}+\beta ^{2}-3\beta &=0\\ &\\ \Leftrightarrow \beta ^{3}&=3\beta -\beta ^{2} .....(4)\end{aligned}\\\hline \end{array}\\ &\\ &\begin{aligned}\alpha ^{3}-4\beta ^{2}+19&=\left ( 3\alpha -\alpha ^{2} \right )-4\left ( 3-\beta \right )+19,\: \textnormal{perhatikan persamaan}\: \: (3)\: \: \textrm{dan}\: \: (2)\\ &=3\alpha -\left ( 3-\alpha \right )-12+4\beta +19\\ &=4\alpha +4\beta -3+7\\ &=4\left ( \alpha +\beta \right )+4\\ &=4(-1)+4\\ &=0 \end{aligned} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 10.&\textrm{Akar real terbesar untuk persamaan}\\ &\displaystyle \frac{3}{x-3}+\frac{5}{x-5}+\frac{17}{x-17}+\frac{19}{x-19}=x^{2}-11x-4\\ &\textrm{adalah}\: \: p+\sqrt{q+\sqrt{r}},\: \textrm{dengan}\: \: p,\: q,\: \textrm{dan}\: \: r\\ &\textrm{adalah bilangan-bilangan asli}.\: \textrm{Carilah hasil}\: \: p+q+r\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\displaystyle \frac{3}{x-3}+\frac{5}{x-5}+\frac{17}{x-17}+\frac{19}{x-19}&=x^{2}-11x-4\\ \frac{3}{x-3}+1+\frac{5}{x-5}+1+\frac{17}{x-17}+1+\frac{19}{x-19}+1&=x^{2}-11x\\ \frac{3+(x-3)}{x-3}+\frac{5+(x-5)}{x-5}+\frac{17+(x-17)}{x-17}+\frac{19+(x-19)}{x-19}&=x^{2}-11x\\ \frac{x}{x-3}+\frac{x}{x-5}+\frac{x}{x-17}+\frac{x}{x-19}&=x^{2}-11x\\ \frac{x(x-19)+x(x-3)}{(x-3)(x-19)}+\frac{x(x-17)+x(x-5)}{(x-5)(x-17)}&=x^{2}-11x\\ \frac{2x^{2}-22x}{x^{2}-22x+57}+\frac{2x^{2}-22}{x^{2}-22x+85}&=x^{2}-11x\\ \left ( x^{2}-11x \right )\left ( \frac{2}{x^{2}-22x+57}+\frac{2}{x^{2}-22x+85} \right )&=x^{2}-11x,\quad \textrm{misal}\: \: t=x^{2}-22x\\ \left ( \frac{2}{t+57}+\frac{2}{t+85} \right )&=\frac{x^{2}-11x}{x^{2}-11x}=1\\ 2\left ( t+85 \right )+2\left ( t+57 \right )&=(t+57)(t+85)\\ 2t+170+2t+114&=t^{2}+142t+4845\\ 0&=t^{2}+138t+4731\\ t^{2}+138t+4731&=0\: \: \left\{\begin{matrix} a=1\\ b=138\\ c=4731 \end{matrix}\right.\\ t_{1,2}&=\displaystyle \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\\ t_{1,2}&=\displaystyle \frac{-138\pm \sqrt{138^{2}-4.1.4731}}{2}\\ &=\displaystyle \frac{-138\pm \sqrt{19044-18924}}{2}\\ &=\displaystyle \frac{-138\pm \sqrt{120}}{2}\\ &=\displaystyle \frac{-138\pm 2\sqrt{30}}{2}\\ &=-69\pm \sqrt{30} \end{aligned}\\ &\begin{aligned}\textrm{Selanjutnya}\qquad\qquad\qquad\qquad\qquad &\\ t_{1,2}&=-69\pm \sqrt{30}\\ x^{2}-22x&=-69\pm \sqrt{30}\\ x^{2}-22x+69\pm \sqrt{30}&=0\\ x^{2}-22x+69+\sqrt{30}&=0\quad \textrm{atau}\quad x^{2}-22x+69-\sqrt{30}\\ &\\ \textrm{dengan cara yang} &\: \: \textrm{semisal diatas}\\  &\\ x_{1,2}=\displaystyle \frac{22\pm \sqrt{22^{2}-4\left ( 69+\sqrt{30} \right )}}{2}&\qquad \textrm{atau}\qquad x_{3,4}=\displaystyle \frac{22\pm \sqrt{22^{2}-4\left ( 69-\sqrt{30} \right )}}{2}\\ x_{1,2}=\displaystyle \frac{22\pm \sqrt{484-276-4\sqrt{30}}}{2}&\qquad \textrm{atau}\qquad x_{3,4}=\displaystyle \frac{22\pm \sqrt{484-276+4\sqrt{30}}}{2}\\ x_{1,2}=\displaystyle \frac{22\pm \sqrt{208-4\sqrt{30}}}{2}&\qquad \textrm{atau}\qquad x_{3,4}=\displaystyle \frac{22\pm \sqrt{208+4\sqrt{30}}}{2}\\ x_{1,2}=\displaystyle \frac{22\pm 2\sqrt{52-\sqrt{30}}}{2}&\qquad \textrm{atau}\qquad x_{3,4}=\displaystyle \frac{22\pm 2\sqrt{52+\sqrt{30}}}{2}\\ x_{1,2}=11\pm \sqrt{52-\sqrt{30}}&\qquad \textrm{atau}\qquad x_{3,4}=11\pm \sqrt{52+\sqrt{30}}\\ &\\  \textrm{Maka},\qquad\qquad\quad &\\ \left\{\begin{matrix} x_{1}=11+\sqrt{52-\sqrt{30}}\\ \\ x_{2}=11-\sqrt{52-\sqrt{30}} \end{matrix}\right.&\qquad \textrm{atau}\qquad \left\{\begin{matrix} x_{3}=11+\sqrt{52+\sqrt{30}}\\ \\ x_{4}=11-\sqrt{52+\sqrt{30}} \end{matrix}\right. \end{aligned}\\\\\\ &\begin{aligned}\textrm{Selanjutnya nilai}&\: \textrm{yang paling pas sesuai soal adalah}\: x_{3}=11+\sqrt{52+\sqrt{30}}=p+\sqrt{q+\sqrt{r}}\\ \textrm{Sehingga nilai}\: \: \: \: \, \, &p+q+r=11+52+30=93 \end{aligned} \end{array}$




Sumber Referensi:
  1. Budhi, Wono S. 2014. Bupena Matematika Kelompok Wajib untuk SMA/MA Kelas X. Jakarta: ERLANGGA.
  2. Idris, M., Rusdi, 1. 2015. Langkah Awal Meraih Medali Emas Olimpiade Matematika SMA. Bandung: YRAMA WIDYA. 
  3. Kurnianingsih, Sri, Kuntarti & Sulistiyono. 2007. Matematika SMA dan MA untuk Kelas X Semester 1. Jakarta: ESIS.
  4. Marwanta, dkk. 2013. Matematika SMA Kelas X. Jakarta: YUDISTIRA.
  5. Sobirin. 2005. Kompas Matematika: Strategi Praktis Menguasai Tes Matematika SMA Kelas 1. Jakarta: KAWAN PUSTAKA.


KUMPULAN MATERI SMA/MA KELAS X/FASE E (Bagian 2) Tahun 2024

 Kelas X 

Kurikulum Merdeka

Fase E Kelas X

Semester Gasal

Eksponen dan Logaritma

Barisan dan Deret

(pilih  materi yang Anda butuhkan saja)
Sistem Persamaan dan Pertidaksamaan Linear

Semester Genap

Kelas XI dan Kelas XII 

Matematika Wajib

Matematika Peminatan

KUMPULAN MATERI SMA/MA KELAS X/FASE E (Bagian 1)

 Kelas X 

Kurikulum Merdeka

Fase E Kelas X

Semester Gasal

Eksponen dan Logaritma

Barisan dan Deret

(pilih  materi yang Anda butuhkan saja)
Sistem Persamaan dan Pertidaksamaan Linear

Semester Genap

  • Persamaan Kuadrat dan Fungsi Kuadrat, contoh soal
  • Statistika
  • Aturan Pencacahan dan Peluang

Kelas XI dan Kelas XII 

Matematika Wajib

Matematika Peminatan

KUMPULAN MATERI MATEMATIKA PEMINATAN untuk MA Kurtilas Revisi 2018

 A. Kelas X (Sepuluh)

A. 1 Fungsi Eksponensial dan Fungsi Logaritma

A. 2 Vektor

B. Kelas XI (Sebelas)

B. 1 Persamaan Trigonometri

B. 2 Rumus Jumlah dan Selisih

B. 3 Persamaan Lingkaran

B. 4 Polinom


C. Kelas XII (Duabelas)

C. 1 Limit Fungsi Trigonometri

C.2 Turunan Fungsi Trigonometri

C.3 Distribusi peluang binomial

C.4 Distribusi normal