Persamaan Kuadrat (Kelas X/Fase E Semester 2)

  Semester Genap

  • Persamaan dan Fungsi Kuadrat
  • Statistika
  • Aturan Pencacahan dan Peluang
A. Persamaan dan Fungsi Kuadrat

A. 1  Bentuk umum persamaan kuadrat

$\begin{aligned}&\color{red}\mathbf{ax^{2}+bx+c=0}\\ &\textrm{dengan}\: \: a,b,c\in \mathbb{R},\: \color{blue}a\neq 0 \end{aligned}$.

Adapun cara penyelesaian persamaan kuadrat, jika $x_{1}\: \: dan\: \: x_{2}$ sebagai akar-akarya adalah:

$\begin{array}{|l|l|l|}\hline \qquad \textbf{Pemfaktoran}&\textrm{Melengkapkan}&\textbf{Rumus ABC}\\ &\textbf{kuadrat sempurna}&\\\hline \qquad\qquad(1)&\qquad\qquad(2)&\qquad\qquad(3)\\\hline \begin{aligned}&ax^{2}+bx+c=0\\ &\left ( x-x_{1} \right )\left ( x-x_{2} \right )=0\\ &\textrm{Jika koefisien}\: \: x^{2}\\ &\textrm{lebih dari 1, maka}\\ &\color{blue}\textrm{ubahlah ke bentuk}\\ &\displaystyle \frac{1}{a}\left ( ax-x_{1} \right )\left ( ax-x_{2} \right )\\ &\\ &\\ &\\ &\\ &\\ &\\ &\\ & \end{aligned}&\begin{aligned}&ax^{2}+bx+c=0\\ &x^{2}+\displaystyle \frac{b}{a}x+\frac{c}{a}=0\\ &x^{2}+\displaystyle \frac{b}{a}x=-\frac{c}{a}\\ &\textbf{selanjutnya}\\ &x^{2}+\displaystyle \frac{b}{a}x+\left (\frac{b}{2a}  \right )^{2}\\ &\quad =-\displaystyle \frac{c}{a}+\left (\frac{b}{2a}  \right )^{2}\\ &\left ( x+\displaystyle \frac{b}{2a} \right )^{2}\\ &\quad =\displaystyle \frac{b^{2}-4ac}{4a^{2}} \end{aligned}&\begin{aligned}&\textrm{Dari bentuk 2, kita}\\ &\textrm{akan mendapatkan}\\ &\left ( x+\displaystyle \frac{b}{2a} \right )^{2}\\ &\quad =\displaystyle \frac{b^{2}-4ac}{4a^{2}}\\ &x-\displaystyle \frac{b}{2a}=\pm \sqrt{\displaystyle \frac{b^{2}-4ac}{4a^{2}}}\\ &x=-\displaystyle \frac{b}{2a}\pm \frac{\sqrt{b^{2}-4ac}}{\sqrt{4a^{2}}}\\ &x=\displaystyle \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\\ &\\ &\\ \end{aligned} \\\hline \end{array}$.

A. 2.  Jenis-Jenis Akar Persamaan Kuadrat

Pada kondisi ini, akar-akar dari persamaan kuadrat tergantung pada nilai di bawah tanda akar yang selanjutnya dikenal dengan nilai Diskriminan yang selanjutnya disingkat dengan huruf D, dengan nilai $D=b^{2}-4ac$.
$\begin{array}{|c|c|l|}\hline \textrm{No}&\textrm{Jenis nilai}\: \: \textbf{D}&\textrm{Penjelasan nilai}\: \: \textbf{D}\\\hline  1&\textbf{D}>0&\textrm{Persamaan kuadrat mempunyai dua akar }\\ &&\textrm{riil dan}\: \: \color{red}\textrm{berbeda}\\\hline 2&\textbf{D}=0&\textrm{Persamaan kuadrat mempunyai dua akar }\\ &&\textrm{riil dan}\: \: \textit{sama}\\\hline 3&\textbf{D}<0&\textrm{Persamaan kuadrat mempunyai dua akar }\\ &&\textrm{tidak riil dan}\: \: \color{purple}\textrm{berbeda}\\\hline \end{array}$.

A. 3  Jumlah dan Hasil Kali serta Selisih Akar-Akar Persamaan Kuadrat

$\begin{array}{|c|c|l|}\hline \textrm{No}&\textrm{Kondisi akar-akar}\: \: x_{1}\:  \&\: x_{2}&\textrm{Dari posisi}\: \: \color{red}ax^{2}+bx+c=0\\\hline  1&x_{1}+x_{2}=-\displaystyle \frac{b}{a}&\textrm{akar-akarnya tidak harus}\: \: \: x_{1}\:  \&\: x_{2}\\ &&\textrm{terkadang dituliskan dengan}\: \: \color{red}\alpha \: \: \color{black}\textrm{dan}\: \color{red}\: \beta \\\hline 2&x_{1}\times x_{2}=\displaystyle \frac{c}{a}&\textrm{Baik rumus jumlah maupun hasil kali}\\ &&\textrm{Anda juga dapat melihat dari jenis akarnya}\\\hline 3&x_{1}-x_{2}=\left | \displaystyle \frac{\sqrt{D}}{a} \right |&\textrm{Ingat nilai}\: \: D=\color{purple}b^{2}-4ac\\\hline \end{array}$.

A. 4.  Menyusun Persamaan Kuadrat Baru

Persamaan kuadrat dengan akar-akar $x_{1}\: \: dan\: \: x_{2}$  dapat disusun dengan rumus:
$\LARGE x^{2}-\left ( x_{1}+x_{2} \right )x+x_{1}\times x_{2}=0$.



$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Tentukan kar-akar dari persamaan kuadrat}\\ &(\textrm{a})\quad x^{2}-2x-8=0\\ &(\textrm{b})\quad 2x^{2}-3x-5=0\\\\ &\textbf{Jawab}:\\ &\begin{array}{|c|c|}\hline (\textbf{a})&(\textbf{b})\\\hline \begin{aligned}&x^{2}\color{red}-2\color{black}x-8=0\\ &\Leftrightarrow (x\color{red}-4\color{black})(x\color{red}+2\color{black})=0\\ &\Leftrightarrow x-4=0\: \: \textrm{atau}\: \: x+2=0\\ &\Leftrightarrow x=4\: \: \textrm{atau}\: \: x=-2\\ &\\ &\\ & \end{aligned}&\begin{aligned}&2x^{2}\color{red}-3\color{black}x-5=0\\ &\Leftrightarrow \displaystyle \frac{ (2x\color{red}-5\color{black})(2x\color{red}+2\color{black})}{\color{blue}2}=0\\ &\Leftrightarrow (2x-5)(\color{blue}x+1\color{black})=0\\ &\Leftrightarrow 2x-5=0\: \: \textrm{atau}\: \: x+1=0\\ &\Leftrightarrow 2x=5\: \: \textrm{atau}\: \: x=-1\\ &\Leftrightarrow x=\displaystyle \frac{5}{2}\: \: \textrm{atau}\: \: x=-1 \end{aligned}\\\hline \end{array} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Penyelesaian terkecil dari persamaan kuadrat}\\ & \left ( x-\displaystyle \frac{3}{4} \right )\left ( x-\displaystyle \frac{3}{4} \right )+\left ( x-\displaystyle \frac{3}{4} \right )\left ( x-\displaystyle \frac{1}{2} \right )=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\left ( \color{red}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( x-\displaystyle \frac{3}{4} \right )+\left ( \color{red}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( x-\displaystyle \frac{1}{2} \right )=0\\ &\Leftrightarrow \left ( \color{red}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( x-\displaystyle \frac{3}{4}+x-\frac{1}{2} \right )=0\\ &\Leftrightarrow \left ( \color{red}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( 2x-\displaystyle \frac{5}{4} \right )=0\\ &\Leftrightarrow x-\displaystyle \frac{3}{4}=0\: \: \textrm{atau}\: \: 2x-\frac{5}{4}=0\\ &\Leftrightarrow x=\displaystyle \frac{3}{4}\: \: \textrm{atau}\: \: 2x=\frac{5}{4}\\ &\Leftrightarrow x=\displaystyle \frac{6}{8}\: \: \textrm{atau}\: \: x=\frac{5}{8}\\  \end{aligned}\\ &\textrm{Jadi, nilai terkecilnya adalah}\: \: \color{blue}\displaystyle \frac{5}{8} \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Jika persamaan}\: \: 2x^{2}-3x-14=0\: \: \textrm{mempunyai}\\&\textrm{akar-akar}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\: \: \textrm{dengan}\: \: x_{1}>x_{2}, \: \: \textrm{maka}\\ &2x_{1}+3x_{2}\: \: \textrm{adalah}\: ....\\\\ &\textbf{Jawab}:\\ &\textrm{Diketahui bahwa PK}\: :\: 2x^{2}-3x-14=0\\ &\begin{aligned}&2x^{2}-3x-14=0\Leftrightarrow \displaystyle \frac{(2x-7)(2x+4)}{2}=0\\ &\Leftrightarrow (2x-7)(x+2)=0\\ &\Leftrightarrow 2x-7=0\: \: \textrm{atau}\: \:  x+2=0\\ &x=\displaystyle \frac{7}{2}\: \: \textrm{atau}\: \:  x=-2\\ &\textrm{Karena nilai dari}\: \: x_{1}>x_{2},\: \: \textrm{maka}\\ &x_{1}=\displaystyle \frac{7}{2}\: \: \textrm{dan}\: \:  x_{2}=-2\\ \end{aligned}\\ &\textrm{Sehingga nilai}\: \: 2x_{1}+3x_{2}=\color{red}2\displaystyle \frac{7}{2}+3(-2)\color{black}=7-6=\color{blue}1 \end{array}$.

$\begin{array}{ll}\\ 4.&\textrm{Diketahu}i\: \: \alpha \: \: \textrm{dan}\: \: \beta \: \: \textrm{adalah akar-akar dari }\\ &\textrm{persamaan kuadrat}\: \: x^{2}-x-2=0,\\ &\textrm{tentukanlah nilai untuk}\\ &\begin{array}{ll}\\ \textrm{a}.\quad \alpha +\beta \: \: \textrm{dan}\: \: \alpha \beta&\textrm{e}.\quad \alpha ^{2}+\beta ^{2}\\ \textrm{b}.\quad \left ( \alpha -\beta \right )^{2}&\textrm{f}.\quad \alpha ^{2}-\beta ^{2}\\ \textrm{c}.\quad \displaystyle \frac{\alpha }{\beta }+\frac{\beta }{\alpha }&\textrm{g}.\quad \displaystyle \frac{1}{\beta -2}+\frac{1}{\alpha -2}\\ \textrm{d}.\quad \displaystyle \frac{1}{\beta }+\frac{1}{\alpha }&\textrm{h}.\quad \displaystyle \frac{\alpha }{\beta ^{2}}+\frac{\beta }{\alpha ^{2}}\\ \end{array}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{Diketahui}&\: \: \textrm{bahwa}\\ &x^{2}-x-2=0\left\{\begin{matrix} \alpha \\ \\ \beta \end{matrix}\right.\textrm{dan}\: \: \left\{\begin{matrix} a=1\\ b=-1\\ c=-2 \end{matrix}\right.\\ & \end{aligned}\\ &\begin{array}{|l|l|}\hline \begin{aligned}\textrm{a}.\quad &\alpha +\beta =-\frac{b}{a}=-\frac{(-1)}{1}=1\\ &\alpha \beta =\frac{c}{a}=\frac{(-2)}{1}=-2 \end{aligned}&\begin{aligned}\textrm{e}.\quad \alpha ^{2}+\beta ^{2}&=\left ( \alpha +\beta \right )^{2}-2\alpha \beta \\ &=1^{2}-2(-2)\\ &=1+4=5 \end{aligned}\\\hline \begin{aligned}\textrm{b}.\quad \left ( \alpha -\beta \right )^{2}&=\frac{D}{a^{2}}\\ &=\frac{b^{2}-4ac}{a^{2}}\\ &=\frac{(-1)^{2}-4.(1).(-2)}{(1)^{2}}\\ &=1+8=9 \end{aligned}&\begin{aligned}\textrm{f}.\quad \alpha ^{2}-\beta ^{2}&=\left ( \alpha +\beta \right )\left ( \alpha -\beta \right )\\ &=(1).(9)=9\\ &\\ &\\ & \end{aligned}\\\hline \begin{aligned}\textrm{c}.\quad \displaystyle \frac{\alpha }{\beta }+\frac{\beta }{\alpha }&=\frac{\alpha ^{2}+\beta ^{2}}{\alpha \beta }\\ &=\displaystyle \frac{5}{-2}\\ &=-\frac{5}{2}\\ &\\ &\\ & \end{aligned}&\begin{aligned}\textrm{g}.\quad \displaystyle \frac{1}{\beta -2}+\frac{1}{\alpha -2}&=\frac{(\alpha -2)+(\beta -2)}{(\alpha -2).(\beta -2)}\\ &=\displaystyle \frac{\alpha +\beta -4}{\alpha \beta -2(\alpha +\beta )+4}\\ &=\displaystyle \frac{(-1)-4}{(-2)-2(-1)+4}\\ &=\displaystyle \frac{-5}{-2+2+4}\\ &=-\frac{5}{4} \end{aligned}\\\hline \begin{aligned}\textrm{d}.\quad \displaystyle \frac{1}{\beta }+\frac{1}{\alpha }&=\frac{\alpha +\beta }{\alpha \beta }\\ &=\displaystyle \frac{(-1)}{(-2)}\\ &=\frac{1}{2} \end{aligned}&\begin{aligned}\textrm{h}.\quad \displaystyle \frac{\alpha }{\beta ^{2}}+\frac{\beta }{\alpha ^{2}}&=\frac{\alpha ^{3}+\beta ^{3}}{(\alpha \beta )^{2}}\\ &=\displaystyle \frac{(\alpha +\beta )^{3}-3\alpha \beta (\alpha +\beta )}{(\alpha \beta )^{2}}\\ &=.... \end{aligned}\\\hline \end{array} \end{array}$.

$\begin{array}{ll}\\ 5.&\textrm{Diketahu}i\: \: p \: \: \textrm{dan}\: \: q \: \: \textrm{adalah akar-akar dari persamaan kuadrat}\\ &x^{2}+2x-5=0,\: \: \textrm{tentukanlah nilai untuk}\\ &\begin{array}{ll}\\ \textrm{a}.\quad p^{2}+q^{2}&\textrm{e}.\quad (p-3)^{2}+(q-3)^{2}\\ \textrm{b}.\quad \displaystyle \frac{p}{q}+\frac{q}{p}&\textrm{f}.\quad p^{2}q+pq^{2}\\ \textrm{c}.\quad p^{3}+q^{3}&\textrm{g}.\quad (p+q)^{2}-(p-q)^{2}\\ \textrm{d}.\quad p^{3}-q^{3}&\textrm{h}.\quad (p^{3}+q^{3})-(p^{3}-q^{3}) \end{array}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{Diketahui}&\: \: \textrm{bahwa}\\ &x^{2}+2x-5=0\left\{\begin{matrix} p \\ \\ q \end{matrix}\right.\textrm{dan}\: \: \left\{\begin{matrix} a=1\\ b=2\\ c=-5 \end{matrix}\right.\\ & \end{aligned}\\ &\begin{array}{|l|l|}\hline  \begin{aligned}\textrm{a}.\quad p^{2}+q^{2}&=(p+q)^{2}-2pq\\ &=(-\frac{b}{a})^{2}-2\left ( \frac{c}{a} \right )\\ &=\left ( -\frac{2}{1} \right )^{2}-2\left ( \frac{(-5)}{1} \right )\\ &=4+10\\ &=14 \end{aligned}&\begin{aligned}\textrm{e}.\quad &(p-3)^{2}+(q-3)^{2}\\ &=p^{2}-6p+9+q^{2}-6q+9\\ &=p^{2}+q^{2}-6(p+q)+18\\ &=14-6(-2)+18\\ &=14+12+18\\ &=44 \end{aligned}\\\hline \begin{aligned}\textrm{b}.\quad \displaystyle \frac{p}{q}+\frac{q}{p}&=\frac{p^{2}+q^{2}}{pq}\\ &=\displaystyle \frac{14}{-5}\\ &=-\frac{14}{5} \end{aligned}&\begin{aligned}\textrm{f}.\quad p^{2}q+pq^{2}&=pq(p+q)\\ &=(-5)(-2)\\ &=10\\ &\\ & \end{aligned}\\\hline \begin{aligned}\textrm{c}.\quad p^{3}+q^{3}&=(p+q)^{3}-3pq(p+q)\\ &=\left ( -\frac{b}{a} \right )^{3}-3\left ( \frac{c}{a} \right )\left ( -\frac{b}{a} \right )\\ &=\left ( -\frac{2}{1} \right )^{3}-3\left ( \frac{(-5)}{1} \right )\left ( -\frac{2}{1} \right )\\ &=-8-30\\ &=-38\\ & \end{aligned}&\begin{aligned}\textrm{d}.\quad p^{3}&-q^{3}\\ &=(p-q)^{3}+3pq(p-q)\\ &=\left ( \frac{\sqrt{b^{2}-4ac}}{a} \right )^{^{3}}+3\left ( \frac{c}{a} \right )\left ( \frac{\sqrt{b^{2}-4ac}}{a} \right )\\ &=\left ( \displaystyle \frac{\sqrt{2^{2}-4.1.(-5)}}{1} \right )^{3}+3\left ( \frac{-5}{1} \right )....\\ &=....\\ & \end{aligned}\\\hline \end{array} \end{array}$.

$\begin{array}{ll}\\ 6.&\textrm{Tentukanlah akar-akar persamaan kuadrat dengan rumus kuadrat}\\ &\begin{array}{ll}\\ \textrm{a}.\quad x^{2}-2=0&\textrm{f}.\quad 2p^{2}-5p-12=0\\ \textrm{b}.\quad x^{2}+3x-1=0&\textrm{g}.\quad 3q^{2}-11q+10=0\\ \textrm{c}.\quad x^{2}+2x-3=0&\textrm{h}.\quad 4x^{2}+11x+6=0\\ \textrm{d}.\quad x^{2}+5x-6=0&\textrm{i}.\quad 5z^{2}-z-4=0\\ \textrm{e}.\quad x^{2}-7x-8=0&\textrm{j}.\quad 6x^{2}+17x+7=0 \end{array}\\\\ &\textbf{Jawab}:\\ &\begin{array}{|l|l|}\hline \begin{aligned}\textrm{a}.\quad x^{2}&-2=0\\ &\begin{cases} a & =1 \\ b & =0 \\ c & =-2 \end{cases}\\ x_{1,2}&=\displaystyle \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\\ x_{1,2}&=\displaystyle \frac{0\pm \sqrt{0^{2}-4.1.(-2)}}{2.1}\\ &=\displaystyle \frac{\pm \sqrt{8}}{2}=\frac{\pm \sqrt{4.2}}{2}\\ &=\displaystyle \frac{\pm 2\sqrt{2}}{2}\\ &=\pm \sqrt{2}\\ x_{1}&=\sqrt{2}\quad \textrm{atau}\quad x_{2}=-\sqrt{2}\end{aligned}&\begin{aligned}\textrm{i}.\quad 5z^{2}&-z-4=0\\ &\begin{cases} a & =5 \\ b & =-1 \\ c & =-4 \end{cases}\\ z_{1,2}&=\displaystyle \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\\ z_{1,2}&=\displaystyle \frac{-(-1)\pm \sqrt{(-1)^{2}-4.5.(-4)}}{2.5}\\ &=\displaystyle \frac{1\pm \sqrt{1+80}}{10}=\frac{1\pm \sqrt{81}}{10}\\ &=\displaystyle \frac{1\pm 9}{10}\\ z_{1}&=\displaystyle \frac{1+9}{10}=1\quad \textrm{atau}\quad z_{2}=\frac{1-9}{10}=\frac{-8}{10}=-\frac{4}{5}\\ &\end{aligned}\\\hline \end{array} \end{array}$.

$\begin{array}{ll}\\ 7.&\textrm{Tunjukkan bahwa untuk}\: \: m\in \textrm{rasional},\: \textrm{maka kedua akar persamaan}\\ &\textrm{a}.\quad x^{2}+(m+2)x+2m=0,\: \textrm{adalah rasional juga}\\ &\textrm{b}.\quad 2x^{2}+(m+4)x+(m-1)=0,\: \textrm{selalu memiliki dua akar real yang berlainan}\\ &\textrm{c}.\quad x^{2}+(m+4)x-2m^{2}-m+3=0,\: \textrm{selalu memiliki dua akar real dan rasional}\\\\ &\textbf{Bukti}:\\ &\begin{array}{|c|c|c|}\hline  x^{2}+(m+2)x+2m=0&2x^{2}+(m+4)x+(m-1)=0&x^{2}+(m+4)x-2m^{2}-m+3=0\\\hline \begin{aligned}a&=1,\: b=(m+2),\: c=2m \end{aligned}&\begin{aligned}a&=2,\: b=m+4,\: c=m-1 \end{aligned}&\begin{aligned}a&=1,\: b=m+4,\: c=-2m^{2}-m+3 \end{aligned}\\\hline \begin{aligned}D&=(m+2)^{2}-4.1.(2m)\\ &=m^{2}+4m+4-8m\\ &=m^{2}-4m+4\\ &=(m-2)^{2} \end{aligned}&\begin{aligned}D&=(m+4)^{2}-4.2.(m-1)\\ &=m^{2}+8m+16-8m+8\\ &=m^{2}+24\\ & \end{aligned}&\begin{aligned}D&=(m+4)^{2}-4.1.(-2m^{2}-m+3)\\ &=m^{2}+8m+16+8m^{2}+4m-12\\ &=9m^{2}+12m+4\\ &=(3m+2)^{2} \end{aligned}\\\hline  \begin{aligned}&\textrm{2 akar rasional} \end{aligned}&\begin{aligned}&\textrm{2 akar real dan berbeda} \end{aligned}&\begin{aligned}&\textrm{2 akar rasional} \end{aligned}\\\hline \end{array} \end{array}$

$\begin{array}{ll}\\ 8.&\textrm{Carilah nilai}\: \: x\: \: \textrm{yang memenuhi persamaan}\\ &\displaystyle \frac{1}{x^{2}-10x-29}+\frac{1}{x^{2}-10x-45}-\frac{2}{x^{2}-10x-69}=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\displaystyle \frac{1}{x^{2}-10x-29}+\frac{1}{x^{2}-10x-45}&=\frac{2}{x^{2}-10x-69}\\ \displaystyle \frac{1}{\left (x^{2}-10x-37 \right )+8}+\frac{1}{\left (x^{2}-10x-37 \right )-8}&=\frac{2}{\left (x^{2}-10x-37 \right )-32}\\ \textrm{Misalkan}\: \: x^{2}-10x-37=p, \: \: \textrm{maka}\qquad&\\ \displaystyle \frac{1}{p+8}+\frac{1}{p-8}&=\frac{2}{p-32}\\ \displaystyle \frac{p-8+p+8}{(p+8)(p-8)}&=\frac{2}{p-32}\\ \displaystyle \frac{2p}{(p+8)(p-8)}&=\frac{2}{p-32}\\ \displaystyle \frac{p}{p^{2}-64}&=\frac{1}{p-32}\\ p^{2}-32p&=p^{2}-64\\ p&=\displaystyle \frac{-64}{-32}\\ p&=2,\\ \textnormal{kita kembali ke bentuk semula}&\\ x^{2}-10x-37&=2\\ x^{2}-10x-39&=0\\ (x-13)(x+3)&=0\\ x=13\: \: \textrm{atau}\: \: x=-3& \end{aligned}\\ &\textrm{Jadi},\: \: \color{red}x=13 \end{array}$.

$\begin{array}{ll}\\ 9.&\textrm{Diketahui akar-akar persamaan kuadrat}\\ &x^{2}+x-3=0\: \: \textrm{adalah}\: \: \alpha \: \: \textrm{dan}\: \beta .\: \textrm{Tentukanlah nilai dari}\\ &\alpha ^{3}-4\beta ^{2}+19\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\\ &\begin{array}{|l|l|l|}\hline x^{2}+x-3=0&\begin{aligned}\alpha ^{2}+\alpha -3&=0\\ &\\ \Leftrightarrow \alpha ^{2}&=3-\alpha.....(1) \end{aligned}&\begin{aligned}\beta ^{2}+\beta -3&=0\\ &\\ \Leftrightarrow \beta ^{2}&=3-\beta.....(2) \end{aligned}\\\hline \left\{\begin{matrix} \alpha +\beta =\displaystyle \frac{-b}{a}=-1\\ \alpha \beta =\displaystyle \frac{c}{a}=-3 \end{matrix}\right.&\begin{aligned}\alpha ^{3}+\alpha ^{2}-3\alpha &=0\\ &\\ \Leftrightarrow \alpha ^{3}&=3\alpha -\alpha ^{2}.....(3) \end{aligned}&\begin{aligned}\beta ^{3}+\beta ^{2}-3\beta &=0\\ &\\ \Leftrightarrow \beta ^{3}&=3\beta -\beta ^{2} .....(4)\end{aligned}\\\hline \end{array}\\ &\\ &\begin{aligned}\alpha ^{3}-4\beta ^{2}+19&=\left ( 3\alpha -\alpha ^{2} \right )-4\left ( 3-\beta \right )+19,\: \textnormal{perhatikan persamaan}\: \: (3)\: \: \textrm{dan}\: \: (2)\\ &=3\alpha -\left ( 3-\alpha \right )-12+4\beta +19\\ &=4\alpha +4\beta -3+7\\ &=4\left ( \alpha +\beta \right )+4\\ &=4(-1)+4\\ &=0 \end{aligned} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 10.&\textrm{Akar real terbesar untuk persamaan}\\ &\displaystyle \frac{3}{x-3}+\frac{5}{x-5}+\frac{17}{x-17}+\frac{19}{x-19}=x^{2}-11x-4\\ &\textrm{adalah}\: \: p+\sqrt{q+\sqrt{r}},\: \textrm{dengan}\: \: p,\: q,\: \textrm{dan}\: \: r\\ &\textrm{adalah bilangan-bilangan asli}.\: \textrm{Carilah hasil}\: \: p+q+r\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\displaystyle \frac{3}{x-3}+\frac{5}{x-5}+\frac{17}{x-17}+\frac{19}{x-19}&=x^{2}-11x-4\\ \frac{3}{x-3}+1+\frac{5}{x-5}+1+\frac{17}{x-17}+1+\frac{19}{x-19}+1&=x^{2}-11x\\ \frac{3+(x-3)}{x-3}+\frac{5+(x-5)}{x-5}+\frac{17+(x-17)}{x-17}+\frac{19+(x-19)}{x-19}&=x^{2}-11x\\ \frac{x}{x-3}+\frac{x}{x-5}+\frac{x}{x-17}+\frac{x}{x-19}&=x^{2}-11x\\ \frac{x(x-19)+x(x-3)}{(x-3)(x-19)}+\frac{x(x-17)+x(x-5)}{(x-5)(x-17)}&=x^{2}-11x\\ \frac{2x^{2}-22x}{x^{2}-22x+57}+\frac{2x^{2}-22}{x^{2}-22x+85}&=x^{2}-11x\\ \left ( x^{2}-11x \right )\left ( \frac{2}{x^{2}-22x+57}+\frac{2}{x^{2}-22x+85} \right )&=x^{2}-11x,\quad \textrm{misal}\: \: t=x^{2}-22x\\ \left ( \frac{2}{t+57}+\frac{2}{t+85} \right )&=\frac{x^{2}-11x}{x^{2}-11x}=1\\ 2\left ( t+85 \right )+2\left ( t+57 \right )&=(t+57)(t+85)\\ 2t+170+2t+114&=t^{2}+142t+4845\\ 0&=t^{2}+138t+4731\\ t^{2}+138t+4731&=0\: \: \left\{\begin{matrix} a=1\\ b=138\\ c=4731 \end{matrix}\right.\\ t_{1,2}&=\displaystyle \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\\ t_{1,2}&=\displaystyle \frac{-138\pm \sqrt{138^{2}-4.1.4731}}{2}\\ &=\displaystyle \frac{-138\pm \sqrt{19044-18924}}{2}\\ &=\displaystyle \frac{-138\pm \sqrt{120}}{2}\\ &=\displaystyle \frac{-138\pm 2\sqrt{30}}{2}\\ &=-69\pm \sqrt{30} \end{aligned}\\ &\begin{aligned}\textrm{Selanjutnya}\qquad\qquad\qquad\qquad\qquad &\\ t_{1,2}&=-69\pm \sqrt{30}\\ x^{2}-22x&=-69\pm \sqrt{30}\\ x^{2}-22x+69\pm \sqrt{30}&=0\\ x^{2}-22x+69+\sqrt{30}&=0\quad \textrm{atau}\quad x^{2}-22x+69-\sqrt{30}\\ &\\ \textrm{dengan cara yang} &\: \: \textrm{semisal diatas}\\  &\\ x_{1,2}=\displaystyle \frac{22\pm \sqrt{22^{2}-4\left ( 69+\sqrt{30} \right )}}{2}&\qquad \textrm{atau}\qquad x_{3,4}=\displaystyle \frac{22\pm \sqrt{22^{2}-4\left ( 69-\sqrt{30} \right )}}{2}\\ x_{1,2}=\displaystyle \frac{22\pm \sqrt{484-276-4\sqrt{30}}}{2}&\qquad \textrm{atau}\qquad x_{3,4}=\displaystyle \frac{22\pm \sqrt{484-276+4\sqrt{30}}}{2}\\ x_{1,2}=\displaystyle \frac{22\pm \sqrt{208-4\sqrt{30}}}{2}&\qquad \textrm{atau}\qquad x_{3,4}=\displaystyle \frac{22\pm \sqrt{208+4\sqrt{30}}}{2}\\ x_{1,2}=\displaystyle \frac{22\pm 2\sqrt{52-\sqrt{30}}}{2}&\qquad \textrm{atau}\qquad x_{3,4}=\displaystyle \frac{22\pm 2\sqrt{52+\sqrt{30}}}{2}\\ x_{1,2}=11\pm \sqrt{52-\sqrt{30}}&\qquad \textrm{atau}\qquad x_{3,4}=11\pm \sqrt{52+\sqrt{30}}\\ &\\  \textrm{Maka},\qquad\qquad\quad &\\ \left\{\begin{matrix} x_{1}=11+\sqrt{52-\sqrt{30}}\\ \\ x_{2}=11-\sqrt{52-\sqrt{30}} \end{matrix}\right.&\qquad \textrm{atau}\qquad \left\{\begin{matrix} x_{3}=11+\sqrt{52+\sqrt{30}}\\ \\ x_{4}=11-\sqrt{52+\sqrt{30}} \end{matrix}\right. \end{aligned}\\\\\\ &\begin{aligned}\textrm{Selanjutnya nilai}&\: \textrm{yang paling pas sesuai soal adalah}\: x_{3}=11+\sqrt{52+\sqrt{30}}=p+\sqrt{q+\sqrt{r}}\\ \textrm{Sehingga nilai}\: \: \: \: \, \, &p+q+r=11+52+30=93 \end{aligned} \end{array}$




Sumber Referensi:
  1. Budhi, Wono S. 2014. Bupena Matematika Kelompok Wajib untuk SMA/MA Kelas X. Jakarta: ERLANGGA.
  2. Idris, M., Rusdi, 1. 2015. Langkah Awal Meraih Medali Emas Olimpiade Matematika SMA. Bandung: YRAMA WIDYA. 
  3. Kurnianingsih, Sri, Kuntarti & Sulistiyono. 2007. Matematika SMA dan MA untuk Kelas X Semester 1. Jakarta: ESIS.
  4. Marwanta, dkk. 2013. Matematika SMA Kelas X. Jakarta: YUDISTIRA.
  5. Sobirin. 2005. Kompas Matematika: Strategi Praktis Menguasai Tes Matematika SMA Kelas 1. Jakarta: KAWAN PUSTAKA.


KUMPULAN MATERI SMA/MA KELAS X/FASE E (Bagian 2) Tahun 2024

 Kelas X 

Kurikulum Merdeka

Fase E Kelas X

Semester Gasal

Eksponen dan Logaritma

Barisan dan Deret

(pilih  materi yang Anda butuhkan saja)
Sistem Persamaan dan Pertidaksamaan Linear

Semester Genap

Kelas XI dan Kelas XII 

Matematika Wajib

Matematika Peminatan

KUMPULAN MATERI SMA/MA KELAS X/FASE E (Bagian 1)

 Kelas X 

Kurikulum Merdeka

Fase E Kelas X

Semester Gasal

Eksponen dan Logaritma

Barisan dan Deret

(pilih  materi yang Anda butuhkan saja)
Sistem Persamaan dan Pertidaksamaan Linear

Semester Genap

  • Persamaan Kuadrat dan Fungsi Kuadrat, contoh soal
  • Statistika
  • Aturan Pencacahan dan Peluang

Kelas XI dan Kelas XII 

Matematika Wajib

Matematika Peminatan

KUMPULAN MATERI MATEMATIKA PEMINATAN untuk MA Kurtilas Revisi 2018

 A. Kelas X (Sepuluh)

A. 1 Fungsi Eksponensial dan Fungsi Logaritma

A. 2 Vektor

B. Kelas XI (Sebelas)

B. 1 Persamaan Trigonometri

B. 2 Rumus Jumlah dan Selisih

B. 3 Persamaan Lingkaran

B. 4 Polinom


C. Kelas XII (Duabelas)

C. 1 Limit Fungsi Trigonometri

C.2 Turunan Fungsi Trigonometri

C.3 Distribusi peluang binomial

C.4 Distribusi normal


KUMPULAN MATERI MATEMATIKA WAJIB untuk MA Kurtilas Revisi 2018

 A. Kelas X (Sepuluh)

A. 1 Persamaan dan Pertidaksamaan Nilai Mutlak dari Bentuk Linear Satu Variabel

A. 2 Pertidaksamaan Rasional dan Irasional Satu Variabel

A. 3 Sistem Persamaan Linear Tiga Variabel

A. 4 Sistem Pertidaksamaan Dua Variabel Linear-Linear

A. 5 Sistem Pertidaksamaan Dua Variabel Linear dan Kuadrat

A. 6 Fungsi

A. 7 Fungsi Komposisi dan Fungsi Invers

A. 8 Rasio Trigonometri pada Segitiga Siku-Siku

A. 9 Rasio Trigonometri Sudut-Sudut diberbagai Kuadran

A. 10 Aturan Sinus dan Cosinus


B. Kelas XI (Sebelas)

B. 1 Program Linear

B. 2 Matriks

B. 3 Determinan dan Invers Matriks Ordo 2x2

B. 4 Transformasi Geometri

B. 5 Pola Bilangan dan Jumlah pada Barisan Aritmetika dan Geometri

B. 6 Limit Fungsi Aljabar

B. 7 Turunan Fungsi Aljabar

B. 8 Integral Tak Tentu Fungsi Aljabar

Tambahan/Pengayaan

Integral Tentu Fungsi Aljabar


C. Kelas XII (Dua Belas)

C. 1 Jarak dalm Ruang

Statistika

C. 3 Aturan Pencacahan

C. 4 Peluang Kejadian Majmuk