Contoh Soal 16 (Segitiga dan Ketaksamaan)

 $\begin{array}{ll}\\ 76.&\textbf{(IMO 1983)}\\ &\textrm{Jika}\: \: a,b,c\: \: \textrm{adalah panjang sisi-sisi segitiga}\\ &\textrm{tunjukkan bahwa}\\ &\quad a^{2}b(a-b)+b^{2}c(b-c)+c^{2}a(c-a)\geq 0\\\\ &\textbf{Bukti}:\\ &\textrm{Pada sebuah segitiga dengan sisi}\: \: a,b,c\\ &\textrm{berlaku}\: \: \begin{cases} a+b>c & \Rightarrow  a>c-b\\  a+c>b & \Rightarrow  c>b-c\\  b+c>a & \Rightarrow  b>a-c \end{cases}\\ &\textrm{Sehingga untuk ketaksamaan pada soal}\\ &\color{red}a^{2}b(a-b)+b^{2}c(b-c)+c^{2}a(x-a)\\ &\geq a^{2}(a-c)(a-b)+b^{2}(b-c)(b-c)+c^{2}(c-b)(c-a)\color{red}\geq 0\\ &\textrm{Bentuk terakhir memenuhi bentuk dari}\\ &\textbf{Ketaksamaan Schur}\: \: \textrm{saat}\: \: \color{red}r=2.\\ &\textrm{Jadi},\\ &\quad a^{2}b(a-b)+b^{2}c(b-c)+c^{2}a(c-a)\geq 0\quad \blacksquare    \end{array}$.

$\begin{array}{ll}\\ 77.&\textrm{Misalkan}\: \: a,b,c\: \: \textrm{bilangan real positif dengan}\\ &a+b+c=2\: ,\: \textrm{tunjukkan bahwa}\\ &\quad a^{4}+b^{4}+c^{4}+abc\geq a^{3}+b^{3}+c^{3}\\\\ &\textbf{Bukti}\\ &\textrm{Dengan}\: \: \textbf{Ketaksamaan Schur}\: \textrm{saat}\: \: \color{red}r=2\\ &\textrm{kita memiliki}\\ &a^{2}(a-b)(a-c)+b^{2}(b-a)(b-c)+c^{2}(c-a)(c-b)\geq 0\\ &\Leftrightarrow a^{4}+b^{4}+c^{4}+abc(a+b+c)-a^{3}(b+c)-b^{3}(a+c)-c^{3}(a+b)\geq 0\\ &\Leftrightarrow a^{4}+b^{4}+c^{4}+abc(a+b+c)\geq a^{3}(b+c)+b^{3}(a+c)+c^{3}(a+b)\\ &\Leftrightarrow a^{4}+b^{4}+c^{4}+abc(a+b+c)\geq (a^{3}+b^{3}+c^{3})(a+b+c)-(a^{4}+b^{4}+c^{4})\\ &\Leftrightarrow 2(a^{4}+b^{4}+c^{4})+abc(a+b+c)\geq (a^{3}+b^{3}+c^{3})(a+b+c)\\ &\Leftrightarrow 2(a^{4}+b^{4}+c^{4})+abc(2)\geq (a^{3}+b^{3}+c^{3})(2)\\ &\Leftrightarrow a^{4}+b^{4}+c^{4}+abc\geq a^{3}+b^{3}+c^{3}\qquad \blacksquare \\\\ &\color{blue}\textrm{Bentuk di atas kadang dituliskan dengan bentuk}\\ &\color{blue}\textrm{berikut}:\\ &\begin{aligned}&\textrm{Dengan}\: \: \textbf{Ketaksamaan Schur}\: \textrm{saat}\: \: \color{red}r=2\\ &\textrm{kita memiliki}\\ &\displaystyle \sum_{\textrm{siklik}}^{.}a^{2}(a-b)(a-c)\geq 0\\ &\Leftrightarrow \displaystyle \sum_{\textrm{siklik}}^{.}a^{4}+abc\displaystyle \sum_{\textrm{siklik}}^{.}a-\displaystyle \sum_{\textrm{siklik}}^{.}a^{3}(b+c)\geq 0\\ &\Leftrightarrow \displaystyle \sum_{\textrm{siklik}}^{.}a^{4}+abc\displaystyle \sum_{\textrm{siklik}}^{.}a\geq \displaystyle \sum_{\textrm{siklik}}^{.}a^{3}(b+c)\\ &\Leftrightarrow \displaystyle \sum_{\textrm{siklik}}^{.}a^{4}+abc\displaystyle \sum_{\textrm{siklik}}^{.}a\geq \left ( \displaystyle \sum_{\textrm{siklik}}^{.}a^{3} \right )\left ( \displaystyle \sum_{\textrm{siklik}}^{.}a \right )-\left ( \displaystyle \sum_{\textrm{siklik}}^{.}a^{4} \right )\\ &\Leftrightarrow 2\displaystyle \sum_{\textrm{siklik}}^{.}a^{4}+abc\displaystyle \sum_{\textrm{siklik}}^{.}a\geq \left ( \displaystyle \sum_{\textrm{siklik}}^{.}a^{3} \right )\left ( \displaystyle \sum_{\textrm{siklik}}^{.}a \right )\\ &\Leftrightarrow \displaystyle \sum_{\textrm{siklik}}^{.}a^{4}+abc\geq \left ( \displaystyle \sum_{\textrm{siklik}}^{.}a^{3} \right )\qquad \blacksquare \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 78.&\textrm{Misalkan}\: \: x,y,x\: \: \textrm{bilangan real positif dengan}\\ &\textrm{tunjukkan bahwa}\\ &\quad a^{2}+b^{2}+c^{2}+2abc+1\geq 2(ab+acb+c)\\&\qquad\qquad\qquad\qquad\qquad (\textbf{Darij Grinberg})\\\\ &\textbf{Bukti}\\ &\textrm{Dengan}\: \: \textbf{ketaksamaan AM-GM}\: \: \textrm{dan}\\ &\textrm{dilanjutkan dengan}\: \: \textbf{ketaksamaan Schur}\\ &\textrm{serta menggesernya ke ruas kiri, maka}\\ &a^{2}+b^{2}+c^{2}+2abc+1- 2(ab+ac+bc)\\ &\geq a^{2}+b^{2}+c^{2}+3(abc)^{^{\frac{2}{3}}}+1\geq 2(ab+ac+bc)\\ &\geq \left ((a)^{^{\frac{2}{3}}}  \right )^{3}+\left ((b)^{^{\frac{2}{3}}}  \right )^{3}+\left ((c)^{^{\frac{2}{3}}}  \right )^{3}+3(abc)^{^{\frac{2}{3}}}-2(ab+ac+bc)\\ &\geq a^{.^{\frac{2}{3}}}b^{.^{\frac{2}{3}}}\left (a^{.^{\frac{2}{3}}} +b^{.^{\frac{2}{3}}} \right )+a^{.^{\frac{2}{3}}}c^{.^{\frac{2}{3}}}\left (a^{.^{\frac{2}{3}}} +c^{.^{\frac{2}{3}}} \right )\\ &\quad +b^{.^{\frac{2}{3}}}c^{.^{\frac{2}{3}}}\left (b^{.^{\frac{2}{3}}} +c^{.^{\frac{2}{3}}} \right )-2(ab+ac+bc)\\ &\geq a^{.^{\frac{2}{3}}}b^{.^{\frac{2}{3}}}\left (a^{.^{\frac{2}{3}}} +b^{.^{\frac{2}{3}}} \right )+a^{.^{\frac{2}{3}}}c^{.^{\frac{2}{3}}}\left (a^{.^{\frac{2}{3}}} +c^{.^{\frac{2}{3}}} \right )\\ &\quad +b^{.^{\frac{2}{3}}}c^{.^{\frac{2}{3}}}\left (b^{.^{\frac{2}{3}}} +c^{.^{\frac{2}{3}}} \right )-2(ab+ac+bc)\\ &= a^{.^{\frac{2}{3}}}b^{.^{\frac{2}{3}}}\left (a^{.^{\frac{2}{3}}} -b^{.^{\frac{2}{3}}} \right )^{2}+a^{.^{\frac{2}{3}}}c^{.^{\frac{2}{3}}}\left (a^{.^{\frac{2}{3}}} -c^{.^{\frac{2}{3}}} \right )^{2}\\ &\quad +b^{.^{\frac{2}{3}}}c^{.^{\frac{2}{3}}}\left (b^{.^{\frac{2}{3}}} -c^{.^{\frac{2}{3}}} \right )^{2}\geq 0\qquad \blacksquare \end{array}$.

$\begin{array}{ll}\\ 79.&(\textbf{APMO 2004})\\ &\textrm{Misalkan}\: \: x,y,x\: \: \textrm{bilangan real positif dengan}\\ &\textrm{tunjukkan bahwa}\\ &\quad (x^{2}+2)(y^{2}+2)(z^{2}+2)\geq 9(xy+yz+zx)\\\\ &\textbf{Bukti}\\ &\color{blue}\textbf{Alternatif 1}\\ &\textrm{Dengan menjabarkan akan didapatkan}\\ &x^{2}y^{2}z^{2}+2\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}y^{2}+4\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}+8\geq 9\displaystyle \sum_{\textrm{siklik}}^{.}xy\\ &\textrm{Perhatikan bahwa}\\ &\bullet \quad\color{red}2\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}y^{2}-4\displaystyle \sum_{\textrm{siklik}}^{.}xy+6=2\displaystyle \sum_{\textrm{siklik}}^{.}(xy-1)^{2}\geq 0\\ &\bullet  \quad \color{red}\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}\geq \displaystyle \sum_{\textrm{siklik}}^{.}xy\: \: \color{black}\textrm{atau}\: \: \color{red}x^{2}+y^{2}+z^{2}\geq xy+xz+yz\\ &\textrm{Kita cukup membuktikan bahwa}\\ & x^{2}y^{2}z^{2}+\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}+2\geq 2\displaystyle \sum_{\textrm{siklik}}^{.}xy\\ &\Leftrightarrow  x^{2}y^{2}z^{2}+2\geq \displaystyle \sum_{\textrm{siklik}}^{.}xy\\ &\begin{aligned}&\textrm{Untuk}\: \: a,b,c\: \: \textrm{bilangan real positif},\\ &\textbf{Ketaksamaan Schur}\: \textrm{saat}\: \: \color{red}r=1\\ &\textrm{memberikan}\\ &\displaystyle \sum_{\textrm{siklik}}^{.}a^{3}+3abc\geq \displaystyle \sum_{\textrm{siklik}}^{.}a^{2}b+\displaystyle \sum_{\textrm{siklik}}^{.}ab^{2}\\ &\qquad\qquad\qquad =ab(a+b)+bc(b+c)+ca(c+a)\\ &\textrm{Dengan}\: \: \textbf{Ketaksamaan AM-GM}\: \: \textrm{didapakan}\\ &\displaystyle \sum_{\textrm{siklik}}^{.}a^{3}+3abc\geq 2\displaystyle \sum_{\textrm{siklik}}^{.}(ab)^{\frac{3}{2}}\\ &\textrm{Pilih}\: \: a=x^{\frac{2}{3}},\: b=y^{\frac{2}{3}},\: c=z^{\frac{2}{3}},\: \textrm{maka didapatkan}\\ &(x^{\frac{2}{3}})^{3}+(y^{\frac{2}{3}})^{3}+(z^{\frac{2}{3}})^{3}+3(xyz)^{\frac{2}{3}}\geq 2(xy+yz+zx)\\ &\textrm{Selanjutnya kita selesaikan ini}\: ,\: x^{2}y^{2}z^{2}+2\geq \displaystyle \sum_{\textrm{siklik}}^{.}xy\\ &\Leftrightarrow  x^{2}y^{2}z^{2}+2 \geq 3(xyz)^{\frac{2}{3}}\\ &\textrm{Misalkan}\: \: (xyz)^{\frac{2}{3}}=t,\: \textrm{maka}\\ &t^{3}+2\geq 3t\Leftrightarrow t^{3}-3t+2\geq 0\\ &(t-1)^{2}(t+2)\geq 0\: \: \textrm{adalah hal benar} \end{aligned}   \end{array}$.

$.\: \quad\begin{aligned}&\color{blue}\textbf{Alternatif 2}\\ &x^{2}y^{2}z^{2}+2\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}y^{2}+4\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}+8\geq 9\displaystyle \sum_{\textrm{siklik}}^{.}xy\\ &\textrm{atau dalam bentuk utuhnya, yaitu}\\ &x^{2}y^{2}z^{2}+2(x^{2}y^{2}+x^{2}z^{2}+y^{2}z^{2})+4(x^{2}+y^{2}+z^{2})+8\geq 9(xy+xz+yz)\\ &\textrm{Sekarang kira uraikan satu persatu bagian}\\ &\bullet\quad x^{2}y^{2}z^{2}+1+1\geq 3\sqrt[3]{(xyz)^{2}}\geq \displaystyle \frac{9abc}{a+b+c}=\frac{9r}{p}\\ &\qquad \textrm{ingat bahwa}\: \: \textbf{jika ada}\: \: \displaystyle \frac{9r}{p}\geq 4q-p^{2}\\ &\qquad =4(xy+xz+yz)-(x+y+z)^{2}\\ &\qquad \textrm{adalah}\: \: \textbf{ketaksamaan Schur saat}\: \: \color{red}r=1\\ &\bullet \quad x^{2}y^{2}+1+x^{2}z^{2}+1+y^{2}z^{2}+1\geq 2(xy+xz+yz)\\ &\bullet\quad  x^{2}+y^{2}+z^{2}\geq xy+xz+yz\\ &\qquad \textrm{keduanya didapat dengan ketaksamaan}\: \: \textbf{AM-GM}\\&x^{2}y^{2}z^{2}+2(x^{2}y^{2}+x^{2}z^{2}+y^{2}z^{2})+4(x^{2}+y^{2}+z^{2})+8\\ &=x^{2}y^{2}z^{2}+2+2(x^{2}y^{2}+x^{2}z^{2}+y^{2}z^{2}+3)+4(x^{2}+y^{2}+z^{2})\\ &\geq 4(xy+xz+yz)-(x+y+z)^{2}+4(xy+xz+yz)+4(xy+xz+yz)\\ &\geq 12(xy+xz+yz)-(x+y+z)^{2}\\ &\geq 12(xy+xz+yz)-3(xy+xz+yz)\\ &=9(xy+xz+yz)\qquad \blacksquare    \end{aligned}$.

$.\: \quad\begin{aligned}&\color{blue}\textbf{Alternatif 3}\\ &(x^{2}+2)(y^{2}+2)(z^{2}+2)- 9(xy+yz+zx)\\ &\textrm{Dengan}\: \: \textbf{ketaksamaan AM-GM}\\ &=x^{2}y^{2}z^{2}+2(x^{2}y^{2}+x^{2}z^{2}+y^{2}z^{2})\\ &\quad +4(x^{2}+y^{2}+z^{2})+8- 9(xy+xz+yz)\\ &=4(x^{2}+y^{2}+z^{2})+2\left ((x^{2}y^{2}+1) +(x^{2}z^{2}+1)+(y^{2}z^{2}+1) \right )\\ &\quad +(x^{2}y^{2}z^{2}+1)+1-9(xy+xz+yz)\\ &\geq 4(x^{2}+y^{2}+z^{2})+4(xy+xz+yz)\\ &\quad +2xyz+1-9(xy+xz+yz)\\ &=(x^{2}+y^{2}+z^{2})+3(x^{2}+y^{2}+z^{2})\\ &\quad +2xyz+1-5(x^{2}+y^{2}+z^{2})\\ &\geq x^{2}+y^{2}+z^{2}+3(xy+xz+yz)\\ &+2xyz-5(xy+xz+yz)\\ &=x^{2}+y^{2}+z^{2}+2xyz+1-2(xy+xz+yz)\geq 0\\ &\textrm{adalah benar dengan bukti ada pada}\\ &\textrm{nomor soal sebelumnya}  \end{aligned}$.

$\begin{array}{ll}\\ 80.&\textrm{Misalkan}\: \: x,y,x\: \: \textrm{bilangan real positif dengan}\\ &\textrm{tunjukkan bahwa}\\ &\quad 2(a^{2}+b^{2}+c^{2})+abc+8\geq 5(a+b+c)\\&\qquad\qquad\qquad\qquad\qquad (\textbf{Tran Nam Dung})\\\\ &\textbf{Bukti}\\ &\textrm{Dengan}\: \: \textbf{ketaksamaan AM-GM}\: \: \textrm{dan}\\ &\textrm{menggeser ke ruas kiri dan masing-masing}\\ &\textrm{serta mengalikan semunya dengan 6, maka}\\ &12(a^{2}+b^{2}+c^{2})+6abc+48- 30(a+b+c)\\ &= 12(a^{2}+b^{2}+c^{2})+3(2abc+1)+45- 5.2.3(a+b+c)\\ &\geq 2(a^{2}+b^{2}+c^{2})+9\sqrt[3]{(abc)^{2}}+45- 5\left ((a+b+c)^{2}+9  \right )\\ &=12(a^{2}+b^{2}+c^{2})+\displaystyle \frac{9abc}{\sqrt[3]{abc}}-5\left ((a^{2}+b^{2}+c^{2})+2(ab+ac+bc)  \right )\\ &=7(a^{2}+b^{2}+c^{2})+ \displaystyle \frac{9abc}{\sqrt[3]{abc}}-10(ab+ac+bc)\\ &\geq  7(a^{2}+b^{2}+c^{2})+\displaystyle \frac{27abc}{a+b+c}-10(ab+ac+bc)\\ &\begin{aligned}&\textrm{dengan}\: \: \textbf{ketaksamaan Schur},\: \: \textrm{yaitu}:\\ &p^{3}+9r\geq 4pq\Leftrightarrow \displaystyle \color{red}\frac{9r}{p}\geq 4q-p^{2}\\ &\textrm{maka ketaksamaan akan menjadi}\\ &\geq 7(a^{2}+b^{2}+c^{2})+\color{blue}3(4q-p^{2})-10q\\ &\geq 7(a^{2}+b^{2}+c^{2})+2q-3p^{2}\\ &=7(a^{2}+b^{2}+c^{2})+2(ab+ac+bc)-3(a+b+c)^{2}\\ &=7(a^{2}+b^{2}+c^{2})+2q-3\left ((a^{2}+b^{2}+c^{2})+2q  \right )\\ &=4(a^{2}+b^{2}+c^{2})+2q-6q\\ &=4(a^{2}+b^{2}+c^{2})-4q\\ &=4(a^{2}+b^{2}+c^{2})-4(ab+ac+bc)\\ &=4(a^{2}+b^{2}+c^{2}-ab-ac-bc)\geq 0\quad \blacksquare  \end{aligned} \end{array}$.


DAFTAR PUSTAKA

  1. Tung, K.Y. 2013. Ayo Raih Medali Emas Olimpiade Matematika SMA. Yogyakarta: ANDI.
  2. Venkatachala, B.J. 2009. Inequalities An Approach Through Problems (2nd). India: SPRINGER.
  3. Vo Tranh Van..... Bat Dang Thuc Schur Va Phuong Phap Doi Bien P, Q, R.
  4. Vo Quoc Ba Can. 2007. Bai Viet Ve Bat Dang Thuc Schur Va Vornicu Schur.
  5. Young, B. 2009. Seri Buku Olimpiade Matematika Strategi Menyelesaikan Soal-Soal Olimpiade Matematika: Ketaksamaan (Inequality). Bandung: PAKAR RAYA.





Soal dan Pembahasan Seleksi Mandiri Madrasah (KSN-S) 2022

 $\begin{array}{ll}\\ 1.&\textrm{Jika}\: \: a,b\: \:  \textrm{bilangan real positif},\\ &\textrm{tunjukkan bahwa}\: \: a^{a}.b^{b}\geq a^{b}.b^{a}\\\\ &\textbf{Bukti}\\ &\begin{aligned}&\textrm{Diketahui}\: \: a^{a}.b^{b}\geq a^{b}.b^{a}\Leftrightarrow \displaystyle \frac{a^{a}.b^{b}}{a^{b}.b^{a}}\geq 1\\ &\Leftrightarrow \displaystyle \frac{a^{a-b}}{b^{a-b}}\geq 1\Leftrightarrow \left ( \displaystyle \frac{a}{b} \right )^{a-b}\geq 1\\ &\textrm{Selanjutnya akan ada dua kemungkinan}\\ &\textrm{yaitu}:\: a\geq b> 0\: \: \textrm{dan}\: \: b\geq a> 0 \end{aligned}\\ &\begin{array}{|c|l|l|}\hline \textrm{No}&\textrm{Kondisi}&\textrm{Akibat}\\\hline 1.&a\geq b> 0&\displaystyle \frac{a}{b}\geq 1\: \: \textrm{atau}\: \: a-b\geq 0\\ &&\textrm{maka}\: \:  \begin{aligned}&\left (\displaystyle \frac{a}{b}  \right )^{a-b}\geq 1 \end{aligned}\\\hline 2.&b\geq a> 0&\displaystyle \frac{a}{b}\leq  1\: \: \textrm{atau}\: \: a-b\leq  0\\ &&\textrm{maka}\: \:  \begin{aligned}&\left (\displaystyle \frac{a}{b}  \right )^{a-b}\geq 1 \end{aligned}\\\hline \end{array}\\ &\textrm{Karena keduanya memiliki hasil yang sama}\\ &\textrm{maka}\: \: a^{a}.b^{b}\geq a^{b}.b^{a}\qquad \blacksquare  \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Jika}\: \: a=\sqrt{\displaystyle \frac{b}{1-b}}\: \:  \textrm{nyatakanlah}\: \: b\: \: \textrm{dalam}\: \: a\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\\ &a=\sqrt{\displaystyle \frac{b}{1-b}}\Leftrightarrow a^{2}=\displaystyle \frac{b}{1-b}\Leftrightarrow a^{2}(1-b)=b\\ &\Leftrightarrow a^{2}-a^{2}b=b\Leftrightarrow b+a^{2}b=a^{2}\\ &\Leftrightarrow b(1-a^{2})=a^{2}\Leftrightarrow b=\color{blue}\displaystyle \frac{a^{2}}{1-a^{2}} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Sederhanakanlah bentuk}\: \: 3.4^{4}+3.4^{4}+3.4^{4}\\\\ &\textbf{Jawab}:\\ &\begin{aligned} &3.4^{4}+3.4^{4}+3.4^{4}=3(3.4^{4})\\ &=9\times 4^{4} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 4.&\textrm{Diketahui}\: \: a^{2}+b^{2}=1\: \: \textrm{dan}\: \: x^{2}+y^{2}=1\\ &\textrm{Silahkan lanjutkan proses berikut}\\ &(a^{2}+b^{2})(x^{2}+y^{2})-(ax+by)^{2}=....\\ &\textrm{a}.\quad \textrm{Bagaimana hubungan}\: \: ax+by\: \: \textrm{dengan}\: \: 1\\ &\textrm{b}.\quad \textrm{Mengapa}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\color{blue}\textrm{Perhatikan bahwa}\\ &(a^{2}+b^{2})(x^{2}+y^{2})-(ax+by)^{2}\\ &=a^{2}x^{2}+a^{2}y^{2}+b^{2}x^{2} +b^{2}y^{2}-a^{2}x^{2}-b^{2}y^{2}-2abxy\\ &=a^{2}y^{2}+b^{2}x^{2}-2abxy\\ &=(ay-bx)^{2}\\ &\textrm{a. Nilai}\: \: \color{red}ax+by\: \: \color{black}\textrm{selalu lebih kecil}\\ &\quad\: \textrm{atau sama dengan 1}\\ &\textrm{b. Kita memiliki}\: \: (ay-bx)^{2}\geq 0,\: \: \textrm{sehingga}\\ &\quad\Leftrightarrow \: (a^{2}+b^{2})(x^{2}+y^{2})-(ax+by)^{2}\geq 0\\ &\quad\Leftrightarrow \: \quad 1\times 1-(ax+by)^{2}\geq 0\\ &\quad\Leftrightarrow \: \quad\qquad 1-(ax+by)^{2}\geq 0\\ &\quad\Leftrightarrow \: \quad\qquad (ax+by)^{2}-1\leq  0\\ &\quad\Leftrightarrow \: \: \: \: \: \qquad\qquad (ax+by)^{2}\leq  1\qquad \blacksquare  \end{aligned}  \end{array}$.

$\begin{array}{ll}\\ 5.&\textrm{Pada segi enam beraturan, berapa banyak}\\ &\textrm{segitiga yang dapat Anda temukan}\\\\ &\textbf{Jawab}:\\  &\begin{aligned}&\textrm{Setiap segitiga dapat terbentuk dari 3 buah}\\ &\textrm{sebarang, sehingga banyak segitiga bila}\\ &\textrm{diketahui}\: \: n=6,\: \: r=3\: \: \textrm{adalah}:\\ &\color{red}\textrm{kombinasi 3 titik dari 6 titik yang ada}\\ &\textrm{Adapun untuk rumus kombinasinya}:\\ &C_{r}^{n}=\begin{pmatrix} n\\  r \end{pmatrix}=\displaystyle \frac{n!}{r!(n-r)!}\\ &\textrm{dengan}\: \: n!=1\times 2\times 3\times 4\times ...\times n\\ &\textrm{maka}\\ &C_{3}^{6}=\begin{pmatrix} 6\\ 3 \end{pmatrix}=\displaystyle \frac{6!}{3!.3!}=\frac{6.5.4.3!}{1.2.3.3!}=\color{blue}20  \end{aligned}  \end{array}$.

$\begin{array}{ll}\\ 6.&\textrm{Tentukan nilai dari bentuk}\\ &\displaystyle \frac{1^{-3}+2^{-3}+3^{-3}+4^{-3}+5^{-3}+...}{1^{-3}+3^{-3}+5^{-3}+7^{-3}+9^{-3}+...}\\\\ &\textbf{Jawab}:\\  &\begin{aligned}&\textrm{Misalkan}\\ &x=1^{-3}+2^{-3}+3^{-3}+4^{-3}+5^{-3}+...\: \: \textrm{dan}\\ &y=1^{-3}+3^{-3}+5^{-3}+7^{-3}+9^{-3}+...\\ &\textrm{Sekarang perhatikan bahwa}\\ &x=1^{-3}+2^{-3}+3^{-3}+4^{-3}+5^{-3}+...\\ &\: \: \: =(1^{-3}+3^{-3}+5^{-3}+...)\: +\: (2^{-3}+4^{-3}+6^{-3}+...)\\ &\: \: \: =(1^{-3}+3^{-3}+5^{-3}+...)\: +\: 2^{-3}(1^{-3}+2^{-3}+3^{-3}+...)\\ &\: \: \: =y+\displaystyle \frac{1}{8}x\\ &x-\displaystyle \frac{1}{8}x=y\Leftrightarrow \displaystyle \frac{7}{8}x=y\Leftrightarrow \displaystyle \frac{x}{y}=\color{blue}\frac{8}{7}\\  \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 7.&\textrm{Jika}\: \: 60^{a}=3\: \: \textrm{dan}\: \: 60^{b}=5\\ &\textrm{maka hasil dari}\: \: 12^{^{\left ( \displaystyle \frac{1-x-y}{2(1-b)} \right )}}\\\\ &\textbf{Jawab}:\\ &\color{purple}\textrm{Perhatikanlah bahwa}\\ &\color{blue}\begin{aligned}&\begin{cases} 60^{a}=3 & \Rightarrow \: ^{60}\log 3=a \\ 60^{b}=5 & \Rightarrow \: ^{60}\log 5=b \end{cases} \end{aligned} \\ &\color{purple}\textrm{Selanjutnya}\\ &\color{purple}\textrm{Untuk}\: \: (1-a-b),\: \textrm{maka}\\ &\color{purple}\begin{aligned}1-a-b&=1-\: ^{60}\log 3-\: ^{60}\log 5\\ &=\: ^{60}\log 60-\: ^{60}\log 3-\: ^{60}\log 5\\ &=\: ^{60}\log \displaystyle \frac{60}{3\times 5}\\ &=\: ^{60}\log 4\\ &=\: ^{60}\log 2^{2} \end{aligned} \\ &\color{purple}\textrm{Untuk}\: \: 2(1-b),\: \textrm{maka}\\ &\color{purple}\begin{aligned}2(1-b)&=2\left ( 1-\: ^{60}\log 5 \right )\\ &=2\left ( ^{60}\log 60-\: ^{60}\log 5 \right )\\ &=2\left ( ^{60}\log \displaystyle \frac{60}{5} \right )\\ &=2\left ( ^{60}\log 12 \right )\\ &=\: ^{60}\log 12^{2} \end{aligned} \\ &\color{blue}\textrm{Untuk}\: \: \left ( \displaystyle \frac{1-x-y}{2(1-b)} \right ),\: \textrm{maka}\\ &\color{purple}\begin{aligned}\left ( \displaystyle \frac{1-x-y}{2(1-b)} \right )&=\displaystyle \frac{\: ^{60}\log 2^{2}}{\: ^{60}\log 12^{2}}\\ &=\displaystyle \frac{2\: ^{60}\log 2}{2\: ^{60}\log 12}\\ &=\displaystyle \frac{\: ^{60}\log 2}{\: ^{60}\log 12}\\ &=\: ^{12}\log 2 \end{aligned}\\ &\color{purple}\textrm{Jadi},\: \: 12^{^{\left ( \displaystyle \frac{1-x-y}{2(1-b)} \right )}}=12^{^{\: ^{12}\log 2}}=2 \end{array}$.

$\begin{array}{ll}\\ 8.&\textrm{Tentukan hasil dari bentuk}\\ &\sin ^{2}1^{\circ}+\sin ^{2}2^{\circ}+\sin ^{2}3^{\circ}+...+\sin ^{2}89^{\circ}+\sin ^{2}90^{\circ}\\\\ &\textbf{Jawab}:\\ &\textrm{Ingat sudut-sudut yang berelasi pada trigonometri}:\\ &\color{red}\sin \left ( 90^{0}-\alpha  \right )=\cos \alpha \\ &\textrm{Ingat pula identitas trigonometri}:\\ & \color{red}\sin ^{2}\alpha +\cos ^{2}\alpha =1\\ &\underline{\textrm{maka bentuk}}\\ &\sin ^{2}\color{blue}1^{\circ}\color{black}=\sin^{2} \left (\color{blue}90^{\circ}-89^{\circ}\color{black}  \right )  =\cos ^{2}89^{\circ},\\ & \textrm{dengan cara yang sama akan diperoleh}\\ &\sin ^{2}\color{blue}2^{\circ}\color{black}=\cos ^{2}88^{\circ}\\ &\sin ^{2}\color{blue}3^{\circ}\color{black}=\cos ^{2}87^{\circ}\\ &\sin ^{2}\color{blue}4^{\circ}\color{black}=\cos ^{2}86^{\circ}\\ &\qquad\qquad \vdots \\ &\sin ^{2}\color{blue}44^{\circ}\color{black}=\cos ^{2}46^{\circ}\\ &\textrm{Sehingga}\\ &\begin{aligned}&\sin ^{2}1^{\circ}+\sin ^{2}2^{\circ}+\sin ^{2}3^{\circ}+...+\sin ^{2}89^{\circ}+\sin ^{2}90^{\circ}\\ &=\sin ^{2}1^{\circ}+...+\sin ^{2}44^{\circ}+\sin ^{2}46^{\circ}+...+\sin ^{2}89^{\circ}\color{red}+\sin ^{2}45^{\circ}+\sin ^{2}90^{\circ}\\ &=\underset{44}{\underbrace{1+1+1+...+1}}\color{red}+\sin ^{2}45^{\circ}+\sin ^{2}90^{\circ}\\ &=44+\displaystyle \frac{1}{2}+1\\ &=\color{blue}45\displaystyle \frac{1}{2} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 9.&\textrm{Tentukan sisa pembagian}\: \: x^{3}-5x^{2}+3x-4\\ &\textrm{oleh}\: \: 2x+1\\\\ &\textbf{Jawab}:\\ &\color{blue}\textbf{Alternatif 1}\\ &\textrm{Misalkan}\: \: f(x)=x^{3}-5x^{2}+3x-4\\ &\textrm{Sisa pembagian}\: \: f(x)\: \: \textrm{oleh}\: \: q(x)=2x+1\: \: \textrm{adalah}:\\ &\textrm{ambil}\: \: q(x)=2x+1=0\Rightarrow x=-\displaystyle \frac{1}{2},\: \: \textrm{maka}\\ &\textrm{penentuan sisa pembagian cukup dengan}\\ &f\left ( -\displaystyle \frac{1}{2} \right )=\left ( -\displaystyle \frac{1}{2} \right )^{3}-5\left ( -\displaystyle \frac{1}{2} \right )^{2}+3\left ( -\displaystyle \frac{1}{2} \right )-4\\ &\qquad\qquad =-\displaystyle \frac{1}{8}-\displaystyle \frac{5}{4}-\frac{3}{2}-4\\ &\qquad\qquad =\displaystyle \frac{-1-10-12-32}{8}=\color{red}-\displaystyle \displaystyle \frac{55}{8}\\ &\color{blue}\textbf{Alternatif 2}\\ &\textrm{Dengan metode Horner, yaitu}:\\ &\begin{array}{c|cccccccccc}\\ x=-\displaystyle \frac{1}{2}&1&-5&3&-4&&&\\ &&&&&&&\\ &&-\displaystyle \frac{1}{2}&\displaystyle \frac{11}{4}&-\displaystyle \frac{23}{8}&&&+\\\hline &1&-5\displaystyle \frac{1}{2}&\displaystyle \frac{23}{4}&\color{red}-\displaystyle \frac{55}{8}&&& \end{array} \end{array}$.

$\begin{array}{ll}\\ 10.&\textrm{Fungsi}\: \: f\: \: \textrm{memiliki sifat untuk tiap bilangan}\\ &\textrm{bilangan real}\: \: x\: \:  \textrm{berlaku}\: \: f(x)+f(x-1)=x^{2}\\ &\textrm{Jika}\: \: f(19)=94,\: \textrm{tentukan sisa pembagian}\\ & f(94)\: \: \textrm{oleh}\: \: 100\\\\ &\textbf{Jawab}:\\ &\textrm{Perhatikan bahwa}\: \: f(x)=x^{2}-f(x-1),\\ &\textrm{maka}\\ &\begin{aligned}f(94)&=94^{2}-f(93)=94^{2}-\left ( 93^{2}-f(92) \right )\\ &=94^{2}-93^{2}+f(92)=94^{2}-93^{2}+(92^{2}-f(91))\\ &=94^{2}-93^{2}+92^{2}-91^{2}+f(90)\\ &=94^{2}-93^{2}+92^{2}-91^{2}+90^{2}-\cdots +20^{2}-f(19)\\ &\quad \textrm{ingat bentuk}\: \: \color{red}a^{2}-b^{2}=(a+b)(a-b),\: \color{black}\textrm{maka}\\ &=(94+93)+(92+91)+\cdots +400-94\\ &=\underset{4255}{\underbrace{94+93+...+22+21}}+400-94\\ &=4255+306\\ &=\color{blue}4561 \end{aligned}\\ &\textrm{Sehingga sisa pembagian}\: \: f(94)\: \: \textrm{oleh 100 adalah}\: \: \color{blue}61 \end{array}$.



DAFTAR PUSTAKA

  1. Idris, M., Rusdi, I. 2015. Langkah Awal Meraih Medali Emas Olimpiade Matematika SMA. Bandung: YRAMA WIDYA.
  2. Susyanto, N. 2012. Tutor Senior Olimpiade Matematika Lima Benua Tingkat SMP. Yogyakarta: KENDI MAS MEDIA
  3. ..........Η Στήλη των Μαθηματικών, έτος 2007, τεύχη 46-94


Kumpulkan Materi Ketaksamaan

 


Kumpulan Materi Ketaksamaan

Contoh 2 Soal dan Pembahasan Materi Vektor

 $\begin{array}{ll}\\ 6.&\textrm{Diketahui titik}\: \: P(n,2),\: Q(1,-2),\: n>0\\ &\textrm{dan panjang}\: \: \overline{PQ}=5,\: \: \textrm{maka nilai}\: \: n\\ & \textrm{adalah}....\\ &\textrm{a}.\quad 1\\ &\textrm{b}.\quad 2\\ &\textrm{c}.\quad 3\\ &\textrm{d}.\quad \color{red}4\\ &\textrm{e}.\quad 5\\\\ &\textrm{Jawab}\\ &\begin{aligned}\overline{PQ}&=5\\ \sqrt{(x_{Q}-x_{P})^{2}+(y_{Q}-y_{P})^{2}}&=5\\ (x_{Q}-x_{P})^{2}+(y_{Q}-y_{P})^{2}&=25\\ (1-n)^{2}+(-2-2)^{2}&=25\\ (1-n)^{2}+16&=25\\ (1-n)^{2}-3^{2}&=0\\ (1+3-n)(1-3-n)&=0\\ \color{red}n=4\: \: \color{black}\textrm{atau}\: \: \color{red}n=-2& \end{aligned} \end{array}$

$\begin{array}{ll}\\ 7.&\textrm{Diketahui vektor}\: \: \vec{u}=\begin{pmatrix} 3\\ 4 \end{pmatrix}\: \: \textrm{dan}\: \: \vec{v}=\begin{pmatrix} 2\\ -1 \end{pmatrix}.\\ & \textrm{Nilai}\: \: \left | \vec{u}+\vec{v} \right |\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \sqrt{28}\\ &\textrm{b}.\quad \sqrt{30}\\ &\textrm{c}.\quad \color{red}\sqrt{34}\\ &\textrm{d}.\quad \sqrt{44}\\ &\textrm{e}.\quad \sqrt{50}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{u}+\vec{v}&=\begin{pmatrix} 3\\ 4 \end{pmatrix} + \begin{pmatrix} 2\\ -1 \end{pmatrix}\\ &=\begin{pmatrix} 3+2\\ 4+(-1) \end{pmatrix}\\ &=\begin{pmatrix} 5\\ 3 \end{pmatrix}\\ \left | \vec{u}+\vec{v} \right |&=\sqrt{5^{2}+3^{2}}\\ &=\sqrt{25+9}\\ &=\color{red}\sqrt{34} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 8.&\textrm{Vektor satuan}\: \: \vec{u}=\begin{pmatrix} -5\\ -12 \end{pmatrix}\: \: \textrm{adalah}.... \\ &\textrm{a}.\quad \color{red}\displaystyle -\frac{1}{13}\begin{pmatrix} 5\\ 12 \end{pmatrix}\\ &\textrm{b}.\quad \displaystyle \frac{1}{15}\begin{pmatrix} -5\\ -12 \end{pmatrix}\\ &\textrm{c}.\quad \displaystyle -\frac{1}{17}\begin{pmatrix} 5\\ 12 \end{pmatrix}\\ &\textrm{d}.\quad \displaystyle -\frac{1}{17}\begin{pmatrix} 5\\ 12 \end{pmatrix}\\ &\textrm{e}.\quad \displaystyle \frac{1}{2} \begin{pmatrix} 5\\ 12 \end{pmatrix}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{e}_{\vec{u}}&=\displaystyle \frac{\vec{u}}{\left | \vec{u} \right |},\quad \textrm{maka}\\ \vec{e}_{\begin{pmatrix} -5\\ -12 \end{pmatrix}}&=\displaystyle \frac{\begin{pmatrix} -5\\ -12 \end{pmatrix}}{\left | \begin{pmatrix} -5\\ -12 \end{pmatrix} \right |}\\ &=\displaystyle \frac{\begin{pmatrix} -5\\ -12 \end{pmatrix}}{\sqrt{(-5)^{2}+(-12)^{2}}}\\ &=\displaystyle \frac{-\begin{pmatrix} 5\\ 12 \end{pmatrix}}{\sqrt{169}}\\ &=\color{red}-\displaystyle \frac{1}{13}\begin{pmatrix} 5\\ 12 \end{pmatrix} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 9.&\textrm{Jika vektor}\: \: \vec{p}=\begin{pmatrix} 8\\ 7 \end{pmatrix}\: \: \textrm{dan}\: \: \vec{q}=\begin{pmatrix} -3\\ 9 \end{pmatrix}\\ & \textrm{Hasil dari}\: \: \vec{p}+\vec{q}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \begin{pmatrix} 6\\ 14 \end{pmatrix}\\ &\textrm{b}.\quad \begin{pmatrix} 6\\ 13 \end{pmatrix}\\ &\textrm{c}.\quad \begin{pmatrix} 6\\ 15 \end{pmatrix}\\ &\textrm{d}.\quad \color{red}\begin{pmatrix} 5\\ 16 \end{pmatrix}\\ &\textrm{e}.\quad \begin{pmatrix} 5\\ 48 \end{pmatrix}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{p}+\vec{q}&=\begin{pmatrix} 8\\ 7 \end{pmatrix}+\begin{pmatrix} -3\\ 9 \end{pmatrix}\\ &=\begin{pmatrix} 8-3\\ 7+9 \end{pmatrix}\\ &=\color{red}\begin{pmatrix} 5\\ 16 \end{pmatrix} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 10.&\textrm{Jika vektor}\: \: \vec{p}=\begin{pmatrix} ^{2}\log 32\\ -\, ^{3}\log \displaystyle \frac{1}{81} \end{pmatrix}\: \: \textrm{dan}\: \: \vec{q}=\begin{pmatrix} -9\\ -21 \end{pmatrix}\\ & \textrm{Hasil dari}\: \: \vec{p}+\vec{q}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \begin{pmatrix} 6\\ 17 \end{pmatrix}\\ &\textrm{b}.\quad \begin{pmatrix} -6\\ -17 \end{pmatrix}\\ &\textrm{c}.\quad \begin{pmatrix} 4\\ 17 \end{pmatrix}\\ &\textrm{d}.\quad \color{red}\begin{pmatrix} -4\\ -17 \end{pmatrix}\\ &\textrm{e}.\quad \begin{pmatrix} 5\\ -16 \end{pmatrix}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{p}+\vec{q}&=\begin{pmatrix} ^{2}\log 32\\ -\, ^{3}\log \displaystyle \frac{1}{81} \end{pmatrix}+\begin{pmatrix} -9\\ -21 \end{pmatrix}\\ &=\begin{pmatrix} 5-9\\ 4-21 \end{pmatrix}\\ &=\color{red}\begin{pmatrix} -4\\ -17 \end{pmatrix} \end{aligned} \end{array}$

Contoh 1 Soal dan Pembahasan Materi Vektor

 $\begin{array}{ll}\\ 1.&\textrm{Perhatikanlah ilustrasi gambar berikut} \end{array}$


$\begin{array}{ll}\\ .\, \quad&\textrm{maka vektor}\: \: \vec{u}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&3\vec{i}+5\vec{j}&&&\textrm{d}.&-3\vec{i}-5\vec{j}\\ \textrm{b}.&5\vec{i}+3\vec{j}&\textrm{c}.&\color{red}-3\vec{i}+5\vec{j}&\textrm{e}.&-5\vec{i}+3\vec{j} \end{array}\\\\ &\textbf{Jawab}\\ &\textrm{Kita perhatikan lagi gambarnya}\\ &\begin{aligned}&\textrm{Vektor}\: \: \vec{u}\: \: \textrm{jika dinyatakan sebagai }\\ &\textrm{kombinasi linear adalah}\: \: \vec{u}=\color{red}-3\vec{i}+5\vec{j} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Panjang vektor}\: \: \vec{p}=\begin{pmatrix} 4\\ -8 \end{pmatrix}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \displaystyle \sqrt{4}\\ &\textrm{b}.\quad \sqrt{12}\\ &\textrm{b}.\quad \sqrt{20}\\ &\textrm{d}.\quad \color{red}\displaystyle \sqrt{80}\\ &\textrm{e}.\quad \sqrt{100}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{p}&=\begin{pmatrix} 4\\ -8 \end{pmatrix},\: \: \textrm{maka besar dari vektor}\\ \vec{p}&\: \: \textrm{adalah}=\left | \vec{p} \right |=\sqrt{x^{2}+y^{2}}\\ &\textrm{Yaitu}\\ \left | \vec{p} \right |&=\sqrt{4^{2}+(-8)^{2}}\\ &=\sqrt{16+64}=\color{red}\sqrt{80} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Perhatikanlah gambar berikut}\\ & \end{array}$.

$\begin{array}{ll}\\ .\quad &\textrm{Panjang vektor}\: \: \vec{h}\: \: \textrm{tersebut di atas adalah}....\\ &\textrm{a}.\quad 5\\ &\textrm{b}.\quad 7\\ &\textrm{c}.\quad \color{red}10\\ &\textrm{d}.\quad 12\\ &\textrm{e}.\quad 15\\\\ &\textrm{Jawab}\\ &\begin{aligned}\textrm{Diketahui}&\quad \vec{h}=\overline{OH}=8\vec{i}+6\vec{j}\\ \vec{h}&=\sqrt{x_{H}^{2}+y_{H}^{2}}\\ &=\sqrt{8^{2}+6^{2}}\qquad \textbf{(ingat tripel Pythagoras)}\\ &=\sqrt{10^{2}}=\color{red}10 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 4.&\textrm{Vektor satuan dari}\: \: \vec{q}=3\vec{i}-4\vec{j}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \displaystyle \frac{4}{5}\vec{i}-\frac{3}{5}\vec{j}\\ &\textrm{b}.\quad \color{red}\displaystyle \frac{3}{5}\vec{i}-\frac{4}{5}\vec{j}\\ &\textrm{c}.\quad 3\vec{i}-4\vec{j}\\ &\textrm{d}.\quad 4\vec{i}-3\vec{j}\\ &\textrm{e}.\quad 15\vec{i}-20\vec{j}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{q}&=3\vec{i}-4\vec{j}\\ &\textrm{Vektor satuan dari vektor}\: \: \vec{q}\: \: \textrm{adalah}:\\ &\: \hat{e}_{_{\vec{q}}}=\displaystyle \frac{1}{\left | \vec{q} \right |}. \vec{q}\\ &\textrm{Sehingga}\\ \hat{e}_{_{\vec{q}}}&=\displaystyle \frac{1}{\sqrt{3^{2}+(-4)^{2}}}.\begin{pmatrix} 3\\ -4 \end{pmatrix}\\ &=\displaystyle \frac{1}{5}\begin{pmatrix} 3\\ -4 \end{pmatrix}\\ &\textrm{atau dalam vektor basis}\\ &=\color{red}\displaystyle \frac{3}{5}\vec{i}-\frac{4}{5}\vec{j} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 5.&\textrm{Vektor berikut yang memiliki panjang}\\ & 29\: \: \textrm{satuan adalah}....\\ &\textrm{a}.\quad \displaystyle 18\vec{i}-19\vec{j}\\ &\textrm{b}.\quad \displaystyle 19\vec{i}-20\vec{j}\\ &\textrm{c}.\quad 20\vec{i}-21\vec{j}\\ &\textrm{d}.\quad \color{red}21\vec{i}-22\vec{j}\\ &\textrm{e}.\quad 22\vec{i}-23\vec{j}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\textrm{Ingat}&\textrm{lah akan tigaan Pythagoras}\\ &\begin{cases} (3,4,5) &\Rightarrow 3^{2}+4^{2}=5^{2} \\ (5,12,13) & \Rightarrow 5^{2}+12^{2}=13^{2} \\ (8,15,17) &\Rightarrow \cdots \\ (20,21,29)&\Rightarrow \cdots \\ \vdots & dll \end{cases}\\ \textrm{Sehin}&\textrm{gga}\\ \textrm{yang}&\: \: \textrm{paling mungkin adalah}\: : \: \\ &=\sqrt{20^{2}+21^{2}}=\sqrt{400+441}\\ &=\sqrt{841}\\ &=\color{red}29 \end{aligned} \end{array}$



Materi dan Contoh Soal Persiapan UM Matematika Peminatan/Pendalaman Tingkat MA Tahun 2022

 A. Kelas X (Sepuluh)

A. 1 Fungsi Eksponensial dan Fungsi Logaritma

A. 2 Vektor

B. Kelas XI (Sebelas)

B. 1 Persamaan Trigonometri

B. 2 Rumus Jumlah dan Selisih

B. 3 Persamaan Lingkaran

B. 4 Polinom


C. Kelas XII (Duabelas)

C. 1 Limit Fungsi Trigonometri

C.2 Turunan Fungsi Trigonometri

C.3 Distribusi peluang binomial

C.4 Distribusi normal


Materi dan Contoh Soal Persiapan UM Matematika Wajib Tingkat MA Tahun 2022

A. Kelas X (Sepuluh)

A. 1 Persamaan dan Pertidaksamaan Nilai Mutlak dari Bentuk Linear Satu Variabel

A. 2 Pertidaksamaan Rasional dan Irasional Satu Variabel

A. 3 Sistem Persamaan Linear Tiga Variabel

A. 4 Sistem Pertidaksamaan Dua Variabel Linear-Linear

A. 5 Sistem Pertidaksamaan Dua Variabel Linear dan Kuadrat

A. 6 Fungsi

A. 7 Fungsi Komposisi dan Fungsi Invers

A. 8 Rasio Trigonometri pada Segitiga Siku-Siku

A. 9 Rasio Trigonometri Sudut-Sudut diberbagai Kuadran

A. 10 Aturan Sinus dan Cosinus


B. Kelas XI (Sebelas)

B. 1 Program Linear

B. 2 Matriks

B. 3 Determinan dan Invers Matriks Ordo 2x2

B. 4 Transformasi Geometri

B. 5 Pola Bilangan dan Jumlah pada Barisan Aritmetika dan Geometri

B. 6 Limit Fungsi Aljabar

B. 7 Turunan Fungsi Aljabar

B. 8 Integral Tak Tentu Fungsi Aljabar

Tambahan/Pengayaan

Integral Tentu Fungsi Aljabar


C. Kelas XII (Dua Belas)

C. 1 Jarak dalm Ruang

Statistika

C. 3 Aturan Pencacahan

C. 4 Peluang Kejadian Majmuk


Contoh Soal 3 Peluang Kejadian

 $\begin{array}{ll}\ 11.&\textrm{Jika kejadian}\: \: A\: \: \textrm{dan}\: \: B\: \: \textrm{adalah dua kejadian}\\ &\textrm{dengan}\: \: P(A)=\displaystyle \frac{8}{15},\: P(B)=\displaystyle \frac{7}{12},\: \: \textrm{dan}\\ &P(A| B)=\displaystyle \frac{4}{7},\: \textrm{maka nilai}\: \: P(B|A)=\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle \frac{8}{45}&&&\textrm{d}.&\color{red}\displaystyle \frac{5}{8}\\\\ \textrm{b}.&\displaystyle \frac{1}{3}&\textrm{c}.&\displaystyle \frac{3}{8}&\textrm{e}.&\displaystyle \frac{7}{15} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Kejadian di atas adalah contoh}\\ &\textrm{kejadian}\: \: \textbf{tidak saling bebas (bersyarat)}.\\ &\color{red}\textrm{Diketahui bahwa}\\ &P(A)=\displaystyle \frac{8}{15},\: P(B)=\displaystyle \frac{7}{12},\: P(A|B)=\displaystyle \frac{4}{7}\\ &\color{red}\textrm{Ditanyakan nilai}\: \: P(B|A)=\: ...?\\ &\color{purple}\textrm{maka}\\ &\begin{aligned}\color{blue}P(A\cap B)&=\color{blue}P(A\cap B)\\ P(A)\times P(B|A)&=P(B)\times P(A|B)\\ P(B|A)&=\displaystyle \frac{P(B)\times P(A|B)}{P(A)}\\ &=\displaystyle \frac{\left ( \displaystyle \frac{7}{12} \right )\times \left ( \displaystyle \frac{4}{7} \right )}{\displaystyle \frac{8}{15}}\\ &=\displaystyle \frac{\displaystyle \frac{1}{3}}{\displaystyle \frac{8}{15}}\\ &=\displaystyle \frac{1}{3}\times \frac{15}{8}\\ &=\color{red}\displaystyle \frac{5}{8} \end{aligned} \end{aligned} \end{array}$

Contoh Soal 2 Peluang Kejadian

 $\begin{array}{ll}\ 6.&\textrm{Sebuah kantong berisi 7 kelereng merah,}\\ &\textrm{5 kelereng hijau, dan 4 kelereng biru}\\ &\textrm{Diambil sebuah kelereng secara acak.}\\ &\textrm{Peluang yang terambil merah atau hijau}\\ &\textrm{adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle \frac{5}{16}&&&\textrm{d}.&\color{red}\displaystyle \frac{3}{4}\\\\ \textrm{b}.&\displaystyle \frac{7}{16}&\textrm{c}.&\displaystyle \frac{1}{2}&\textrm{e}.&\displaystyle \frac{2}{3} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Kejadian di atas adalah contoh}\\ &\textrm{kejadian}\: \: \textbf{saling lepas}.\: \textrm{Misalkan}\\ &A=\textrm{kejadian terambil 1 kelereng merah}\\ &n(A)=C(7,1)=\begin{pmatrix} 7\\ 1 \end{pmatrix}=7\\ &B=\textrm{kejadian terambil 1 kelereng hijau}\\ &n(B)=C(5,1)=\begin{pmatrix} 5\\ 1 \end{pmatrix}=5\\ &S=\textrm{semua dianggap identik}\\ &n(S)=C(16,1)=\begin{pmatrix} 16\\ 1 \end{pmatrix}=16\\ &\textrm{maka}\\ &P(A\cup B)=P(A)+P(B)\\ &\: \qquad\qquad =\displaystyle \frac{n(A)}{n(S)}+\frac{n(B)}{n(S)}\\ &\: \qquad\qquad =\displaystyle \frac{7}{16}+\frac{5}{16}=\frac{12}{16}=\color{red}\displaystyle \frac{3}{4} \end{aligned} \end{array}$

$\begin{array}{ll}\ 7.&\textrm{Dari 100 orang yang mengikuti kegiatan}\\ &\textrm{jalan santai terdapat 60 orang memakai}\\ &\textrm{topi dan 45 orang yang berkacamata.}\\ &\textrm{Peluang bahwa seorang yang dipilih dari}\\ &\textrm{kelompok orang itu memakai topi dan}\\ &\textrm{kacamata adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\color{red}\displaystyle \frac{1}{20}&&&\textrm{d}.&\displaystyle \frac{11}{20}\\\\ \textrm{b}.&\displaystyle \frac{2}{5}&\textrm{c}.&\displaystyle \frac{9}{20}&\textrm{e}.&\displaystyle \frac{3}{5} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\textrm{Perhatikanlah ilustrasi}\: \: \textbf{Diagram Venn}\\ &\textrm{berikut ini}\\ &\begin{array}{|ccl|}\hline \color{red}\begin{array}{|l|}\hline \textrm{S}=100\\\hline \end{array}&&\\ &\color{blue}\textrm{A}\qquad\qquad \textrm{B}&\\ &\begin{array}{|l|c|r|}\hline 60-n&n&45-n\\\hline \end{array}&\\ &&\\\hline \end{array} \\ &\begin{aligned}&\textrm{Kejadian di atas adalah contoh}\\ &\textrm{kejadian}\: \: \textbf{tidak saling lepas}.\\ &A=\textrm{kejadian terpilih seorang bertopi}\\ &n(A)=C(60,1)=\begin{pmatrix} 60\\ 1 \end{pmatrix}=60\\ &B=\textrm{kejadian terpilih seorang berkacamata}\\ &n(B)=C(45,1)=\begin{pmatrix} 45\\ 1 \end{pmatrix}=45\\ &A\cap B=\textrm{terpilih seorang bertopi dan}\\ &\qquad\qquad\textrm{berkacamata}\\ &n(A\cap B)=x\\ &S=\textrm{semua dianggap identik}\\ &n(S)=C(100,1)=\begin{pmatrix} 100\\ 1 \end{pmatrix}=100\\ &\textrm{maka}\\ &P(A\cup B)=P(A)+P(B)-P(A\cap B)\\ &\displaystyle \frac{n(A\cup B)}{n(S)}=\displaystyle \frac{n(A)}{n(S)}+\frac{n(B)}{n(S)}-\displaystyle \frac{n(A\cap B)}{n(S)}\\ &\: \: \: \qquad \displaystyle \frac{100}{100}=\frac{60}{100}+\frac{45}{100}-\frac{x}{100}\\ &\: \: \: \qquad \displaystyle \frac{x}{100}=\displaystyle \frac{105}{100}-\frac{100}{100}\\ &\, \: \qquad\qquad =\color{red}\displaystyle \frac{5}{100}=\frac{1}{20} \end{aligned} \end{array}$

$\begin{array}{ll}\ 8.&\textrm{Diketahui dua buah kotak A dan B}\\ &\textrm{berisi 5 bola putih dan 3 bola merah.}\\ &\textrm{Kotak B berisi 4 bola putih dan 2 bola}\\ &\textrm{merah. Jika diambil secara acak 1 kotak,}\\ &\textrm{kemudian diambil secara acak 1 bola dari}\\ &\textrm{kotak tersebut, maka peluang terambilnya}\\ &\textrm{bola putih adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle \frac{5}{16}&&&\textrm{d}.&\displaystyle \frac{1}{2}\\\\ \textrm{b}.&\displaystyle \frac{1}{3}&\textrm{c}.&\displaystyle \frac{7}{16}&\textrm{e}.&\color{red}\displaystyle \frac{31}{48} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Kejadian di atas adalah kejadian}\\ &\textbf{saling lepas}\: \: \textrm{dari dua kejadian Q}\\ &\textrm{dan R. Misalkan}:\\ &\color{red}\textrm{Pada kotak A}\\ &Q=\textrm{Terambil 1 bola putih di kotak A}\\ &n(Q)=C(5,1)=\begin{pmatrix} 5\\ 1 \end{pmatrix}=5\\ &S_{Q}=\textrm{Terambil 1 bola saja di kotak A}\\ &n(S_{Q})=C(8,1)=\begin{pmatrix} 8\\ 1 \end{pmatrix}=8\\ &\color{red}\textrm{Pada kotak B}\\ &R=\textrm{Terambil 1 bola putih di kotak B}\\ &n(R)=C(4,1)=\begin{pmatrix} 4\\ 1 \end{pmatrix}=4\\ &S_{R}=\textrm{Terambil 1 bola saja di kotak B}\\ &n(S_{R})=C(6,1)=\begin{pmatrix} 6\\ 1 \end{pmatrix}=6\\ &\color{red}\textrm{Karena kejadian pengambilan sebuah}\\ &\textrm{bola putih di atas adalah dari pilihan}\\ &\textrm{dua buah kotak yang ada, maka peluang}\\ &\textrm{pengambilannya adalah 1 dari 2 kotak}\\ &\textrm{peluang kejadian ini adalah}=\color{blue}\displaystyle \frac{1}{2}.\\ &\color{red}\textrm{Sehingga peluang kasus di atas adalah}:\\ &\displaystyle \frac{1}{2}P(Q\cup R)=\displaystyle \frac{1}{2}\left (P(Q)+P(R) \right )\\ &\quad\qquad\qquad =\displaystyle \frac{1}{2}\left (\displaystyle \frac{n(Q)}{n(S_{Q})}+\frac{n(R)}{n(S_{R})} \right )\\ &\quad\qquad\qquad =\displaystyle \frac{1}{2}\left ( \displaystyle \frac{5}{8}+\frac{4}{6} \right )\\ &\quad\qquad\qquad =\color{red}\displaystyle \frac{1}{2}\left ( \displaystyle \frac{31}{24} \right )=\displaystyle \frac{31}{48} \end{aligned} \end{array}$

$\begin{array}{ll}\ 9.&\textrm{Kotak I berisi 3 bola merah dan 2 bola }\\ &\textrm{putih. Kotak II berisi 3 bola hijau dan 5}\\ &\textrm{biru. Dari tiap-tiap kotak diambil 2 bola}\\ &\textrm{sekaligus secara acak. Peluang terambil 2}\\ &\textrm{bola merah pada kotak I dan 2 bola biru}\\ &\textrm{dari kotak II adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle \frac{1}{10}&&&\textrm{d}.&\displaystyle \frac{3}{8}\\\\ \textrm{b}.&\color{red}\displaystyle \frac{3}{28}&\textrm{c}.&\displaystyle \frac{4}{15}&\textrm{e}.&\displaystyle \frac{57}{140} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Kejadian di atas adalah kejadian}\\ &\textbf{saling bebas}\: \: \textrm{dari dua kejadian A}\\ &\textrm{dan B. Misalkan}:\\ &\color{red}\textrm{Pada kotak I}\\ &A=\textrm{Terambil 2 bola merah di kotak I}\\ &n(A)=C(3,2)=\begin{pmatrix} 3\\ 2 \end{pmatrix}=3\\ &S=\textrm{Terambil 2 bola saja di kotak I}\\ &n(S)=C(5,2)=\begin{pmatrix} 5\\ 2 \end{pmatrix}=10\\ &\color{red}\textrm{Pada kotak II}\\ &B=\textrm{Terambil 2 bola biru di kotak II}\\ &n(B)=C(5,2)=\begin{pmatrix} 5\\ 2 \end{pmatrix}=10\\ &S=\textrm{Terambil 2 bola saja di kota II}\\ &n(S)=C(8,2)=\begin{pmatrix} 8\\ 2 \end{pmatrix}=28\\ &\color{red}\textrm{Sehingga peluang kasus di atas adalah}:\\ &\displaystyle P(A\cap B)=P(A)\times P(B) \\ &\: \qquad\qquad =\displaystyle \frac{n(A)}{n(S)}\times \frac{n(B)}{n(S)} \\ &\: \qquad\qquad = \displaystyle \frac{3}{10}\times \frac{10}{28}\\ &\quad\qquad\qquad =\color{red}\displaystyle \frac{3}{28} \end{aligned} \end{array}$

$\begin{array}{ll}\ 10.&\textrm{Jika kejadian}\: \: A\: \: \textrm{dan}\: \: B\: \: \textrm{dapat terjadi secara}\\ &\textrm{bersamaan. Jika}\: \: P(A)=0,6,\: P(B)=0.75,\\ &\textrm{dan}\: \: P(A\cap B)=0,43,\: \textrm{maka}\: \: P(A\cup B)=\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle 0,98&&&\textrm{d}.&\color{red}\displaystyle 0,92\\\\ \textrm{b}.&\displaystyle 0,96&\textrm{c}.&\displaystyle 0,94&\textrm{e}.&\displaystyle 0,91 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Kejadian di atas adalah contoh}\\ &\textrm{kejadian}\: \: \textbf{tidak saling lepas}.\\ &\color{red}\textrm{Diketahui bahwa}\\ &P(A)=0,6,\: P(B)=0,75,\: P(A\cap B)=0,43\\ &\color{red}\textrm{Ditanyakan nilai}\: \: P(A\cup B)=\: ...?\\ &\color{purple}\textrm{maka}\\ &P(A\cup B)=P(A)+P(B)-P(A\cap B)\\ &\: \qquad\qquad =0,6+0,75-0,43\\ &\: \qquad\qquad =\color{red}0,92 \end{aligned} \end{array}$